Skip to main content

Advertisement

Log in

Diversity and composition of the copepod communities associated with megafauna around a cold seep in the Gulf of Mexico with remarks on species biogeography

  • Meioscool
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

In order to characterize the copepod communities associated with tubeworm and mussel aggregations around a hydrocarbon seep in the Green Canyon of the Gulf of Mexico, diversity, abundance, and community composition were analyzed. Also analyzed were species biogeography and the potential connectivity to other chemosynthesis-based habitats. Copepod abundance and biomass were very low among tubeworms and mussels, with 0.22 to 6.08 individuals per 10 cm2 sampled area and 9.02 to 42.43 μg wet weight 10 cm2 sampled area, respectively; but, abundance was significantly higher among the mussels. Fifty-five copepod species were identified, of which most were newly discovered and primarily belonging to the Harpacticoida order. Four copepod species were previously recorded from other food-rich and hard-substrata environments, such as hydrothermal vents or wood falls. Another four species showed close morphological proximity to species described from cold seeps, hydrothermal vents, and wood falls. Copepod diversity and community composition showed no significant differences between the foundation species. However, differences in the relative abundance and dominance of single species indicate a rather homogeneous community in mussel beds and a more heterogeneous community among tubeworms, indicating that foundation species may shape the abundance and community composition of associated copepods at cold seeps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Back J, Huys R, Lee W (2010) A new species of the genus Tegastes (copepoda: Harpacticoida: Tegastidae) from hydrothermal vents in the Okinawa Trough. Zool Sci 27:678–688

    Article  PubMed  Google Scholar 

  • Baguley JG, Montagna PA, Lee W, Hyde LJ, Rowe GT (2006) Spatial and bathymetric trends in Harpacticoida (copepoda) community structure in the northern Gulf of Mexico deep-sea. J Exp Mar Biol Ecol 330:327–341

    Article  Google Scholar 

  • Barry J, Kochevar R, Baxter C (1997) The influence of pore-water chemistry and physiology on the distribution of vesicomyid clams at cold seeps in Monterey Bay: implications for patterns of chemosynthetic community organization. Limnol Oceanogr 42:318–328

    Article  CAS  Google Scholar 

  • Bergquist DC, Ward T, Cordes EE, McNelis T, Howlett S, Kosoff R, Hourdez S, Carney R, Fisher CR (2003) Community structure of vestimentiferan-generated habitat islands from Gulf of Mexico cold seeps. J Exp Mar Biol Ecol 289:197–222

    Article  Google Scholar 

  • Bienhold C, Ristova PP, Wenzhöfer F, Dittmar T, Boetius A (2013) How deep-sea wood falls sustain chemosynthetic life. PLoS One 8:e53590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Bright M, Plum C, Riavitz LA, Nikolov N, Martinez Arbizu P, Cordes EE, Gollner S (2010) Epizooic metazoan meiobenthos associated with tubeworm and mussel aggregations from cold seeps of the northern Gulf of Mexico. Deep-Sea Res II Top Stud Oceanogr 57:1982–1989

    Article  Google Scholar 

  • Buck K, Barry J (1998) Monterey bay cold seep infauna: quantitative comparison of bacterial mat meiofauna with non-seep control sites. Cah Biol Mar 39:333–335

    Google Scholar 

  • Clarke K, Gorley R (2006) V6: User manual/tutorial. Primer-E Ltd. Plymouth.–2006

  • Conroy-Dalton S, Huys R (2000) Systematics and phylogeny of the ancorabolidae (copepoda: harpacticoida). I. The ancorabolus-lineage, with the description of three new genera. Cah Biol Mar 41:343–398

    Google Scholar 

  • Cordes EE, Carney SL, Hourdez S, Carney RS, Brooks JM, Fisher CR (2007) Cold seeps of the deep Gulf of Mexico: community structure and biogeographic comparisons to Atlantic equatorial belt seep communities. Deep-Sea Res I 54:637–653

    Article  Google Scholar 

  • Cordes EE, Bergquist DC, Fisher CR (2009) Macro-ecology of Gulf of Mexico cold seeps. Ann Rev Mar Sci 1:143–168

    Article  PubMed  Google Scholar 

  • Cordes EE, Becker EL, Hourdez S, Fisher CR (2010) Influence of foundation species, depth, and location on diversity and community composition at Gulf of Mexico lower-slope cold seeps. Deep-Sea Res II Top Stud Oceanogr 57:1870–1881

    Article  Google Scholar 

  • Cuvelier D, Beesau J, Ivanenko VN, Zeppilli D, Sarradin PM, Sarrazin J (2014) First insights into macro-and meiofaunal colonisation patterns on paired wood/slate substrata at Atlantic deep-sea hydrothermal vents. Deep-Sea Res I Oceanogr Res Pap 87:70–81

    Article  Google Scholar 

  • Dahlgren TG, Wiklund H, Källström B, Lundälv T, Smith CR, Glover AG (2006) A shallow-water whale-fall experiment in the North Atlantic. Cah Biol Mar 47:385–389

    Google Scholar 

  • Dando P, Austen M, Burke R, Kendall M, Kennicutt M, Judd A, Moore D, O’Hara S, Schmaljohann R, Southward A (1991) Ecology of a North Sea pockmark with an active methane seep. Mar Ecol Prog Ser 70:49–63

    Article  Google Scholar 

  • Debenham NJ, Lambshead PJD, Ferrero TJ, Smith CR (2004) The impact of whale falls on nematode abundance in the deep sea. Deep-Sea Res I Oceanogr Res Pap 51:701–706

    Article  Google Scholar 

  • Degen R, Riavitz L, Gollner S, Vanreusel A, Plum C, Bright M (2012) Community study of tubeworm-associated epizooic meiobenthos from deep-sea cold seeps and hot vents. Mar Ecol Prog Ser 468:135–148

    Article  Google Scholar 

  • Distel DL, Baco AR, Chuang E, Morrill W, Cavanaugh C, Smith CR (2000) Marine ecology: do mussels take wooden steps to deep-sea vents? Nature 403:725–726

    Article  CAS  PubMed  Google Scholar 

  • Fujikura K, Kojima S, Tamaki K, Maki Y, Hunt J, Okutani T (1999) The deepest chemosynthesis-based community yet discovered from the hadal zone, 7,326 m deep, in the Japan trench. Mar Ecol Prog Ser 190:17–26

    Article  Google Scholar 

  • George KH (2005) Sublittoral and bathyal Harpacticoida (Crustacea : Copepoda) of the Magellan region. Composition, distribution and species diversity of selected major taxa. Inst Ciencias Mar Barcelona, pp 147–158

  • Gheerardyn H, De Troch M, Vincx M, Vanreusel A (2009) Harpacticoida (Crustacea: Copepoda) associated with cold-water coral substrates in the porcupine seabight (NE Atlantic): Species composition, diversity and reflections on the origin of the fauna. Sci Mar 73:747–760

    Article  Google Scholar 

  • Gollner S, Zekely J, Van Dover C, Govenar B, Le Bris N, Nemeschkal H, Bright M (2006) Benthic copepod communities associated with tubeworm and mussel aggregations on the East Pacific Rise. Cah Biol Mar 47:397–402

    Google Scholar 

  • Gollner S, Ivanenko VN, Arbizu PM (2008) A new species of deep-sea Tegastidae (Crustacea : Copepoda : Harpacticoida) from 9 degrees 50 ′ n on the East Pacific Rise, with remarks on its ecology. Zootaxa 1866:323–336

    PubMed Central  PubMed  Google Scholar 

  • Gollner S, Riemer B, Arbizu PM, Le Bris N, Bright M (2010a) Diversity of meiofauna from the 9 50′ n East Pacific Rise across a gradient of hydrothermal fluid emissions. PLoS ONE 5:e12321

    Article  PubMed Central  PubMed  Google Scholar 

  • Gollner S, Ivanenko VN, Arbizu M, Bright M (2010b) Advances in taxonomy, ecology, and biogeography of Dirivultidae (Copepoda) associated with chemosynthetic environments in the deep sea. PLoS ONE 5(8):e9801

    Article  PubMed Central  PubMed  Google Scholar 

  • Govenar B, Bris NL, Gollner S, Glanville J, Aperghis AB, Sp H, Fisher CR (2005) Epifaunal community structure associated with Riftia Pachyptila aggregations in chemically different hydrothermal vent habitats. Mar Ecol Prog Ser 305:67–77

    Article  Google Scholar 

  • Hacker SD, Gaines SD (1997) Some implications of direct positive interactions for community species diversity. Ecology 78:1990–2003

    Article  Google Scholar 

  • Heptner MV, Ivanenko VN (2002) Copepoda (crustacea) of hydrothermal ecosystems of the world ocean. Arthropodan Sel 11:117–134

    Google Scholar 

  • Humes AG (1973) Tychidion guyanense n. gen. n. spec. (Copepoda, Cyclopoida) associated with an annelid off Guyana. Zoologische Mededelingen 46:189–196

  • Humes AG (1987) Copepoda from deep-sea hydrothermal vents. Bull Mar Sci 41:645–788

    Google Scholar 

  • Humes AG (1988) Copepoda from deep-sea hydrothermal vents and cold seeps. Hydrobiologia 167–168:549–554

    Article  Google Scholar 

  • Humes AG (1989) A new poecilostomatoid copepod (Erebonasteridae) from deep-sea cold seeps at the West Florida Escarpment. Hydrobiologia 175:175–182

    Article  Google Scholar 

  • Humes AG, Segonzac M (1998) Copepoda from deep-sea hydrothermal sites and cold seeps: description of a new species of Aphotopontius from the East Pacific Rise and general distribution. Cah Biol Mar 39:51–62

    Google Scholar 

  • Ivanenko VN, Defaye D (2004) A new and primitive genus and species of deep-sea Tegastidae (crustacea, copepoda, harpacticoida) from the Mid-Atlantic Ridge, 37°N (Azores Triple Junction, Lucky Strike). Cah Biol Mar 45:255–268

    Google Scholar 

  • Ivanenko VN, Ferrari FD, Defaye D, Sarradin PM, Sarrazin J (2011) Description, distribution and microhabitats of a new species of Tisbe (Copepoda: Harpacticoida: Tisbidae) from a deep-sea hydrothermal vent field at the Mid-Atlantic Ridge (37°N, Lucky Strike). Cah Biol Mar 52:361–361

    Google Scholar 

  • Ivanenko VN, Corgosinho PH, Ferrari F, Sarradin PM, Sarrazin J (2012) Microhabitat distribution of Smacigastes micheli (Copepoda: Harpacticoida: Tegastidae) from deep‐sea hydrothermal vents at the Mid‐Atlantic Ridge, 37° N (Lucky Strike), with a morphological description of its nauplius. Mar Ecol 33:246–256

    Article  Google Scholar 

  • Lang K (1948) Monographie der Harpacticiden. Håkan Ohlssons Boktryckeri 2. Edition pp 1–1682

  • Levin LA (2005) Ecology of cold seep sediments: interaction of fauna with flow, chemistry and microbes. Oceanogr Mar Biol Annu Rev 43:1–46

    Google Scholar 

  • McIntyre A, Warwick R (1984) Meiofauna techniques

  • Olafsson E (2003) Do macrofauna structure meiofauna assemblages in marine soft bottoms? Vie milieu 53:249

    Google Scholar 

  • Olu K, Duperret A, Sibuet M, Foucher JP, Fiala-Médioni A (1996) Structure and distribution of cold seep communities along the Peruvian active margin: relationship to geological and fluid patterns. Mar Ecol Prog Ser 132:109–125

    Article  Google Scholar 

  • Plum C, Martinez-Arbizu P (2009) Discovery of Smacigastes Ivanenko & Defaye, 2004 (Copepoda: Harpacticoida: Tegastidae) in a deep-sea cold seep, with the description of a new species from the Gulf of Mexico. Zootaxa 2096:338–355

    Google Scholar 

  • Powell EN, Bright TJ, Woods A, Gittings S (1983) Meiofauna and the thiobios in the east flower garden brine seep. Mar Biol 73:269–283

    Article  Google Scholar 

  • Powell E, Bright T, Brooks J (1986) The effect of sulfide and an increased food supply on the meiofauna and macrofauna at the east flower garden brine seep. Helgoländer Meeresun 40:57–82

    Article  Google Scholar 

  • Rao GC (1972) On the geographical distribution of interstitial fauna of marine beach sand. Proc Indian Nat Sc Acad Part B 38:164–178

    Google Scholar 

  • Rex MA, McClain CR, Johnson NA, Etter RJ, Allen JA, Bouchet P, Warén A (2005) A source‐sink hypothesis for abyssal biodiversity. Am Nat 165:163–178

    Article  PubMed  Google Scholar 

  • Robinson CA, Bernhard JM, Levin LA, Mendoza GF, Blanks JK (2004) Surficial hydrocarbon seep infauna from the Blake Ridge (Atlantic Ocean, 2150 m) and the Gulf of Mexico (690–2240 m). Mar Ecol 25:313–336

    Article  Google Scholar 

  • Sergeeva NG, Gulin MB (2007) Meiobenthos from an active methane seepage area in the NW Black Sea. Mar Ecol 28:152–159

    Article  Google Scholar 

  • Shirayama Y, Ohta S (1990) Meiofauna in a cold-seep community off Hatsushima, central Japan. J Oceanogr Soc Jpn 46:118–124

    Article  Google Scholar 

  • Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Res II Top Stud Oceanogr 45:517–567

    Article  Google Scholar 

  • Sibuet M, Olu-Le RK (2003) Cold seep communities on continental margins: Structure and quantitative distribution relative to geological and fluid venting patterns. Ocean margin systems. Springer, pp 235–251

  • Smith CR, Bacon AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol 41:311–354

    Google Scholar 

  • Thistle D (1983) The role of biologically produced habitat heterogeneity in deep-sea diversity maintenance. Deep Sea Research Part A. Oceanogr Res Pap 30:1235–1245

    Article  Google Scholar 

  • Thistle D (1988) A temporal difference in harpacticoid-copepod abundance at a deep-sea site: caused by benthic storms? Deep Sea Res Part A Oceanogr Res Pap 35:1015–1020

    Article  Google Scholar 

  • Thistle D, Eckman JE (1990) The effect of a biologically produced structure on the benthic copepods of a deep-sea site. Deep Sea Res Part A Oceanogr Res Pap 37:541–554

    Article  Google Scholar 

  • Tsurumi M, de Graaf RC, Tunnicliffe V (2003) Distributional and biological aspects of copepods at hydrothermal vents on the Juan de Fuca Ridge, north-east Pacific Ocean. J Mar Biol Assoc U K 83:469–477

    Article  Google Scholar 

  • Van Dover CL (2002) Community structure of mussel beds at deep-sea hydrothermal vents. Mar Ecol Prog Ser 230:137–158

    Article  Google Scholar 

  • Van Gaever S, Moodley L, de Beer D, Vanreusel A (2006) Meiobenthos at the arctic Håkon Mosby Mud Volcano, with a parental-caring nematode thriving in sulphide-rich sediments. Mar Ecol-Prog Ser 321:143–155

    Article  Google Scholar 

  • Van Gaever S, Olu K, Derycke S, Vanreusel A (2009a) Metazoan meiofaunal communities at cold seeps along the norwegian margin: Influence of habitat heterogeneity and evidence for connection with shallow-water habitats. Deep-Sea Res I Oceanogr Res Pap 56:772–785

    Article  Google Scholar 

  • Van Gaever S, lle Galeron J, Sibuet M, Vanreusel A (2009b) Deep-sea habitat heterogeneity influence on meiofaunal communities in the Gulf of Guinea Deep-Sea Research II

  • Veit-Köhler G, De Troch M, Grego M, Bezerra TN, Bonne W, De Smet G, Folkers C, George KH, Guotong C, Herman R (2010) Large-scale diversity and biogeography of benthic copepods in european waters. Mar Biol 157:1819–1835

    Article  Google Scholar 

  • Warwick RM, Gee JM (1984) Community structure of estuarine meiobenthos. Mar Ecol Prog Ser 18:97–111

    Article  Google Scholar 

  • Wells JBJ, Rao GC (1987) Littoral Harpacticoida (Crustacea: Copepoda) from Andaman and Nicobar Islands. Mem Zool Surv India 16:1–385

    Google Scholar 

  • Westheide W (1977) The geographical distribution of interstitial polychaetes. Mikrofauna Meeresboden 61:287–302

    Google Scholar 

  • Wieser W (1960) Benthic studies in Buzzards Bay. Ii. The meiofauna. Limnol Oceanogr 5:121–137

    Article  Google Scholar 

  • Willems W, Curini-Galetti M, Ferrero T, Heiner I, Huys R, Ivanenko V, Kristensen RM, Kånneby T, MacNaughton M, Martínez Arbizu P (2009) Meiofauna of the Koster-area, results from a workshop at the Sven Lovén Centre for Marine Sciences (Tjärnö, Sweden). Meiofauna Mar 17:1–34

    Google Scholar 

  • Willen E (2003) A new species of Stenhelia (Copepoda, Harpacticoida) from a hydrothermal, active, submarine volcano in the New Ireland fore-arc system (Papua New Guinea) with notes on deep sea colonization within the stenheliinae. J Nat Hist 37:1691–1711

    Article  Google Scholar 

  • Zekely J, Van Dover CL, Nemeschkal HL, Bright M (2006) Hydrothermal vent meiobenthos associated with mytilid mussel aggregations from the Mid-Atlantic Ridge and the East Pacific Rise. Deep-Sea Res Part I-Oceanogr Res Pap 53:1363–1378

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Austrian Science Foundation Grants FWF P16774-B03 and P20190-B17 to M.B., and the Mineral Management Service Contract #1435-01-05-39187 to TDI-Brooks International. We thank Charles R. Fisher for his collaboration as well as the captain and crews of the RV ‘Atlantis’, the DSV ‘Alvin,’ and the ROV ‘Jason’ for their expertise and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Plum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plum, C., Gollner, S., Martínez-Arbizu, P. et al. Diversity and composition of the copepod communities associated with megafauna around a cold seep in the Gulf of Mexico with remarks on species biogeography. Mar Biodiv 45, 419–432 (2015). https://doi.org/10.1007/s12526-014-0310-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-014-0310-8

Keywords

Navigation