
Vol.:(0123456789)

Public Transport (2021) 13:597–623
https://doi.org/10.1007/s12469-020-00253-x

1 3

ORIGINAL PAPER

Railway timetabling: a maximum bottleneck path
algorithm for finding an additional train path

Fredrik Ljunggren1,2 · Kristian Persson1,3 · Anders Peterson1 ·
Christiane Schmidt1

Accepted: 31 August 2020 / Published online: 27 September 2020
© The Author(s) 2020

Abstract
We present an algorithm to insert a train path in an existing railway timetable close
to operation, when we want to affect the existing (passenger) traffic as little as possi-
ble. Thus, we consider all other trains as fixed, and aim for a resulting train path that
maximizes the bottleneck robustness, that is, a train path that maximizes the tempo-
ral distance to neighboring trains in the timetable. Our algorithm is based on a graph
formulation of the problem and uses a variant of Dijkstra’s algorithm. We present an
extensive experimental evaluation of our algorithm for the Swedish railway stretch
from Malmö to Hallsberg. Moreover, we analyze the size of our constructed graph.

Keywords Railway timetabling · Robust train path · Bottleneck train path · Network
algorithm · Freight transportation

This work subsumes the extended abstract that appeared in the Proceedings of the 14th International
Conference on Advanced Systems in Public Transport and TransitData 2018 (Ljunggren et al. 2018).
This research is a result of a collaboration between Linköping University and Trafikverket, and
part of the EU H2020 Shift2Rail subprojects ARCC (Grant no. 730813) and FR8HUB (Grant no.
777402), and partially funded by Trafikverket (Dnr TRV 2016/75881, and Dnr TRV 2017/68055).
The authors are grateful to Magnus Wahlborg (Trafikverket) for fruitful discussions and Martin
Aronsson (SICS RISE) for timetable data.

 * Christiane Schmidt
 christiane.schmidt@liu.se

 Fredrik Ljunggren
 fredrik.ljunggren@trafikverket.se

 Kristian Persson
 kristian.persson@sweco.se

 Anders Peterson
 anders.peterson@liu.se

1 Communications and Transport Systems, ITN, Linköping University, Norrköping, Sweden
2 Present Address: Trafikverket, Stockholm, Sweden
3 Present Address: Sweco, Stockholm, Sweden

http://orcid.org/0000-0003-2548-5756
http://crossmark.crossref.org/dialog/?doi=10.1007/s12469-020-00253-x&domain=pdf

598 F. Ljunggren et al.

1 3

1 Introduction

Over the last decades, both passenger traffic and freight traffic volumes in Sweden
increased—from 1996 to 2016 by 82% (from about 7000 to 12800 passenger kilo-
meters) and by 23% (from about 55 to about 68 million ton-kilometers), respec-
tively, see (Grimm 2012; Trafikanalys 2017a, b). In all of Europe, freight traffic
volume increases, and while the volume transported via railway within the EU
has stagnated over the last years, see Eurostat (2017), the European commission
sees the potential to revitalize rail freight (Commission of the European com-
munities 2007): road congestion and the high oil price make road transport more
expensive, railway transport is much safer, and increasing environmental con-
cerns favor railway over road traffic. On the other hand, today’s wagon load traffic
is ineffective and marshalling complicates the transport—these problems need to
be alleviated to comply with a political vision of increased freight traffic volumes.

One problem for the freight traffic is the long planning horizon. Today, an
annual timetable is constructed, for which train path requests should be submit-
ted up to more than 1.5 years in advance. Freight train operators often have a
hard time to estimate transport volumes, and need to make frequent updates of
the timetable ad-hoc. Further, the shunting plans for yards and terminals are nor-
mally made on a daily basis.

As a consequence, a typical real-world scenario is a train completed at the
departing yard one or more hours ahead of its scheduled departing time. Send-
ing it off earlier would not only release capacity at the shunting yard and in the
network, but also give a valuable buffer for subsequent delays. Both the infra-
structure manager (IM) and the railway undertaking (RU) are interested in this.
Today, such a request is answered manually by looking a few stations ahead, and
if the freight train will not interrupt operations on this limited considered stretch,
an earlier departure will be permitted. This procedure hardly takes into account
the already congested rail network, where freight traffic interacts with passenger
traffic with much higher requirements on punctuality, nor does it ensure that the
receiving yard or terminal has capacity to accommodate the train when arriving.

To make sure both that the existing (passenger) traffic is not affected by the
train path of the freight train and that the freight train actually obtains a feasible
train path to its destination, it is essential to optimize the process. We aim at a
method for finding that train path, which minimizes the risk that other traffic in
the deregulated market is affected. If that train path is still insufficiently robust,
we advise the IM to reject the late application.

In this paper, we propose an algorithm that computes a maximum robust train
path for inserting an additional train into an existing railway timetable (at a time).
That is, the algorithm computes the train path with maximum temporal distance
to all other existing trains, in particular, to the two neighboring trains on each line
section, in the timetable (we further discuss the relation between robustness and
the risk for disturbances in Sect. 2.1).

We transform our problem to an equivalent network formulation and use
a variant of Dijkstra’s algorithm to compute the maximum robust train path by

599

1 3

Railway timetabling: a maximum bottleneck path algorithm for finding an additional train path

computing the maximum bottleneck path. Nodes are possible departing times
at stations, edges represent feasible spatial or temporal movements, where edge
costs give the temporal distance to the surrounding traffic. The objective of maxi-
mum robustness (plus using a graph representation of the existing timetable) is
the main novelty of this paper.

This algorithm might be used for a freight train in the scenario described above,
with the objective to influence the already scheduled trains as little as possible.
Moreover, it may also be used for special passenger trains, which need to be added,
but where the insertion follows the same objective of not disturbing existing trains.
We assume that all other trains are fixed, that is, their train paths may not be altered.

In addition, because of our network formulation,—though we do not do so in
the experiments in this paper—we can easily consider alternative routes within or
between stations, which often causes problems when using Mixed Integer Linear
Program (MILP) formulations. Our graph formulation inserts edges between sta-
tions, whenever inserting a train path between two adjacent trains on that line sec-
tion is possible. Here, it does not play a role if all edges use the same sequence of
stations or not. Hence, a different geometry, that is, an alternative route via different
stations, can easily be integrated in the graph formulation, and does not influence
the algorithm.

In general, several optimality criteria could be considered: we could aim for the
earliest possible arrival time of the inserted train, or the shortest possible runtime of
the train between the starting and end station, etc.

The remainder of this paper is organized as follows: In Sect. 2 we present related
work, Sect. 3 gives necessary notation for our problem. We present an algorithm to
compute the maximum bottleneck robust train path for the inserted freight train in
Sect. 4. In Sect. 5 we present detailed experiments for the Swedish railway stretch
between Malmö and Hallsberg for our algorithm and analyze its runtime in Sect. 6.
We give an improvement on the actual path selection of our algorithm in Sect. 7,
before we conclude in Sect. 8.

2 Related work

In this section we give a literature overview on timetable planning with focus on
robustness, followed by some few examples from the literature on methods for
inserting an additional train in an existing timetable.

2.1 Robust railway timetabling

Railway timetabling is a problem that has been extensively studied for many
years, see e.g. Hansen and Pachl (2014), Harrod (2012), or Törnquist (2006) for
an overview. Normally a complete timetable is constructed in one single timeta-
bling process, where the infrastructure capacity is assigned to rail undertakings
and maintenance contractors according to some principles. Often, the problem is
formulated as a MILP, where ordering variables are integer (binary), and time is

600 F. Ljunggren et al.

1 3

continuous. When the timetable is assumed to have a cyclic structure, as is often
the case in passenger traffic, a Period Event Scheduling Problem (PESP) can be
formulated, see, e.g., Liebchen (2008).

Models applied closer to real-time are typically focused on rescheduling
in case of disturbances and disruptions. The aim then often is formulated as
to quickly re-obtain a feasible timetable of sufficient quality. For an overview
of models of this kind, we refer to, e.g., the survey article by Cacchiani et al.
(2014). Andersson et al. (2013) and Khoshniyat and Peterson (2017) show two
examples of how rescheduling methods can be used on a more tactical level to
redistribute available runtime margin and buffer time to increase stability.

Improving stability, however, may impair other timetable qualities, such as
the average speed, heterogeneity and capacity utilization. UIC (2004) illus-
trate, in a frequently cited “Figure 1—Capacity balance”, how railway capac-
ity depends on the balance of these four factors. Zhang (2015) has developed a
mathematical programming framework for line capacity studies, which aims at
the minimization of heterogeneity and running time as well as the maximization
of reliability and analyses Pareto optimal solutions in an application for the Bei-
jing–Shanghai high-speed railway.

When we are inserting a new train into an existing timetable, capacity uti-
lization will inevitably increase. Heterogeneity is an expression for the spread
in travel speed among the trains in the timetable, and the effect of inserting an
additional train depends on the difference in speed profile to adjacent trains
sharing the same infrastructural resources. Homogenizing, i.e., decreasing het-
erogeneity, is considered to be desirable in timetabling. An attempt to quantify
the heterogeneity in a timetable is made by Vromans et al. (2006). To the best
of our knowledge this measure solely has never been used as target in timetable
optimization problems.

In our model, the train paths for already existing trains are assumed to be
fixed, and the new path must be inserted in a way that minimizes the expected
impact to other traffic. Therefore, we want to find the most robust train path,
and if that is not sufficiently robust, we may consider rejecting the additional
request. The price for the robustness is a longer travel time, which, however,
is bounded by time-windows for departure from origin and arrival to destina-
tion. Robustness might be defined in various ways, see e.g. Kroon et al. (2008).
Goverde and Hansen (2013) distinguish between timetable stability, feasibility,
robustness, and resilience. They define timetable robustness as “the ability of a
timetable to withstand design errors, parameter variations, and changing opera-
tional conditions” and note that robustness depends on the stochastic behavior of
all the underlying processes.

To assess the robustness, we must make some assumption on the stochastic-
ity of the disturbance processes, which the timetable should be robust against.
If we assume the disturbances to be uniformly distributed, identifying the train
path with maximum bottleneck size, will indeed also give the most robust train
path. This result follows from Goerigk and Schöbel (2014), and is essential in
the motivation of our algorithm.

601

1 3

Railway timetabling: a maximum bottleneck path algorithm for finding an additional train path

2.2 Methods for inserting a train in an existing timetable

Various authors also considered adding a new train to an existing timetable, amongst
others (Burdett and Kozan 2009). Flier (2009) (see also Flier 2011) present a short-
est path model using a time-expanded graph, which integrates linear regression
models based on extensive historical delay data, that gives Pareto optimal train paths
w.r.t. travel time and risk of delay.

Ingolotti et al. (2004) consider adding new trains to a heterogeneous, heavily
loaded railway network, and aim to minimize the traversal time for each additional
train.

Jiang et al. (2017) also add (passenger) trains: they consider a highly congested
double track network line and aim to meet the passenger demand with the added
trains; to that end, they can make limited alterations to the dwelling times for other,
already scheduled, trains. They propose a heuristic to solve this problem.

Cacchiani et al. (2010) also consider the problem of inserting a single freight
train into an existing schedule of fixed passenger trains. They assume that the opera-
tor specifies an ideal time table that the IM can modify, which also includes the use
of a different path. Cacchiani et al. aim to add the maximum number of new freight
trains, such that their time table is as close as possible to the ideal one. To do so,
they use a heuristic algorithm based on a Lagrangian relaxation of an Integer Linear
Program (ILP).

To the best of our knowledge, the objective of maximizing the robustness of a
train path for a train to be inserted in an existing timetable has never been consid-
ered. Moreover, other approaches either allow to adapt existing trains (which we aim
to circumnavigate due to our application) and/or use heuristic approaches (instead of
algorithms that guarantee to find the optimal solution).

3 Freight train insertion problem

In this section we formally define our problem.
Freight Train Insertion Problem (FTI):
Given A freight train � ; a starting station s0 and an end station s

M
 ; a desired

route for � from s0 to s
M

 , given by a sequence of stations S� = (s0, s1,… , s
M
) ,

when clear from content, we only refer to the stations by 0,… ,M ; time windows
w
s
= [wa

s
,wd

s
] for earliest arrival and latest departure of � at station s for all, or some

of the, stations s ∈ S� ; the train-specific running times t
i,i+1 for train � from station

i to i + 1 ∀i ∈ {0,… ,M − 1} ; the timetable of all trains in the set T : all trains that
run in [wa

0
− �1, s

d

M
+ �2] , where �

i
 is defined such that the trains that depart before

or arrive after a possible path for � at any station are included; the required safety
distance c�,�,s (sometimes referred to as headway with a certain buffer or clearance
time) between any other train � and train � at station s; and an objective function F .

Remarks: In this paper, we define the train-specific running times by the trains’
respective maximum speed and some driving margin, i.e., we do not include the
option of letting trains run slower. For s = 0 time window w

s
 describes all possi-

ble departure times from the origin, and for s = M the time window describes all

602 F. Ljunggren et al.

1 3

possible arrival times at the destination. A time window at an intermediate station
may also be given, e.g., due to staff schedule or wagon coupling/uncoupling.

Find A train path for � given by arrival times a�,s and departure times d�,s for all
stations in S� within the time windows w

s
= [wa

s
,wd

s
] ∀s ∈ S� , that meets the dis-

tances c�,�,s∀� ∈ T,∀s ∈ S , and the t
i,i+1 ∀i ∈ {0,… ,M − 1} , and optimizes F .

In this paper, we use robustness as F .

4 Maximum bottleneck robust train path

In this section, we describe how we compute a maximum robust train path for a
freight train close to operation, given that the train paths of all other trains are fixed.
That is, we solve FTI with the objective to maximize the robustness. In a first step,
we transform our problem to an equivalent graph problem, see Sect. 4.1. We then
show that we can use a variant of Dijkstra’s algorithm to compute the maximum
robust train path, see Sect. 4.2.

4.1 From timetable to input graph

We generate a graph with a set of vertices, V
s
 , for each station, where a vertex repre-

sents a feasible departure interval at that station. We insert inter-station edges, where
the robustness of an edge is always determined by the earliest and latest possible
departure from the vertex at its originating station. That is, an edge, representing a
feasible train path from station s to s + 1 gets assigned a weight of the time differ-
ence between earliest and latest departure from station s. As we assume linear train
paths, the minimum robustness will always be assumed at a station, and for any path
(selected by edges) the edge weights will reflect the robustness intervals along the
complete train path. Moreover, we introduce intra-station edges that represent wait-
ing at a station for � , which is important to allow overtaking, with robustness of
infinity, as the robustness of any train path is not limited by waiting at a station. The
vertices and edges define our graph as G = (V ,E) with V = ∪M

s=0
V
s
.

In the following, we give a formal description of our input graph creation: We
generate a set of vertices V

s
 for each station s ∈ S� . Let �

k
, �

k+1 ∈ T be two trains
that depart from s consecutively. We add a vertex to V

s
 that represents the gap

between �
k
 and �

k+1 if (a)
(
d�k+1,s

− d�k ,s

)
≥

(
c�k+1,�,s

+ c�k ,�,s

)
 (that is, if the tempo-

ral gap between trains �
k
 and �

k+1 at station s is larger than the necessary safety dis-
tances between �

k
 and � , as well as between � and �

k+1 at s, i.e., if � can depart from
s between �

k
 and �

k+1), if (b) ((a�k+1,s+1 − c�k+1,�,s
− t

s,s+1) ≥ (a�k ,s+1 + c�k ,�,s
− t

s,s+1)
)

(that is, if the temporal distance between the arrival of train �
k
 at station s + 1 plus

the safety distance to � and the arrival time of train �
k+1 at station s + 1 minus the

safety distance to � is positive, i.e., if � can arrive at s + 1 between �
k
 and �

k+1), and
if (c) the intervals defined by (a) [�1, �1] = [d�k ,s + c�k ,�,s

, d�k+1,s − c�k+1,�,s
] and (b)

[�2, �2] = [a�k ,s+1 + c�k ,�,s
− t

s,s+1, a�k+1,s+1 − c�k+1,�,s
− t

s,s+1] overlap with each other
and with w

s
= [wa

s
,wd

s
] (that is, if the possible departure times for � between trains

603

1 3

Railway timetabling: a maximum bottleneck path algorithm for finding an additional train path

�
k
 and �

k+1 at s and the departure times from s that lead to possible arrival times
between trains �

k
 and �

k+1 at s + 1 overlap with the given feasible time window for
earliest arrival and latest departure for � at s). That is, in case the time gap between
the two trains is large enough to accommodate a departure for train � and these
departure times fall in w

s
= [wa

s
,wd

s
] . Inequality (a) determines a feasible interval for

departures limited by the center gray and the leftmost pink point in Fig. 1 ([�1, �1]),
inequality (b) determines a feasible interval for departures limited by the rightmost
gray and the center pink point in Fig. 1 ([�2, �2]), and the feasible time window for
earliest arrival and latest departure for � at s is given by the leftmost gray and the
rightmost pink point in Fig. 1 (w

s
= [wa

s
,wd

s
]). Hence, feasible departures for all

three criteria can take place earliest at the rightmost gray and latest at the leftmost
pink point, that is, within [�2, �1] . Of course, the �

i
 and �

i
 depend on s, the safety

distances and the trains �
k
 and �

k+1 , we only introduce them here to enhance reada-
bility of Fig. 1. In general, the earliest departure time for � for this gap, De

s,�k ,�k+1

(= max{�1, �2,w
a

s
}), is given by

the latest departure time for � for this gap, D�

s,�k ,�k+1
 (= min{�1, �2,w

d

s
}), is given by

A possible departure time for train � is not only determined by �
k
, �

k+1 depart-
ing from s, but also by trains arriving at station s, see Fig. 2 for an illustration
of the following description. If we simply consider the trains that run between
stations s and s + 1 , the interval for possible departures for the vertex we intro-
duced is given by the dark gray interval in Fig. 2; however, departing in-between
trains from station s − 1 we might not actually arrive early enough at station s to
allow for a departure in an arbitrary point in the dark gray interval. If we depart

(1)D
e

s,�k ,�k+1
= max

{
d�k ,s

+ c�k ,�,s
, a�k ,s+1 + c�k ,�,s

− t
s,s+1,w

a

s

}
,

(2)D
�

s,�k ,�k+1
= min

{
d�k+1,s

− c�k+1,�,s
, a�k+1,s+1 − c�k+1,�,s+1

− t
s,s+1,w

d

s

}
.

Fig. 1 Two stations, s and
s + 1 , are shown as horizontal
black lines, time is depicted
along the x-axis. Two existing,
consecutive trains, �

k
 and �

k+1 ,
are shown in blue, the safety
distances (depending on the
station and the trains) in green,
and the feasible time window
on station s in yellow. The
earliest departure and the latest
departure time for � on s is the
maximum of the three points
in time marked in gray, �2 , and
the minimum of the three points
in time marked in magenta, �1 ,
respectively

604 F. Ljunggren et al.

1 3

between �
k−1 and �

k
 from station s − 1 , only departures in the gray interval are

possible, if we depart between �
k
 and �

k+1 from station s − 1 , only departures in
the light gray interval are possible—if we depart before �

k+1 , otherwise, departure
intervals to the right of �

k+1 are of interest. On the other hand, we need to keep the
dark gray interval, as an earlier departure is possible, in case our train � arrives at
station s already before �

k−1 , and gets passed at s before departing. Hence, in this
case we need three vertices with the appropriate departure intervals.

Similarly, due to train heterogeneity, the earliest possible departure of � from dif-
ferent stations implies different earliest departure times from consecutive stations,
see Fig. 3, where three different departure intervals are defined. We add new vertices
with adapted intervals for departure iteratively, from the first to the last station.

Thus, for each vertex v in V
s−1 (let this represent a departure between trains �

k
 and

�
k+1), we define the earliest arrival at s as Ae

v,s
= D

e

s−1,�k ,�k+1
+ t

s−1,s , and a new earliest
departure time from station s as De�

s,�k ,�k+1
= max{Ae

v,s
, d�k ,s

+ c�k ,�,s
, a�k ,s+1

+ c�k ,�,s
− t

s,s+1,w
a

s
} .

We add vertices and edges, the robustness of an edge is always determined by the ear-
liest and latest departure from the vertex at its originating station (we distinguish
whether a sidetrack is available for overtaking, because only with an available side-
track waiting at a station while another train overtakes � is possible):

E = �

Fig. 2 Three stations, s − 1 , s and s + 1 , are shown as horizontal black lines, time is depicted along the
x-axis. Existing trains are shown in blue, the safety distances in green, w

s
= [wa

s
,wd

s
] in yellow, and earli-

est departure times for inserted trains in red. Possible departure intervals at station s as defined by the
arrival times from station s − 1 are shown in shades of gray

Fig. 3 Three stations, s − 1 , s
and s + 1 , are shown as horizon-
tal black lines, time is depicted
along the x-axis. Existing trains
are shown in blue, the safety
distances in green, earliest
departure times for inserted
trains in red. Earliest departure
times from different stations
imply different earliest departure
times from consecutive stations

605

1 3

Railway timetabling: a maximum bottleneck path algorithm for finding an additional train path

IF De�

s,�k ,�k+1
≤ D�

s,�k ,�k+1

 IF there exists a vertex w ∈ V
s
 with departure interval [De�

s,�k ,�k+1
,D�

s,�k ,�k+1
]

 Add an edge e from v to w to E.
 Set the robustness of e: r

e
= D

�

s−1,�k ,�k+1
− D

e

s−1,�k ,�k+1
.

 ELSE
 Create a new vertex w

n
∈ V

s
 , add an edge e from v to w

n
 to E.

 Set the robustness of e: r
e
= D

�

s−1,�k ,�k+1
− D

e

s−1,�k ,�k+1
.

 The interval departure times for w
n
 are De�

s,�k ,�k+1
,D�

s,�k ,�k+1
.

IF There is a sidetrack available at s − 1 in [De

s−1,�k ,�k+1
,D�

s−1,�k ,�k+1
]

 Let v next be the successor vertex from v on s − 1.
 Add an edge e from v to v next to E.
 Set the robustness of e: r

e
= D

�

s−1,�k ,�k+1
− D

e

s−1,�k ,�k+1
.

The first if-condition checks whether the earliest departure time for � is smaller or
equal than the latest departure time for � . If this condition is fulfilled, which allows �
to depart between trains �

k
 and �

k+1 , we need to have a vertex that represents the arrival
of this feasible departure. If a vertex for the departure interval already exists, we add
an edge to that vertex, and set the robustness of that edge to the difference between
latest departure time and earliest departure time for � between trains �

k
 and �

k+1 . If no
such vertex exists, we create a vertex w

n
 in the vertex set of station s, V

s
 , add an edge

to it and set the robustness accordingly. If a departure of � between �
k
 and �

k+1 from
s − 1 to s is not possible, we check whether a side track is available at s − 1 and if it is,
which indicates that � can use this sidetrack and be overtaken by another train/other
trains, we add an edge to the next vertex on s − 1 . Note that the robustness depends on
t
s,s+1 , and as we define the train-specific running times by the maximum speed of the
train (see Sect. 3), the robustness uses these fixed travel times between stations.

The final step already introduced some intra-station edges, that is, edges for which
both endpoints are on the same station (both in V

s−1). We introduce further intra-sta-
tion edges to E, these always represent waiting at a station for � , which is important
to allow overtaking. The robustness of these edges is set to infinity (r

e
= ∞), as the

robustness of any train path is not limited by waiting at a station. As intra-station
edges represent waiting for overtaking, we may not add intra-station edges for sta-
tions without sidings or we may only add them if a siding is available at a specific
station and time. We can now define our graph as G = (V ,E) with V = ∪M

s=0
V
s
.

Finally, we apply a postprocessing step to G and iteratively delete all vertices
with either indegree zero (a vertex that cannot be reached) or outdegree zero (a ver-
tex that cannot be left), as these cannot be part of any path from s0 to s

M
.

4.2 Algorithm for bottleneck train path

Given the graph defined in Sect. 4.1, we want to find a path from the first vertex
on station s0 to the last vertex on station s

M
 . Any such path would be feasible, but

606 F. Ljunggren et al.

1 3

we do not only aim for a feasible path, but for an optimal path. In this paper, we
define the optimum as the maximum robustness, that is, we want to solve FTI with
F = robustness . Thus, we want to find a feasible path that maximizes the temporal
distance to neighboring trains in the timetable. This translates to finding a maxi-
mum bottleneck path: only the smallest time interval to the neighboring trains on the
complete path defines the robustness. This problem is also known as the maximum
capacity route problem, see Pollack (1960), or the widest path problem, and can be
solved by a variant of Dijkstra’s shortest path algorithm (Dijkstra 1959); the pseu-
docode is given in Algorithm 1.

In line 4, we initialize the values: at the starting vertex of the first station the
robustness is not limited (it will be by traversing the line section to the second sta-
tion between two given trains), its r-value is set to infinity, for all other vertices, we
want to find the maximum value, and without any initial knowledge, we set their
r-values to zero (and will successively increase this value until its maximum). R is
the set of already considered vertices, that is, those vertices for which we consid-
ered already all outgoing edges. In the beginning we have not considered any edges,
hence, R is initialized as the empty set. In line 5, we pick the so far not considered
vertex (v ∈ V(G) ⧵ R) with maximum r-value. This uses subpath-optimality: a path
via a vertex not in R can never increase the r-value of the picked vertex. After this
step v is added to R (line 6), as we consider all outgoing edges from v to a vertex w
in V(G) ⧵ R in lines 7–10: for each such edge (v, w) we check whether the r-value
of the old path to w (r(w)) is smaller than that of the path via v (which is the mini-
mum of the r-value of the path to v, r(v), and the weight of the edge from v to w,
c((v, w))). If this check is true, we need to update the r-value of w (using the path via
v results in a path with higher bottleneck robustness to w) in line 9 and set the prede-
cessor of w to v in line 10. If we have not yet considered all vertices (R ≠ V(G)), we
go back to line 5, otherwise, all r-values are set to the optimal value.

Algorithm 1: Maximum Bottleneck Path
INPUT : Directed graph G, edge weights c : E(G) → R+, start vertex

s ∈ V (G).
OUTPUT: Maximum bottleneck path from s to all vertices v ∈ V (G) and their

value.
1 ∀v ∈ V (G):
2 r(v) - the value of a maximum bottleneck s-v-path.
3 p(v) - the predecessor of v on a maximum bottleneck s-v-path.
4 1. Set r(s) := ∞, r(v) := 0 ∀v ∈ V (G) \ {s}, R := ∅.
5 2. Find a vertex v ∈ V (G) \R with r(v) = maxw∈V (G)\R r(w).
6 3. Set R := R ∪ {v}.
7 4. for ∀w ∈ V (G) \R with (v, w) ∈ E(G) do
8 if (r(w) < min{r(v), c((v, w))} then
9 Set r(w) = min{r(v), c((v, w))}.

10 p(w) = v.

11 5. if R �= V (G) then
12 THEN GOTO 2

607

1 3

Railway timetabling: a maximum bottleneck path algorithm for finding an additional train path

5 Experimental study: Malmö–Hallsberg

We test our method on the Swedish railway stretch between Malmö and Hallsberg,
see Fig. 4. It has a length of 447 km and covers 76 stations. Between the first and
the 65th station (400 km), it is double-track, while the last 11 stations are covered by
single-track railway.

The studied railway stretch is part of the Scandinavian–Mediterranean freight rail
corridor, and connects continental Europe to Hallsberg, the largest marshalling yard
in Scandinavia; substretches are, for example, considered in Khoshniyat and Peter-
son (2017) and Solinen et al. (2017), and references therein.

Both the number of trains and the heterogeneity of these trains on the stretch con-
tribute to congestion problems. According to Trafikverket, the Swedish Transport
Administration, the capacity is used to more than 80% between Malmö and Hässle-
holm, 61–80% between Hässleholm and Tranås (located 2km North of Gripenberg),

Fig. 4 Map of the Swedish railway stretch, with a selection of all stations marked, between Malmö and
Hallsberg, single-track is marked in pink. (Source of figures: trafikverket.se)

608 F. Ljunggren et al.

1 3

and below 61% between Tranås and Mjölby. Between Mjölby and Hallsberg, the
double-track stretch’s capacity is used below 61% , the single track stretch’s capac-
ity is used to more than 80% (both when considering a 24-h and the most congested
2-h period during the day). Here, Trafikverket uses the capacity model suggested by
UIC (2004).

Some of the stations along the complete stretch have additional sidetracks that
enable overtaking, but not all of these are suitable to use in our case. For our algo-
rithm, a station is considered to have a sidetrack, if:

1. The complete track is electrified.
2. It is possible to both enter and leave the sidetrack without changing direction.
3. The siding is to the left of the main tracks in case the adjacent sections are double-

track (a sidetrack to the right would require the train to cross the track of trains
running in the opposite direction, which is difficult in a congested environment
and we do not consider it here).

A station that does not fulfill these criteria does not allow � to overtake other trains
(with sufficiently long scheduled stops) or to be overtaken by other trains, we mark
it as a no-wait-station. Moreover, we distinguish the stations by the number of side-
tracks. We make a simplified classification: stations with exactly one track matching
the criteria, where a train can wait if no other train occupies the track, are called sin-
gle sidetrack stations; and stations with more than one track matching the criteria,
are called multiple sidetrack stations. Table 1 shows how many of the 76 stations
fall into which class. We assume multiple sidetrack stations to have enough capacity,
but check the availability for single sidetrack stations.

The remainder of this section is organized as follows: we present our base sce-
nario in Sect. 5.1, experiments with varied time windows in Sect. 5.2, experiments
with different train types in Sect. 5.3, and experiments with different numbers of
total train departures in Sect. 5.4.

5.1 Base scenario

For our first set of experiments, we set the following parameters:

– Historical train data used: Tuesday, February 24, 2015 (a representative week-
day)

Table 1 Number of no-wait,
single and multiple sidetrack
stations

Double-track station Single-
track
station

No-wait station 49 4
Single sidetrack 8 4
Multiple sidetrack 9 2

609

1 3

Railway timetabling: a maximum bottleneck path algorithm for finding an additional train path

– Train type: GR421410, a freight train with a maximum weight of 1400 tons, a
maximum speed of 100km/h, and multiple locomotives of type Rc4

– Earliest allowed departure time from Malmö freight terminal: 25,200 s, 07:00
AM

– Latest allowed departure time from Malmö freight terminal: 47,763 s, 01:16 PM
– Latest allowed arrival time to Hallsberg marshalling yard: 64,800 s, 06:00 PM
– Critical distance: c�,�,s = 180 s ∀� ∈ T,∀s ∈ S�

The uninterrupted travel time for our chosen train type from Malmö to Hallsberg is
4 h 44 min. On February 24, 2015, 394 unique trains ran along at least one section
of the route, altogether they constituted 3830 train departures from all stations. (each
train is counted for all stations along this stretch that it passes). Table 2 gives the

Table 2 Station number, station code, and number of train departures for all stations on the stretch from
Malmö to Hallsberg on February 24, 2015

S station#, C station code, D # departures

S C D S C D S C D

1 MGB 145 27 TUN 47 53 RAS 28
2 AL 140 28 KR 47 54 FRD 28
3 BLV 140 29 ÄH 46 55 GP 28
4 ÅK 139 30 DIS 46 56 TNS1 29
5 ÅKN 139 31 DIÖ 46 57 TNS 29
6 HJP 139 32 ERA 46 58 SMN 32
7 FLP 138 33 VS 46 59 BX 32
8 LU 82 34 BLD 46 60 LKN 32
9 THL 83 35 AV 34 61 MY 33
10 STB 83 36 GÅP 34 62 SKN 34
11 Ö 82 37 MO 32 63 FGL 34
12 DAT 82 38 LNS 32 64 MOT 11
13 E 82 39 GRD 32 65 ÖNA 11
14 SG 82 40 LH 32 66 D 24
15 HÖ 70 41 RK 31 67 GO 23
16 TÖ 69 42 SY 31 68 JHO 23
17 VÄD 69 43 AHM 31 69 MDM_

L3
23

18 SÖLA 69 44 SÄ 31 70 MDM 23
19 MLB 68 45 UTP 30 71 RH_L3 23
20 HM 47 46 BDF 30 72 RH 23
21 HM2 47 47 GT 29 73 Å_L 25
22 BL 47 48 N 35 74 Å 25
23 MUD 47 49 GMP 30 75 SKMS 25
24 HV 47 50 VIM 30 76 HRBG -
25 O 47 51 FLS 29
26 O1 47 52 ANY 28

610 F. Ljunggren et al.

1 3

number of train departures for each of the 76 stations between Malmö and Hallsberg
on February 24, 2015.

The train path we obtain in this base scenario is shown in Fig. 5: red and light
blue give the earliest and latest possible running time for � , respectively. The bot-
tleneck for the robustness is located between the stations FLP and LU, the 7th and
8th station on the stretch from Malmö to Hallsberg; the bottleneck robustness is 300
s. The train � departs from Malmö at 10:57:58 and arrives in Hallsberg at 17:53:24.
This results in a travel time of 6 h and 55 min.

5.2 Variation of time windows

Intuitively, reducing the time windows for allowed departures from Malmö and
allowed arrivals at Hallsberg will lead to less robust train paths: fewer train paths
will be feasible, thus, a former optimal train path might no longer be available, but
all other paths have smaller or equal robustness. Moreover, the temporal location
of the time windows is important, that is, the same-sized time windows will lead
to train paths of different robustness depending on the time of day, as the existing
congestion in the train network varies. In this subsection, we investigate the relation
between time window size and resulting train path robustness.

In the first set of experiments we fix the earliest departure time from Malmö (to
07:00, as in Sect. 5.1) and vary the latest possible arrival time in Hallsberg. We start
with the latest possible arrival time at 24:00 and reduce it in steps of 120 s until
no feasible train path can be found. The result is shown in Fig. 6: a latest arrival
time in Hallsberg between 17:52 and 24:00 allows to insert a train path with robust-
ness of 300 seconds, a latest arrival time between 16:04 and 17:50 allows to insert a
train path with robustness of 147 s. The earliest feasible solution, which we obtained
by running our algorithm with a resolution up to seconds, has an arrival time of
16:00:56 at Hallsberg.

If we could simply insert the train at 7 am and it could run uninterrupted, it would
arrive in Hallsberg at 11:44. Thus, the earliest feasible train path arrives more than
4 h after this theoretical earliest arrival. This gap is caused by two factors: morn-
ing rush hour in the urban region around Malmö, and network congestion during
daytime (due to which the train often needs to wait on sidings). During the morning
rush hour between 7 and 9 there exist only five feasible time gaps of 6 min (which
allow to keep the critical distance of 3 min to both the preceding and the succeeding
train) between the two stations Arlöv and Burlöv just North of Malmö. In fact, when
we consider stop pattern and speed of the existing trains, also these five gaps disap-
pear: there is no feasible path that leaves Malmö before 9:00.

In the second set of experiments we fix the latest arrival time at Hallsberg (to
19:00) and vary the earliest possible departure time from Malmö. We start with the
earliest possible departure time at 00:30 and increase it in steps of 120 s until no fea-
sible train path can be found. The result is shown in Fig. 7: the robustness associated
with a possible departure time varies significantly more than with the latest arrival
time in Hallsberg, for a departure at 00:30 a train path with robustness of 1400 s (ca.

611

1 3

Railway timetabling: a maximum bottleneck path algorithm for finding an additional train path

23 min) can be obtained. For the first set of departure times, � may run during the
night, mostly undisturbed by other trains. The robustness of the best found path is
reduced dramatically for a start time between 03:00 and 04:00: from 1149 s at 03:20
to 300 s at 04:00. This is, again, caused by congestion on the stretch between Malmö
and Lund: between 01:00 and 04:00 one to three other trains travel on the stretch, in
the hour from 04:00 to 05:00 the traffic increases to 11 trains per hour.

Fig. 5 Space/time representation of the railway timetable: existing trains are shown in blue, red and light
blue denote the interval borders for � . To obtain maximum robustness � runs in the center of the so
defined corridor. b depicts the stretch from Malmö (MGB) to BLD, a depicts the stretch from VS (fol-
lowed by BLD) to Hallsberg (HRBG)

612 F. Ljunggren et al.

1 3

If we consider the variation of the arrival time in Hallsberg, all runs with a latest
arrival time between 17:50 and 24:00 yield feasible solutions with identical robust-
ness; however, they do not share the same path. The bottleneck is the same for all
solutions, but the remainder of the paths differs. Several paths with different arrival
times at Hallsberg between 18:00 and 20:00 all use the same bottleneck section.
As our algorithm only accounts for the bottleneck, all these paths (with a feasible
arrival time) are equally good solutions. By reducing the latest possible arrival time,
some of the paths become infeasible, and the algorithm outputs a different path. We
consider the problem of choosing the “best” path out of several feasible paths with
the same bottleneck in Sect. 7.

Another observation, from both Figs. 6 and 7, is that there are large plateaus in
the step function. That is, increasing the time window size does not necessarily—
and will in fact often not—result in a train path with increased robustness.

5.3 Variation of train type

In our base scenario in Sect. 5.1 we used a train of type GR421410, a freight train
with a maximum weight of 1400 tons, a maximum speed of 100 km/h, and multiple
locomotives of type Rc4. Using different train types, with different maximum speed
and maximum weight restrictions, results in different runtimes for the train from sta-
tion to station. Both a slower and a faster train might lead to train paths with better
robustness, depending on the speed pattern of the already existing trains, see Fig. 8.
Recall that in our model all trains always run with the maximum allowed speed.
Using a faster train might lead to an earlier arrival at a station, which will in turn
open up train path departure possibilities from that station that were not an option
for a later arriving, slower train. Moreover, if the freight train is not restricted by
other existing trains, a faster train will automatically obtain a shorter travel time and
an earlier arrival time at the final station.

To investigate the sensitivity of a train path’s robustness, we analyze nine train
types, see Table 3 for an overview of their attributes. All of these types operate cur-
rently on the considered stretch, and we consider them a good representation of all
the train types operating between Malmö and Hallsberg.

Fig. 6 Robustness of the computed train path depending on the latest possible arrival time in Hallsberg

613

1 3

Railway timetabling: a maximum bottleneck path algorithm for finding an additional train path

For each train type, we allowed a latest arrival time at 18:00, and then reduced
this time stepwise by intervals of 45 min. The resulting robustness of train paths
found by our algorithm is given in Table 4.

The first five trains obtain paths with quite similar robustness, if we compare
the travel time to our train from the base scenario (GR421410), trains GB201310
and GB402010 have a 139 s longer runtime between Malmö and Hallsberg, train
GT421209 has a 2300 s longer runtime, and train GR401608 has a 4360 s longer
runtime. On the other hand, trains GR400710 and GR401409 take 22 s less than
GR421410, for the two passenger train types the difference is even larger: PX2-2000
and PX610016 need 6753 and 5546 s, respectively, less than the train from the base
scenario.

The faster passenger trains obtain feasible train paths also for a latest arrival time
at 15:00 and 15:45; on the other hand, the robustness of the obtained passenger train
paths is not consistently better than that of freight trains: for arrival at 18:00 the best
train path for passenger trains is 272 and 277, while freight trains yield a train path
with 300 s robustness.

We take a more detailed look into this difference in robustness: in Fig. 9 we com-
pare the earliest and latest possible train paths for the PX2-2000 and the GR421410
at the bottleneck, which for both occurs at the same station, FLP, between the same
preceding and succeeding train. The main difference in robustness is not caused
by the latest possible departure time (the light blue lines nearly coincide at sta-
tion FLP), but by the earliest possible departure time. The earliest possible depar-
ture time is defined by the preceding train. This train is slower than both considered
trains, thus, the slower of the two trains, GR421410, may depart earlier to keep the
safety distance to the preceding train than the faster passenger train. Thus, the result-
ing robustness at the bottleneck is higher for the freight train. Hence, we can con-
clude that the algorithm yields higher robustness for trains with a speed similar to
that of adjacent traffic.

Fig. 7 Robustness of the computed train path depending on the earliest possible departure time in Malmö

614 F. Ljunggren et al.

1 3

5.4 Variation of number of train departures in the network

So far we used the time table of Tuesday, February 24, 2015 for our experiments. In
this subsection, we analyze the impact of different days with different numbers of
trains and time tables on the robustness of the train path of our added freight train.
We analyze all days in the 2015 annual time table (December 15, 2014–December
09, 2015) with the standard time window of 06:00–18:00. Figure 10 shows the max-
imum bottleneck robustness for our inserted freight train for all days of the 2015
annual time table [some dates (38 days) were excluded due to incomplete input
data]. We can observe only a few distinct bottleneck robustness values, but these
values repeat frequently over the considered time period. In particular, the maximum
bottleneck robustness follows an alternating high-low value trend for weekdays/
weekends.

When we compare the number of existing trains in the time table on a specific
day and the robustness obtained for the inserted freight train, we can observe a clear
correlation, see Fig. 11: on days with a higher number of existing trains (usually
weekdays) the maximum bottleneck robust path is less robust than on days with
fewer existing trains (usually weekends). In Fig. 11 we can observe some excep-
tions to this rule in the two first weeks, thus, the general statement that more existing
trains in the time table will always lead to a lower bottleneck value is not correct. To
study the relation more closely, we performed a linear regression analysis; for the

Fig. 8 Existing trains between station s and station s + 1 are shown in blue, the earliest and latest pos-
sible departure for an inserted train is shown in red (limited by the safety distance to the existing trains
shown in green). The distance between these two red lines defines the robustness of this section of the
train path. a A slower train (right) obtains a higher robustness than a faster train (left). b A faster train
(left) obtains a higher robustness than a slower train (right)

Table 3 Train types, maximum
speed, and maximum weight

train type ID Train type Speed (km/h) Cargo weight (t)

GB201310 Freight 100 1300
GB402010 Freight 100 2000
GR400710 Freight 100 700
GR401409 Freight 90 1400
GR421410 Freight 100 1400
GT421209 Freight 90 1200
GR401608 Freight 80 1600
PX2-2000 Passenger 200 -
PX610016 Passenger 160 -

615

1 3

Railway timetabling: a maximum bottleneck path algorithm for finding an additional train path

plot of both, all single data points and the resulting regression line see Fig. 12. We
obtained a linear function with negative slope, which underlines the aforementioned
trend of more existing trains in the time table leading to a lower bottleneck robust-
ness; and an R2 value of 0.7091. To study the existing variance, we focussed on two
outlier data points, shown with a blue frame in Fig. 12 (the two data points overlap):
January 14 and January 21, 2015, both days are Wednesdays. We compared these
2 days with the Wednesday of the succeeding week, January 28; see Fig. 11 for the
number of existing trains and the resulting robustness of the inserted freight train
on these three dates. When comparing the train path our algorithm obtains for the
inserted freight trains on January 14, 21 and 28, we observed that the output train
path of January 14 and 21 is blocked by another train on January 28. Thus, the algo-
rithm outputs another (in this scenario best) train path, with the bottleneck located
at station FLP (Flackarp), see Fig. 13. That is, the existence of a single additional
train reduces the robustness of the inserted train path significantly. This explains the
relatively low R2 value we obtained. The general trend of more existing trains often
yielding a train path with lower robustness holds.

Finally, we consider all weekdays and all Tuesdays, to justify our choice of Febru-
ary 24, 2015 as a representative day of the 2015 annual time table. Figure 14a shows
the number of existing trains per day and the robustness of the train path obtained by
our algorithm for all weekdays (with all public holidays omitted), Fig. 14b shows the
same information for all Tuesdays only of the same time period.

As described, the robustness for the inserted train path varies signifi-
cantly—and the existence of one additional train may have a large impact on the

Table 4 Train type and achieved
robustness for different latest
arrival times at Hallsberg

15:00 15:45 16:30 17:15 18:00

GB201310 – – 146 146 300
GB402010 – – 146 146 300
GR400710 – – 147 147 300
GR401409 – – 147 147 300
GR421410 – – 147 147 300
GT421209 – – 97 97 228
GR401608 – – – 15 26
PX2-2000 107 107 230 230 272
PX610016 107 107 238 238 277

Fig. 9 Earliest and latest possible train path of the passenger train PX2-2000 and the freight train
GR421410 (bold lines) for the bottleneck shown in red and light blue, respectively. All existing trains in
the time table are shown in dark blue

616 F. Ljunggren et al.

1 3

robustness. We observe February 24 to be representative for the robustness range
on the majority of weekdays in the 2015 annual time table.

6 Analysis: runtime and graph size

Obviously, our algorithm is a variant of Dijkstra’s algorithm and, thus, runs in
O(|V| log |V| + |E|) on a given graph G = (V ,E) . To analyze the runtime of our
algorithm we have to determine the number of vertices and edges in our constructed
graph. These values depend on the number of stations, |S�| , and on the number of
existing trains in the time table, |T| . We yield:

Fig. 10 Maximum bottleneck robustness of the freight train obtained for all days fo the 2015 annual time
table, except for April 3, 2015–April 6, 2015 and July 6, 2015–August 9, 2015

Fig. 11 Number of trains per day and robustness of the inserted freight train path shown in blue and
green, respectively, selected time interval January 11–February 21, 2015

617

1 3

Railway timetabling: a maximum bottleneck path algorithm for finding an additional train path

Because each vertex at station s has at most one directed edge to a vertex on s + 1
and one directed edge to a succeeding vertex on s, we have |E| ≤ 2|V| . Consequently

which yields a runtime of O(|S�|2|T| log(|S�|2|T|)).
While this reflects the worst case upper bound, this bound is not tight and the

postprocessing step described in Sect. 4.1 significantly reduces the number of verti-
ces in our experiments. For our base scenario with |S�| = 76 and |T| = 251 Eq. (3)
yields an upper bound of 734502 on the number of vertices. However, we actu-
ally only have |V| = 6948 , that is, the inequality really includes a lot of slack or
hides very small constants, and after the postprocessing step, we are left with only
|V| = 3259 (less than half of the original vertices), which is significantly smaller
than the given upper bound. This reduction is highlighted in Fig. 15: the number of
vertices actually decreases with the number of trains, this holds for different train
types as shown in Fig. 15b.

(3)|V| ≤ |S�| + |T| ⋅
|S�|∑

k=1

k = |S�| +
|T| ⋅ |S�| ⋅ (|S�| + 1)

2

(4)(|V| log |V| + |E|) ≤(|V| ⋅ (2 + log |V|)

Fig. 12 Robustness over number of trains in the time table. Actual data points, given by days from the
2015 annual time table, are shown in orange, the linear function obtained by regression analysis is shown
in black

618 F. Ljunggren et al.

1 3

Fig. 13 Analysis of the bot-
tleneck of the inserted train path
on January 28. The robustness
on that day is 300 s, and the
bottleneck occurs at station FLP
(the last station before Lund).
a, b Show the earliest and lat-
est possible train paths for the
inserted freight train (in red and
light blue) on January 28 and
January 21, respectively. The
path we obtain for January 21
is blocked by another, existing
train on January 28, thus, we
cannot insert the train in the
same gap

619

1 3

Railway timetabling: a maximum bottleneck path algorithm for finding an additional train path

Fig. 14 Number of trains per day and robustness of the inserted freight train path shown in blue and
green, respectively. a For all tuesdays and b for all weekdays of the 2015 annual time table

620 F. Ljunggren et al.

1 3

7 Note on an improved algorithm for the “Best” bottleneck train
path

The algorithm presented in Sect. 4.2, and analyzed in detail in Sect. 5, has one draw-
back: We only care about the robustness at the bottleneck, the rest of the train path is
not optimized, we only know that nowhere along the path the bottleneck robustness
is undercut. Thus, two train paths over five stations with robustness of 150, 150,
150, 150, 150 and 350, 300, 150, 350, 400 at the stations are equally good, and our
algorithm might output the former. When we actually want to insert a freight train
that influences the existing trains as little as possible, we would prefer the latter.
However, this might, e.g., lead to longer total travel times for the inserted train.

We can easily adapt our algorithm to reflect this choice by increasing our storage
complexity: We store a vector, R, with the robustness at all stations along the path.
We still update the path in case it allows for a higher bottleneck robustness, but, if
we found another path with the same bottleneck robustness for which the vector R is
lexicographical larger than the vector R for the old path, we update our chosen path

Fig. 15 Number of vertices over number of trains: a data points for different days, b comparison for dif-
ferent train types

621

1 3

Railway timetabling: a maximum bottleneck path algorithm for finding an additional train path

as well. See Algorithm 2 for the pseudocode of this improved algorithm. We leave
an implementation of this algorithm to future work.

Algorithm 2: Best Maximum Bottleneck Path
INPUT : Directed graph G, edge weights c : E(G) → R+, start vertex

s ∈ V (G).
OUTPUT: Maximum bottleneck path from s to all vertices v ∈ V (G), which

maximizes the second smallest robustness, third smallest robustness
etc., and their value.

1 ∀v ∈ V (G):
2 r(v) - the value of a maximum bottleneck s-v-path.
3 p(v) - the predecessor of v on a maximum bottleneck s-v-path.
4 R(v) = (rv,1, . . . , rv,M) - a vector of the robustness at all stations along a

maximum bottleneck s-v-path (except for station 0).
5 1. Set r(s) := ∞, r(v) := 0 ∀v ∈ V (G) \ {s}, R := ∅.
6 rv,i = ∞∀v ∈ V (G) \ {s}, ∀i ∈ {1, . . . ,M}.
7 2. Find a vertex v ∈ V (G) \R with r(v) = maxw∈V (G)\R r(w).
8 3. Set R := R ∪ {v}.
9 4. for ∀w ∈ V (G) \R with (v, w) ∈ E(G) do

10 if (r(w) < min{r(v), c((v, w))} then
11 Set r(w) = min{r(v), c((v, w))}.
12 p(w) = v.
13 Set R(w) to R(v) extended by c(v, w).

14 else if (r(w) = min{r(v), c((v, w))} then
15 if (R(v) >lex R(w)) then
16 p(w) = v.
17 Set R(w) to R(v) extended by c(v, w).

18 5. if R �= V (G) then
19 THEN GOTO 2

8 Conclusions and outlook

We presented an algorithm that can be implemented to insert one additional train in
an existing timetable. The algorithm is fast and gives a satisfying result in reason-
able time for operational use.

In our test set of experiments, we solely used the maximum bottleneck as objec-
tive. This is well-motivated from a robustness perspective, but can easily be extended
to account for other goodness measures; in particular, we can easily account for the
robustness on the path to and from the bottleneck section by increasing our stor-
age complexity. Moreover, preprocessing may be applied to omit train paths with
unwanted properties such as a travel time exceeding the train driver’s maximum
allowed working time. The study of further objectives for FTI is left as future work.

As a heuristic for inserting several trains, the algorithm may be called repeat-
edly. To obtain better algorithms for this scenario, we might study either the
offline or the online problem in which multiple additional train paths need to
be inserted within a time interval. Moreover, our approach allows for a specific,
defined speed of the inserted train, and if we allow a larger number of allowed

622 F. Ljunggren et al.

1 3

speeds (still a discrete set), this will increase the size of our graph. Hence, it
might be interesting to study other types of algorithms that allow a continuous
spectrum of train speed.

Funding Open access funding provided by Linköping University.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

References

Andersson EV, Peterson A, Krasemann JT (2013) Quantifying railway timetable robustness in critical
points. J Rail Transp Plan Manag 3(3):95–110. https ://doi.org/10.1016/j.jrtpm .2013.12.002

Burdett R, Kozan E (2009) Techniques for inserting additional trains into existing timetables. Transp
Res Part B Methodol 43(8):821–836

Cacchiani V, Caprara A, Toth P (2010) Scheduling extra freight trains on railway networks. Transp
Res Part B Methodol 44(2):215–231

Cacchiani V, Huisman D, Kidd M, Kroon L, Toth P, Veelenturf L, Wagenaar J (2014) An overview of
recovery models and algorithms for real-time railway rescheduling. Transp Res Part B Methodol
63:15–37

Commission of the European communities (2007) Towards a rail network giving priority to freight.
Communication from the commission to the council and the European parliament. https ://eur-
lex.europ a.eu/legal -conte nt/en/TXT/?uri=CELEX :52007 DC060 8

Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271
Eurostat (2017) Railway transport-goods transported, by type of transport. http://appss o.euros tat.

ec.europ a.eu/nui/show.do?datas et=rail_go_typea ll&lang=en
Flier H (2011) Optimization of railway operations: algorithms, complexity, and models. PhD thesis,

ETH. https ://www.resea rch-colle ction .ethz.ch/handl e/20.500.11850 /72891
Flier H, Graffagnino T, Nunkesser M (2009) Scheduling additional trains on dense corridors. In: 8th

International Symposium on experimental algorithms (SEA 2009), Dortmund, Germany, June
4-6, 2009, pp 149–160

Goerigk M, Schöbel A (2014) Recovery-to-optimality: a new tow-stage approach to robustness with
an application to aperiodic timetabling. Comput Oper Res 52:1–15

Goverde RMP, Hansen IA (2013) Performance indicators for railway timetables. In: 2013 IEEE Inter-
national Conference on intelligent rail transportation proceedings, pp. 301–306

Grimm M (2012) The analysis of congested infrastructure and capacity utilisation at trafikverket. WIT
Trans Built Environ 127:359–367

Hansen IA, Pachl J (2014) Railway timetable & traffic: analysis-modelling-simulation, 2nd edn.
Eurailpress in DVV Media Group, Hamburg

Harrod SS (2012) A tutorial on fundamental model structures for railway timetable optimization. Surv
Oper Res Manag Sci 17(2):85–96

Ingolotti L, Barber F, Tormos P, Lova A, Salido MA, Abril M (2004) An efficient method to schedule
new trains on a heavily loaded railway network. Springer Berlin Heidelberg, Berlin, pp 164–173

Jiang F, Cacchiani V, Toth P (2017) Train timetabling by skip-stop planning in highly congested lines.
Transp Res Part B Methodol 104:149–174

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jrtpm.2013.12.002
https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:52007DC0608
https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:52007DC0608
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=rail_go_typeall&lang=en
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=rail_go_typeall&lang=en
https://www.research-collection.ethz.ch/handle/20.500.11850/72891

623

1 3

Railway timetabling: a maximum bottleneck path algorithm for finding an additional train path

Khoshniyat F, Peterson A (2017) Improving train service reliability by applying an effective time-
table robustness strategy. J Intell Transp Syst Technol Plan Oper 21(6):525-543. https ://doi.
org/10.1080/15472 450.2017.13261 14

Kroon L, Huisman D, Maróti G (2008) Optimisation models for railway timetabling. In: Hansen I,
Pachl J (eds) Railway timetable and traffic. Eurailpress, Hamburg, pp 135–154

Liebchen C (2008) The first optimized railway timetable in practice. Transp Sci 42(4):420–435
Ljunggren F, Persson K, Peterson A, Schmidt C (2018) Maximum robust train path for an additional

train inserted in a railway timetable close to operation. In: Conference on advanced systems in
public transport and transitdata 2018, Brisbane

Pollack M (1960) Letter to the editor–the maximum capacity through a network. Oper Res
8(5):733–736

Solinen E, Nicholson G, Peterson A (2017) A microscopic evaluation of railway timetable robustness
and critical points. J Railw Transp Plann Manag 5:207–223

Törnquist J (2006) Computer-based decision support for railway traffic scheduling and dispatching: a
review of models and algorithms. OASIcs-OpenAccess Ser Inf. https ://doi.org/10.4230/OASIc
s.ATMOS .2005.659

Trafikanalys (2017a) Rail traffic 2016. https ://www.trafa .se/globa lasse ts/stati stik/bantr afik/jarnv agstr
anspo rter/2017/jarnv agstr anspo rter-2017-kvart al-3.pdf?

Trafikanalys (2017b) Railway transport 2017 quarter 3. https ://www.trafa .se/globa lasse ts/stati stik/
bantr afik/bantr afik/2016/bantr afik-2016_okt.pdf?

UIC (2004) Uic code 406: capacity. Technical report, International Union of Railways. 1st edition
Vromans MJ, Dekker R, Kroon LG (2006) Reliability and heterogeneity of railway services. Eur J Oper

Res 172(2):647–665
Zhang J (2015) Analysis on line capacity usage for China high speed railway with optimization approach.

Transp Res Part A Policy Pract 77:336–349

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1080/15472450.2017.1326114
https://doi.org/10.1080/15472450.2017.1326114
https://doi.org/10.4230/OASIcs.ATMOS.2005.659
https://doi.org/10.4230/OASIcs.ATMOS.2005.659
https://www.trafa.se/globalassets/statistik/bantrafik/jarnvagstransporter/2017/jarnvagstransporter-2017-kvartal-3.pdf?
https://www.trafa.se/globalassets/statistik/bantrafik/jarnvagstransporter/2017/jarnvagstransporter-2017-kvartal-3.pdf?
https://www.trafa.se/globalassets/statistik/bantrafik/bantrafik/2016/bantrafik-2016_okt.pdf?
https://www.trafa.se/globalassets/statistik/bantrafik/bantrafik/2016/bantrafik-2016_okt.pdf?

	Railway timetabling: a maximum bottleneck path algorithm for finding an additional train path
	Abstract
	1 Introduction
	2 Related work
	2.1 Robust railway timetabling
	2.2 Methods for inserting a train in an existing timetable

	3 Freight train insertion problem
	4 Maximum bottleneck robust train path
	4.1 From timetable to input graph
	4.2 Algorithm for bottleneck train path

	5 Experimental study: Malmö–Hallsberg
	5.1 Base scenario
	5.2 Variation of time windows
	5.3 Variation of train type
	5.4 Variation of number of train departures in the network

	6 Analysis: runtime and graph size
	7 Note on an improved algorithm for the “Best” bottleneck train path
	8 Conclusions and outlook
	References

