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Abstract
The “Quadrilátero Ferrífero” (Iron Quadrangle) is a mineral-rich province in Brazil, where arsenic anomalies are associ-
ated with gold mining and tailings dam failures. Urine samples were randomly collected from residents of Belo Horizonte 
(BH) city (N = 506 total/138 speciation) and the metropolitan area (N = 35 total/10 speciation), with stratifications in age, 
female-male and geopolitical regions. Creatinine, acid-digested total arsenic (TAs), and five inorganic and organic arsenic 
species were measured: arsenobetaine (AsB); arsenous (AsIII) and arsenic (AsV) acids and their dissociation products; 
monomethylarsonic acid (MMA); and dimethylarsinic acid DMA). Overall, the TAs GM (μg/g creat) of all stratification 
groups indicated no statistical difference. The TAs geometric mean (GM) of BH was 9.68 [9.17–10.2] μg/g creat, being AsB 
(43.8%) and DMA (20.7%) the major components. The toxic arsenic (ToxAs) fraction (i.e., AsIII + AsV + MMA + DMA) was 
5.23 [4.45–6.15] μg/L. These TAs and ToxAs values are lower than international benchmarks and the Brazilian legislated 
standard of 35 μg/L for ToxAs. The TAs GM (μg/L) and creatinine were 36% higher for males than for females (p < 0.0001), 
making TAs GMs comparable, after creatinine correction. Similarly, though the 10–19 age group showed significantly higher 
ToxAs GM (12.7 [6.49–24.8] μg/L) (p = 0.048) and creatinine (p < 0.001), the ToxAs GM (7.22 [2.92–17.9] μg/g creat), 
was not statistically different than those from the other age groups. The study, the first one in Brazil, identifies the relative 
contribution of inorganic and organic arsenic and provides a baseline level for clinical reference and bio-monitoring studies, 
particularly applicable to both occupational and non-occupational populations in a mineral-rich region.
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Introduction

Arsenic (As) is ranked number one in the USEPA toxic 
substance priority list (ATSDR 2019) followed by lead and 
mercury. It is known that chronic exposure to As can cause 
cancers, and other non-cancer diseases such as diabetes mel-
litus, vascular and neurological diseases, hypertension, renal 
failure, neurological development in children and adverse 
birth outcomes, and genetic alterations (WHO 2001; IRIS 
2003; ATSDR 2007; IARC 2012).

Arsenic is very common in nature in trace amounts, but it 
can be found in elevated concentrations in mineralized areas. 
Arsenic-bearing minerals, such as arsenian (As-rich) pyrite 
 (FeS2), and arsenopyrite (FeAsS) are generally found in gold 
deposits and associated with sulfides of copper, nickel, anti-
mony, and silver, among others (Smedley and Kinniburgh 
2002). Sedimentary iron and manganese ores, as well as 
phosphate deposits, occasionally contain arsenic levels up to 
2900 mg/kg, which can be emitted into the atmosphere from 
natural and anthropogenic events (WHO 2001).

Population exposure to natural or anthropogenic arse-
nic anomalies is a matter of concern worldwide. For non-
occupational exposure, the sum of inorganic arsenic (iAs) 
concentrations and its methylated metabolites (MMA and 
DMA) in urine is usually less than 10 μg/g creat (WHO 
2001). Conversion of the result from μg/L to μg/g creat is 
aimed to reduce the interference of urine dilution, which 
may cause a change in the actual concentration.

Different reference TAs values have been reported around 
the world—the European Countries: below 10 μg/L (Buchet 
et al. 1980); Germany: a mean of 7.17 μg/g creat with a 
standard deviation of 19.7 (Heinrich-Ramm et al. 2001); 
Italy: mean of 16.7 μg/L, min/max 1/64.5 μg/L (Minoia 
et al. 1990); United Kingdom: mean of 12.3 μg/L min/max 
0.9/1080 μg/L (White and Sabbioni 1998). USA: about 
10 μg/L (CDC 2021); USA: Mayo Medical Laboratories in 
random urine: below 20 μg/g creat or μg/L (Mayo 2021). 
Mexico: mean for children of 40.28 μg/g creat with a stand-
ard deviation of 18.20 to 70.29 μg/g creat (Calderón et al. 
2001). Studies carried out in Slovenia and Germany with 
adults and infants, indicate the value of 15 μg/L as a base 
reference for the population without previous consumption 
of seafood for at least 2 days (Tratnik et al. 2019; Schulz 
et al. 2011). Since 2022, there is no legislation in Brazil for 
arsenic threshold and reference levels for non-occupational 
exposure. Before that, the reference level was 10 μg/g creat 
(Brasil 1994).

The city of Belo Horizonte (BH) is in a mineral-rich prov-
ince, where gold extraction has occurred for more than two 
centuries. Arsenic anomalies, associated with long-lasting 
gold mining, were reported in soil and water, besides high 
levels in human biological fluids in the neighboring regions 
(Matschullat et al. 2000). More recent findings of anomalous 
arsenic concentrations in superficial water were reported, 
following two disasters (2015 and 2019) in iron ore opera-
tions located 150 and 50 km far away from BH (Oliveira and 
Carvalho 2021).

The above reasons motivated the first investigation of 
arsenic levels in the BH population with the aim to provide 
a non-occupational baseline in a mineral-rich region of Bra-
zil. It is important to note there are few studies in the coun-
try, which reported only TAs, mostly in blood, or urine, but 
without As speciation (Freire et al. 2015; Lopes et al. 2019). 
Total arsenic analysis in all matrices, including urine, serves 
as a first screening method so that the investigators/regula-
tory agencies can focus on which samples (e.g., threshold 
concentration)/areas will require further studies. This is 
particularly pertinent to areas where specialist speciation 
laboratories are not readily available. Nevertheless, specia-
tion is the ultimate method when assessing exposure. Levels 
of urinary creatinine, total acid digest arsenic (TAs), and five 
arsenic species (arsenobetaine, DMA, MMA, and inorganic 
AsIII and AsV) were determined in representative sam-
pling in the BH population. The results are compared with 
the international indexes. The establishment of a specific 
baseline level of As is important for environmental expo-
sure comparisons and biomonitoring studies in Brazil and 
perhaps elsewhere. Belo Horizonte is unique considering the 
features of a large metropolitan area close to the mineralized 
areas. The differences between males and females, among 
age groups, regions of the city, and the metropolitan area are 
also analyzed by considering TAs and ToxAs (defined as the 
sum of MMA, DMA, and inorganic As). To the best of the 
authors’ knowledge, this is the first epidemiological study 
of arsenic exposure in a large metropolis in Brazil, with a 
representative sampling of its population reporting TAs and 
speciated ToxAs, in the urine.

The Site

Belo Horizonte is a metropolis with the sixth-largest popu-
lation of about 2.7 million people in Brazil (IBGE 2010a). 
The city is in the south tropical zone, approximately 450 km 
from the sea. Due to the elevation (852 m), temperatures 
are mild throughout the year ranging from 11 to 31 °C, with 
dry winter and humid summer seasons. The average annual 
precipitation is about 1200 mm. The BH metropolitan area 
comprises 34 municipalities and a population of 6 million 
people. The metropolis has part of its territory within the 
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boundaries of “Quadrilátero Ferrífero”, a mineral-rich (gold 
and iron ores) region of approximately 7,000  km2 hereafter 
referred to as Iron Quadrangle (IQ). The IQ region is well-
known for its mining activities, mostly represented by gold, 
which goes back to the eighteenth century, and intensive 
production of iron ore, especially over the last 80 years. 
Although there are no mining operations in BH urban area, 
the city is adjacent to those areas with no uninhabited geo-
graphic barrier between them.

High concentrations of arsenic in the soil, groundwater, 
and surface water have been reported in neighboring munici-
palities (Borba et al. 2000). Median values (and range) of 
As concentration in soils of 960(16–13,400), 100(13–467), 
and 53(16–80) mg/kg were detected in Nova Lima, Santa 
Barbara e Mariana, respectively (Deschamps et al. 2002). 
Concentrations as high as 21,000 mg/kg As and 1,700 mg/L 
As have been found in mining tailings and water samples, 
respectively (Teixeira et al. 2020). Other studies showed 
arsenic concentrations between 30 and 255 mg/kg in stream 
sediments (de Vicq et al. 2015), 78.1 and 85.3 μg/L (Silva 
et al. 2018), and 57.7 and 414 μg/L (Costa et al. 2015) in 
surface water samples.

In a study at Nova Lima, urine samples from 126 children 
living close to a gold mine’s waste disposal areas indicated 
TAs mean of 25.7 μg/L (min/max: 2.2 to 106 μg/L) (Mats-
chullat et al. 2000). In Nova Lima, Campolina et al. (2007) 
found that the TAs median of 49 exposed residents to tailing 
deposits dropped significantly (p < 0.001) from 25.30 μg/g 
creat (min/max 20.22/51.56) in 2003/2004 to 10.74 μg/g 
creat (min/max 1.89/40.98 μg/g creat) in 2007 after the miti-
gation actions described by Lima et al. (2006), Alves et al. 
(2008), and Castro et al. (2011).

In addition to the arsenic directly associated with gold 
mining, two tailing dam failures caused major environmental 
impacts and deaths. In 2015, the iron ore tailings released 
from the impoundment caused devastation along 500 km 
until reaching the Atlantic Ocean. In 2019, a second disas-
ter involving the collapse of an iron ore tailings dam led to 
over 270 deaths. Anomalous arsenic concentrations in the 
water and sediments were reported following the disasters 
(Oliveira and Carvalho 2021).

The drinking water supplied to the city of BH shows 
concentrations below 0.7 μg/L (COPASA 2021), consider-
ably lower than the Brazilian maximum permitted limit of 
10 μg/L in water for human consumption (Brasil 2021), a 
threshold aligned with WHO (2011), and therefore, without 
expected influence on the population's exposure.

Materials and Methods

Human ethics approval was obtained from the Brazilian Eth-
ics and Research Council of the Minas Gerais State Hospital 
Foundation (FHEMIG) with the approval certificate number 
CAAE: 84,417,618.1.0000.5119.

Study Area

Nine regions of Belo Horizonte city—Barreiro, Central-
South, East, Northeast, Northwest, North, West, Pampulha, 
and Venda Nova—were selected for the urine sample col-
lection. The left of Fig. 1 shows the map of Brazil with Belo 
Horizonte city highlighted in red and Iron Quadrangle prov-
ince in purple, inside the Minas Gerais state borders. To the 
right of Fig. 1, the nine sampling regions of the city showing 
parts of the city are within the Iron Quadrangle province 
represented in purple with the boundaries in dashed lines.

Study Design

This study is a post-stratification survey divided into three 
categories: (a) female-male, (b) age (0–9, 10–19, 20–59, 
60 +), and (c) BH geopolitical regions (Barreiro, Central-
South, East, Northeast, Northwest, North, West, Pampulha, 
Venda Nova and Metropolitan). Urine was randomly col-
lected in a representative sampling from the residents of 
Belo Horizonte, with volunteer participants from different 
economic and social characteristics between May 2018 and 
October 2019. The approach to the participants occurred 
on the street, in homes, health centers, colleges, and com-
panies, among other places, with no previous information 
about occupational exposure to arsenic.

There were no previous fish and seafood diet restrictions, 
although this and other demographical information were 
collected for further interpretations. The inclusion criteria 
were residents who had lived in the city of Belo Horizonte 
for at least six months, and who have understood, agreed, 
and signed the Informed Consent Form, respecting Resolu-
tion 366/2012 of the National Health Council, which guides 
human research.

Figure 2 shows the representativeness of the sampling for 
TAs and speciation by comparing the sampling and popula-
tion proportions according to the three stratification catego-
ries, based on the official census (IBGE 2010a, b).

Urine samples were collected in arsenic-free 80 mL plas-
tic containers and transported on ice. The material was ali-
quoted right after arriving at the survey site into two 10 mL 
plastic vials and stored at ≤ 4 °C to be collected by a Brazil-
ian commercial laboratory. The total acid-digested arsenic 
concentration (TAs) in μg/g creat and the creatinine (g/L) 
of all collected urines was measured using our previously 
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published methods (Tanvir et al. 2021). The concentrations 
in µg/L were calculated by multiplying those two meas-
urements. Then, three other aliquots were stored frozen at 
– 20 °C, one in 2 mL tubes, and two in 10 mL tubes added to 
1:100 part of 70% Ultra-Pure nitric acid, Merck®. The fro-
zen urine samples with the total arsenic concentration meas-
ured by the local laboratory ≥ 10 μg/gCreat or ≥ 10 µg/L with 
a volume of at least 22 mL, were then shipped on dry ice by 

an international express courier in 3 batches inside thermo-
boxes for urinary arsenic speciation in the laboratories of 
Queensland Alliance for Environmental Health Sciences 
(QAEHS), The University of Queensland in Australia. The 
samples were stored at − 80 °C until analysis to minimize 
oxidation of As(III) to As(V). Considering this implica-
tion, the speciation results are provided for both As(III) and 
As(V) separately and combined in ToxAs in this study.

Fig. 2  The sampling repre-
sentativeness is indicated by 
comparing urine samples (%) 
for TAs (506) and arsenic 
speciation (138) and the popula-
tion census, according to three 
stratifications: a female-male, b 
age, and c region

Fig. 1  Map of Brazil show-
ing Belo Horizonte city in the 
Minas Gerais state (left) with 
the nine sampling regions 
(right). The areas within the 
Iron Quadrangle geologi-
cal province (in purple) with 
boundaries in dashed lines are 
also highlighted
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Data Analysis

Since probability distributions were detected as non-normal, 
data were compiled as geometric means (GMs) and percen-
tiles (50th, 75th, 90th, and 95th) with 95% confidence inter-
vals of urinary creatinine in g/L, urinary arsenic concentra-
tions in µg/L, and creatinine-corrected (µg/g creat) for TAs 
and ToxAs in all the categories, and species of AsB, AsIII, 
AsV, MMA and DMA for the total population. Arsenic spe-
cies were also presented as percentages of TAs with 95% 
confidence intervals. The GMs of the stratification catego-
ries were statistically compared. Finally, the levels of BH 
were also compared to other similar results in the literature.

Laboratory Analysis and Quality Control

In the Brazilian commercial laboratory, TAs was analyzed 
using ICP-MS while urinary creatinine concentrations were 
determined using Jaffe’s reaction (upper cut-off limit 3 g/L). 
This laboratory is accredited by the SBPC/ML (Brazilian 
Society of Clinical Pathology/Laboratory Medicine), CAP 
(College of American Pathologists), and ISQua (The Inter-
national Society for Quality in Health Care). The analytical 
methods follow the national legislation (ANVISA 2005). 
Due to the recent change in the Brazilian standards and ref-
erences, the results for urinary arsenic are presented in two 
concentrations (μg/g creat and μg/L), which also facilitates 
comparisons with the international studies using these two 
units.

In the QAEHS laboratory, concentrations of TAs and 
five arsenic species in urine were determined using high-
performance liquid chromatography (HPLC) coupled to 
an inductively coupled plasma mass spectrometry (Agilent 
7900 ICP-MS) using helium as the collision gas (HP 1000 
HPLC coupled to Agilent 7500 ICP-MS/Octapole Colli-
sion Cell Technology). This technology minimizes arsenic 
chloride and ionic interferences. A Hamilton PRP-X100 
ion exchange column (250 mm × 4.1 mm i.d., 10 µm) was 
used for the arsenic speciation. The mobile phase consisted 
of 10 mM  NH4H3PO4, 3 mM  NaNO3, and 0.2 mM EDTA-
Na2 (Wu et al. 2011). Urinary creatinine was determined 
by Jaffe’s method using a Beckman Coulter urine calibrator 
(Lot #10,234) and BIO-RAD Liquicheck urine biochemistry 
control (Lot #68,540). The five species and limits of detec-
tion (LOD) are for arsenobetaine (AsB, LOD = 0.24 µg/L), 
trivalent inorganic As (AsIII, LOD = 0.08 µg/L), dimethyl-
arsinic acid (DMA, LOD = 0.17 µg/L), monomethylarsonic 
acid (MMA, LOD = 0.06 µg/L), and pentavalent inorganic 
As (AsV, LOD = 0.04 µg/L).

Study Quality Control

Double-blind assessments were performed at both labora-
tories to verify the precision of the entire survey process 
from material handling and transportation to concentration 
measurement. Two aliquots of a urine sample were assigned 
to fictitious names and both paired urine samples were sent 
to the laboratories. To the Brazilian commercial laboratory, 
19 pairs of double-blind urine samples were sent result-
ing in 19 paired results for TAs and creatinine. The paired 
samples' equality was tested using a ratio-paired t-test with 
the null hypothesis that the geometric mean of the paired 
ratios equals one. The null hypothesis was not rejected 
for the total urinary arsenic (p = 0.619) and the creatinine 
(p = 0.358), meaning that there is no evidence for differences 
in the double-blind paired measures at a 95% confidence 
level. The geometric means of the paired ratios and 95% 
confidence intervals were 1.02 (0.95–1.09) for TAs and 1.02 
(0.98–1.05) for creatinine. Another two double-blind paired 
samples were sent to the QAEHS laboratory resulting in the 
ratios 1.11 and 0.99 for TAs, and 0.98 and 1.04 for creati-
nine. Nine specimens of BIO-RAD Liphochek urine met-
als control Lot #69,190 Level 1 with arsenic-certified mean 
63.1 µg/L (50.5–75.7) were analyzed at the QAEHS labora-
tory. The measured arsenic mean, and 95% CI of 60.0 µg/L 
(53.62–66.4) were within the acceptable limit of certified 
reference values. Representative field blanks for each batch 
of samples were also analyzed and all remained below the 
detection limit for TAs and arsenic species. With the other 
in-house assurance/quality control (QA/QC), spiked recov-
ery samples were 104.9% for Certified Reference Material 
(CRM NIES-18-Japan, TAs and As speciation) (urine), 
n = 5, and 100.2% for NWTM 24.3 (LCG 2012) (water, The 
National Water Research Institute, Canada), n = 2. The CRM 
for the measured TAs of 131 ± 1.4 µg/L (n = 2) agreed with 
the certified value of 137 ± 11 µg/L. The results of CRM 
for arsenic speciation (n = 9) and ClinChek-Control I & II 
for inter-assay variation assessment (n = 14) are shown in 
Table S1 and S2 of the Supplementary Material.

Statistical Analysis

Data were processed using the “Survey” package (Lumley 
2004) for analysis of complex survey samples in the envi-
ronment for statistical computing and graphics R (R Core 
Team 2020). For the survey design, the post-stratification 
method Generalized Raking was applied to include informa-
tion on the entire population size and each stratum, generat-
ing weightings for estimations and adjustments in the confi-
dence intervals, making them consistent with the population 
size. For the Metropolitan region, post-stratification was 
applied only in the female-male stratum and the statistical 
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parameters were not calculated for them, only for the entire 
population of the region.

For statistical parameter calculations, concentrations 
below LOD were replaced by LOD divided by the square 
root of two, as data fitted the log-normal probability distri-
butions. This substitution is more suitable than LOD/2 for 
probability distributions close to Log-normal as argued in 
VerbovSek (2011) and adopted by CDC (2021). The simple 
exclusion of undetected values biases the estimation of sta-
tistical parameters (Helsel 2005).

Urinary arsenic measurements were log-transformed 
before the geometric means (GM) calculation. Ninety-five 
percent confidence limits were calculated by the method 
BetaWald (Korn and Graubard 1998). None of the urinary 
arsenic species’ categories exceeded 50% of concentrations 
below LOD. If any category exceeded 50% < LOD, a large 
error would be generated and GM and the 50th percentile 
would not be reported.

For the double-blind assessment, the ratio paired t-test 
was used. The ratio t test averages the logarithm of the 
paired ratios and then tests the null hypothesis that the mean 
of those logarithms is zero. After the back transformation 
(exponential), the interpretation of the null hypothesis is that 
the GM of the ratios equals one. The GM of the ratios and 
their confidence intervals were also reported.

The categories of GMs were statistically compared inside 
each stratification following the same transformation prin-
ciple (log-exponential). Generalized linear models were fit 
to the log-transformed data from the complex survey design 
for each stratification. Their transformed means were then 
compared using Gaussian family functions and back trans-
formed with exponentiation, resulting in comparisons via 
GM ratios. As the Metropolitan region was not considered 
part of the BH stratification and had an independent survey 
design, its GM was compared to the total BH population’s 
GM, using a simple t test, applied to the transformed data. 
All categories with GM ratios significantly deviated from 
unity, at a 95% confidence level (p < 0.05), and had their p 
values and proportions reported in the tables.

Results

Table S3 (Supplementary Material) shows the population of 
BH and the Metropolitan region based on the census (IBGE 
2010a, b), and the sample size for each category used in 
post-stratification weighting corrections. The sample size 
to the TAs level’s estimation of the entire BH population 
is 506. Among the 506, 138 urine samples were speciated 
with the criteria defined in the previous section—the total 
arsenic concentration ≥ 10 μg/gCreat or ≥ 10 µg/L. For the 

Metropolitan region, the sample size to the TAs level’s esti-
mation is 35, with 10 speciations among them.

All tested urine samples had detectible TAs (i.e., > LOD). 
Details about LOD and the approach dealing with values 
below LOD can be found in the previous section. Table S3 
shows in the last five columns the number of samples with 
concentrations values below the LOD (and the percentage 
concerning each category sample size inside parentheses).

Total Acid Digest Arsenic

Table 1 shows the geometric means and percentiles with 
95% confidence intervals of the TAs in μg/g creat and µg/L, 
besides the urinary creatinine in g/L, for all the stratification 
categories. There was no statistical difference between any 
GM of TAs in μg/g creat. Regarding TAs (μg/L), male GM 
was 35.5% higher than that of females (p < 0.0001) and the 
same difference was observed for creatinine. The TAs (μg/L) 
for ages 10–19 in the Pampulha and Venda Nova regions 
were also statistically different from the other categories 
inside their stratification (p < 0.05). Details about the statis-
tics of the categories with significant GM ratio deviations 
are also shown in Table 1.

Toxic Fraction and Arsenic Species

Arsenic speciation was determined in 148 urine samples, 
138 from Belo Horizonte and 10 from the metropolitan 
region. Figure 3 shows the urinary arsenic concentrations of 
TAs and the ToxAs. The urine samples in Fig. 3 are arranged 
in ascending order of their TAs concentrations.

Table 2 shows GMs and percentiles with 95% confidence 
intervals of ToxAs in μg/g creat and µg/L for all stratifica-
tion categories, together with the details about the statistics 
of the categories with significant GM ratio deviations. Due 
to the high percentage of concentrations below the limit of 
detection (LOD) during As speciation, associated with low 
sample sizes for some isolated stratum, only the levels of the 
total population are presented for individual arsenic species. 
For example, AsIII for the Age 0–9 group has a sample size 
equal to five and 2 values (40%) < LOD (Table S3). In these 
situations, determining a statistical parameter for an entire 
city based only on three detected values would carry a large 
uncertainty and lack of representativeness.

Table 3 shows the geometric mean and percentiles of 
AsB, AsIII, DMA, MMA, and AsV with 95% confidence 
intervals for the total population of BH. Table 4 shows the 
percentages of the urinary arsenic species concerning TAs 
with 95% confidence intervals, for all sampling stratification 
categories of BH and the metropolitan region.
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1 3

Discussion

There is no threshold regulatory guideline set for environ-
mental exposure to As in Brazil. Until 2020, the urinary 
TAs for non-exposed was 10 μg/g creat, and 50 μg/g creat 
for occupational exposure—Maximum Allowable Biologi-
cal Indices (IBMP in Brazilian acronym) (Brasil 1994). In 
the updated Brazilian legislation (Brasil 2020) that came 
into force in 2022, the Biological Exposure Index (BEI) 
is 35 µg/L for the sum of inorganic As + DMA + MMA 
(ToxAs). These occupational exposure values agree with 
the maximum permitted levels for acceptable health risks 
in various countries (WHO 2001; ACGIH 2017).

The collection of 24-h urine samples has been considered 
a preferred method but is usually not feasible for large bio-
monitoring studies (Middleton et al. 2016). Furthermore, 
since diet and urination time is mere information provided 
by participants, it is therefore not entirely reliable regard-
ing the intake of arsenic-rich foods or whether the sample 
collected was indeed the first one in the morning, in addi-
tion to several possible internal and external interference 
factors inherent to 12 or 24-h urine collections. Based on 
these considerations, the authors claim that a more realistic 
assessment of the population's exposure to arsenic can be 
obtained by adopting random collection and spot sampling 
at the time of the interview, as well as dilution correction.

Hsieh et al. (2019) concluded either urinary creatine or 
specific gravity correction compared favorably with that of 
12 or 24 h urine samples in a review of correction methods 
for arsenic, cadmium, and mercury. The use of creatinine 
to correct the effects of urine density is especially relevant 
in a tropical country, where high temperature and therefore 
heavier work activity, mainly among men, can influence sig-
nificantly higher creatinine in this group, as found in this 
study (Table 1).

The results shown in Table 1 show TAs of five urine 
samples were higher than 50 μg/g creat. One of these five 
urine samples (TAs 205.6 µg/L) had the ToxAs of 44.5 µg/L, 

greater than the Brazilian threshold for occupational biologi-
cal exposition for ToxAs (35 µg/L). This participant reported 
he had consumed beverages, seafood, and fish, including 
fish caught in a mining tailing pond. The individual species 
concentrations for this participant's urine sample and their 
contribution to the TAs were AsB 111.1 µg/L (54.0%), AsIII 
3.18 µg/L (1.55%), DMA 28.4 µg/L (13.8%), MMA 7.51 µg/L 
(3.65%), and AsV 5.40 µg/L (2.63%). These numbers repre-
sented increase in AsB (+ 349.4%), AsIII (+ 150.0%), DMA 
(+ 221.9%) MMA (+ 218.3%), and AsV (+ 173,1%) in rela-
tion to the 95th percentile (P95th) of the TAs from BH (AsB 
31.8 µg/L [14.5–97.1], AsIII 2.12 µg/L [1.60–3.18], DMA 
12.8 µg/L [7.48–21.9], MMA 3.44 µg/L [2.29–6.37] and AsV 
3.12 µg/L [2.29–5.23]). Despite the highest increase in the 
organic and less toxic AsB, the ToxAs for this participant is 
indeed higher than the P95th of BH (19.2 µg/L [12.1–35.4]), 
corroborating the information about his exposure to arsenic-
contaminated areas reported in the survey form.

Several studies around the world, especially in Europe 
but also in other countries, have justified the use of refer-
ence values at the 95th percentile as the highest exposure 
threshold to As. Examples are human biomonitoring sur-
veys carried out in Germany (Schulz et al. 2011, 2012), 
South Korea (Lee et al. 2012), England (Bevan et al. 2013), 
Belgium (Hoet et al. 2013), Slovenia (Tratnik et al. 2019), 
United States of America (CDC 2021), Canada (CHMS 
2021), Malaysia (Anual et al. 2021), Japan, among others. 
The necessary care with the evaluation of sample selection, 
sample size, collection period, exclusion criteria, pairing 
criteria, analytical quality, as well as other aspects such as 
age groups, sex, eating, and smoking habits, in addition to 
aspects of possible environmental and occupational expo-
sures were discussed (Saravanabhavan et al. 2017; Vogel 
et al. 2019). Though the maximum exposure in a studied 
region is defined through the P95th, this value does not nec-
essarily represent normality (Ewers et al. 1999). Therefore, 
each region must have its reference updated, as proposed 

Fig. 3  Total arsenic, the toxic 
arsenic fraction (µg/L), and 
creatinine (g/L) of all speci-
ated urine samples, arranged 
in ascending order of TAs to 
facilitate visualization
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here, due to possible variations in the exposure factors (Kris-
tiansen et al. 1997; Apostoli et al. 1999).

The GM of TAs (9.68 μg/g creat [9.17–10.2]) and ToxAs 
(5.23 μg/L [4.45–6.15]) in BH are both lower than those of 
Brazilian legislation and close to the international reference 
values discussed above. Around 50% of the samples col-
lected from the volunteer participants are close to or less 
than the reference value, as the 50th percentile for TAs in BH 

was 10.7 µg/L [9.83–11.8] and 8.90 μg/g creat [8.50–9.50]. 
The species AsB (43.8%) and DMA (20.7%) were the major 
species in the TAs composition. The participants reported a 
daily intake of rice and beans in large amounts, which could 
contribute to the increase in arsenic concentration (Ciminelli 
et al. 2017; Borges et al. 2020). It was observed that the TAs 
increase is not necessarily followed by an increase in ToxAs, 

Table 3  Urinary arsenic species in μg/g creat and µg/L to the total Belo Horizonte population. Geometric means (GM) and percentiles provided 
with 95% confidence intervals (C.I.)

Urinary arsenic species: total population, Belo Horizonte

As Species GM Percentile (95% confidence interval)

(S. Size) (95% C.I.) 50th 75th 90th 95th

Concentrations in μg/g creat
 AsB (138) 2.70 (1.95–3.74) 2.55 (1.93–3.68) 6.89 (4.27–9.48) 13.49 (8.29–71.0) 65.0 (9.31–76.7)
 AsIII (138) 0.31 (0.23–0.43) 0.46 (0.24–0.65) 0.90 (0.72–1.13) 1.42 (1.03–2.80) 2.12 (1.14–4.91)
 DMA (138) 2.51 (2.05–3.08) 2.28 (1.94–2.69) 4.01 (2.70–5.26) 8.38 (4.70–18.5) 16.5 (5.19–19.1)
 MMA (138) 0.53 (0.37–0.74) 0.76 (0.70–0.87) 1.22 (1.02–1.69) 2.63 (1.35–5.10) 4.75 (1.63–7.4)
 AsV (138) 0.89 (0.70–1.13) 1.10 (0.85–1.31) 1.86 (1.47–2.29) 3.51 (2.03–5.38) 5.26 (2.96–7.53)

Concentrations in μg/L
 AsB (138) 2.71 (1.99–3.69) 2.46 (1.83–3.31) 7.58 (4.64–14.6) 18.9 (12.2–36.5) 31.8 (14.5–97.1)
 AsIII (138) 0.32 (0.24–0.42) 0.38 (0.24–0.49) 0.97 (0.50–1.28) 1.80 (1.05–2.41) 2.12 (1.60–3.18)
 DMA (138) 2.52 (2.07–3.08) 2.70 (2.00–4.04) 4.98 (4.19–6.87) 8.05 (6.04–13.2) 12.8 (7.48–21.9)
 MMA (138) 0.53 (0.39–0.72) 0.78 (0.57–0.89) 1.44 (1.09–2.04) 2.83 (1.81–3.47) 3.44 (2.29–6.37)
 AsV (138) 0.90 (0.71–1.12) 1.20 (0.92–1.37) 1.99 (1.51–2.24) 2.59 (2.10–3.20) 3.12 (2.29–5.23)

Table 4  Urinary arsenic species (%) in the total acid digested As, with 95% confidence intervals (C.I.) for all stratification categories

Urinary Arsenic Species: % of the total acid digested as

Categories AsB AsIII DMA MMA AsV

(S. Size) (95% C.I.) (95% C.I.) (95% C.I.) (95% C.I.) (95% C.I.)
Total Pop. (138) 43.8 (36.2–51.3) 3.38 (2.11–4.65) 20.7 (16.6–24.7) 5.75 (4.45–7.05) 6.77 (4.36–9.18)
Females (83) 41.8 (30.0–53.5) 3.77 (2.20–5.33) 22.7 (17.3–28.1) 5.84 (4.42–7.25) 7.61 (4.72–10.5)
Males (55) 45.1 (37.9–52.3) 3.13 (1.72–4.55) 19.4 (15.2–23.5) 5.70 (4.14–7.26) 6.23 (3.58–8.87)
Age 0–9 (5) 32.4 (10.9–53.9) 2.41 (0.00–4.82) 36.2 (24.9–47.5) 6.86 (2.53–11.2) 13.5 (8.03–18.9)
Age 10–19 (8) 28.8 (22.8–34.7) 8.81 (3.82–13.8) 30.5 (24.0–36.9) 8.70 (6.50–10.9) 9.59 (7.65–11.5)
Age 20–59 (87) 45.4 (38.4–52.4) 2.79 (1.80–3.78) 19.4 (15.8–23.1) 5.31 (4.19–6.44) 6.18 (4.04–8.32)
Age 60 + (38) 36.0 (29.0–42.9) 7.04 (4.15–9.93) 26.5 (21.8–31.3) 8.77 (6.93–10.6) 10.8 (7.33–14.2)
Barreiro (11) 40.3 (33.5–47.0) 5.21 (3.37–7.06) 27.1 (20.5–33.8) 8.55 (6.21–10.9) 11.5 (7.32–15.8)
Central-South (26) 39.0 (25.0–53.0) 4.76 (1.41–8.10) 23.8 (14.7–33.0) 6.36 (3.55–9.17) 6.37 (3.54–9.19)
East (15) 49.8 (36.9–62.7) 3.39 (1.17–5.60) 18.6 (13.2–24.0) 5.93 (3.84–8.01) 6.26 (2.62–9.90)
Northeast (16) 50.9 (39.8–62.0) 2.48 (0.00–5.76) 17.9 (12.2–23.5) 6.48 (4.89–8.07) 8.31 (4.86–11.8)
Northwest (23) 33.6 (23.7–43.4) 5.44 (2.37–8.51) 22.6 (13.6–31.7) 7.19 (3.75–10.6) 11.7 (6.55–16.8)
North (13) 36.1 (25.9–46.3) 4.34 (2.01–6.68) 28.9 (24.0–33.8) 8.77 (6.77–10.8) 9.45 (6.97–11.9)
West (15) 48.3 (38.9–57.7) 2.09 (1.06–3.12) 17.2 (11.5–22.8) 4.47 (3.02–5.93) 4.34 (1.43–7.24)
Pampulha (6) 26.1 (23.5–28.6) 3.58 (1.17–5.99) 24.2 (22.5–25.9) 4.95 (2.48–7.43) 6.92 (1.44–12.4)
Venda N. (13) 25.6 (13.7–37.5) 5.29 (1.77–8.80) 33.5 (25.7–41.3) 5.15 (2.30–7.99) 10.3 (3.72–16.9)
Metropolit. (10) 67.2 (59.4–75.0) 1.02 (0.00–2.97) 3.82 (0.00–10.8) 1.06 (0.00–3.01) 1.38 (0.00–3.76)
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and the ToxAs only approximates TAs up to the concentra-
tion of 10 µg/L (Fig. 3).

The GM of creatinine among men was 35.6% higher than 
in women (p < 0.0001), as well as GM of TAs in μg/L, was 
35.5% higher in males (p < 0.0001), therefore, the values of 
females and males TAs GM in the unit μg/g creat were quite 
close to each other (9.70 [9.05–10.4] μg/g creat and 9.66 
[8.87–10.5] μg/g creat), reinforcing that both units should be 
considered in male–female comparisons. Specific gravity is 
a better method of hydration correcting the concentration of 
urinary arsenic because creatinine is influenced by the body 
mass, diet, and renal health status, as shown by Islam et al. 
(2022). However, as Brazilian legislation and the interna-
tional references utilized here for comparisons inform only 
the hydration correction by creatinine, we also reported the 
unit μg/g creat. No other stratification of TAs in μg/g creat 
indicated GMs with statistical differences between them.

Various studies have shown the importance of performing 
arsenic speciation in human samples due to the lesser toxic-
ity of some organic arsenic compounds than the inorganic 
and methylated species (Kales et al. 2006; deCastro et al. 
2014; Saoudi et al. 2012). Health problems have been related 
to exposure to metals and metalloids in naturally contami-
nated or industrialized areas, especially in children who are 
more susceptible to these exposures. Previous similar studies 
measuring As in human samples in Brazil did not include As 
speciation (Freire et al. 2015; Lopes et al. 2019).

Regarding BH ToxAs (μg/L), only age 10-19 had its GM 
(12.7 μg/L [6.49–24.8]) significantly increased (p = 0.048), 
but also its creatinine (p < 0.001), resulting in ToxAs GM 
of 7.22 μg/g creat [2.92–17.9] and no statistical difference 
between categories in age stratification after creatinine-cor-
rection. Even with this rise in ToxAs GM of age 10–19 in 
μg/L, the upper limit of its 95% CI (24.84 µg/L) remained 
below the BEI of 35 µg/L for ToxAs (Brasil 2020). The 
concern about children is confirmed here as ages 10–19 had 
the highest percentage of DMA (36.2% [24.9–47.5%]) and 
AsV (13.45% [8.03–18.9%]), and the age 10–19 category 
had the highest percentage of AsIII (8.81% [3.82–13.8%]), 
in relation to TAs, despite the low ToxAs levels in both age-
categories (age 0–9 GM was 5.71 [3.73–8.73] μg/g creat and 
age 0–9 GM was 7.22 [2.92–17.9] μg/g creat). A study in 
Bangladesh, with 142 school-aged children (aged 6–16) in 
industrialized areas of Eastern South Asian Megacity Dhaka, 
showed significantly higher (p < 0.001) urinary TAs median 
(77.0 μg/L) than the reference control area (TAs median 
51.0 μg/L) (Tanvir et al. 2021). Both levels are higher than 
the BH levels for the 0–9 and 10–19 age groups, with TAs 
median values of 8.47 μg/L [6.27–15.4] and 14.6 μg/L 
[9.82–18.5], respectively.

When considering ToxAs with creatinine correction, only 
Venda Nova had a statistical deviation (decrease) between 
regions (p < 0.01), with GM of 3.64 μg/g creat [2.95–4.49%]. 

The Metropolitan region was the category with the high-
est percentage of AsB (67.2% [59.4–75.0%]) relative to 
the TAs, and Barreiro had the highest percentage of MMA 
(8.55% [6.21–10.9%]). Among regions, Barreiro, North, and 
Venda Nova had the highest DMA value at their P95th. The 
regions closest to industries are West and Barreiro (placed 
in the southwest). The As species DMA had the high-
est levels among the ToxAs in BH, with GM of 2.51 μg/g 
creat [2.05–3.08] and 2.52 μg/L [2.07–3.08], and the 95th 
percentile of 16.46 μg/g creat [5.19–19.1] and 12.80 μg/L 
[7.48–21.9]. These results are consistent with previous 
studies showing relatively high DMA concentrations in rice 
available in Brazilian supermarkets (Ciminelli et al. 2017; 
Borges et al. 2020). One should be aware that urinary DMA 
is a metabolite of arsenolipids which are abundantly present 
in seafood, particularly in oily fish. Thus, for high urinary 
arsenobetaine concentration (i.e., seafood consumers), abun-
dant DMA is expected not only from inorganic As metabo-
lite but also from arsenolipids metabolism, and this may lead 
to an overestimation of "ToxAs" of inorganic origins. Some 
rice varieties are known to contain a significant concentra-
tion of DMA in the rice grains. Therefore, rice can be also 
a major contributor to DMA and this is relevant in regions 
such as in the present study, where rice is a major staple, not 
fish. The total arsenic intake from rice ingestion in Southeast 
Brazil was shown to vary from 50 to 79%, whereas fish lay 
within 0.7–4.3% (Ciminelli et al. 2017). Also, contrary to 
Asian countries, where inorganic As often predominates in 
rice, DMA accounts for approximately 39–50% in Brazil 
(Borges et al 2020; Batista et al. 2011). Finally, the legis-
lation that came into force in 2022 (Brasil 2020) adopted 
35 µg/L for ToxAs, which was defined as the sum of DMA, 
MMA, and inorganic AsIII and As V—the definition applied 
in the present work.

Comparing the TAs levels of BH to previous Brazilian 
studies in Nova Lima (a bordering city), Matschullat et al. 
(2000) reported TAs mean as 25.7 μg/L (min/max: 2.2 to 
106 μg/L) in urine samples from 126 children living close 
to gold mine waste areas, collected in 1997/98. This level is 
close to the BH P95th of TAs (22.0 μg/L [14.6–30.0]) from 
the age 0–9 group (N = 19) and more than twice the GM 
of TAs from the same BH group (9.39 μg/L [7.0–12.6]). 
Campolina et al. (2007) reported the arsenic levels in a 
longitudinal study undertaken during and after mitigation 
actions in Nova Lima. The participants with TAs > 20 μg/g 
creat from exposed areas (N = 49) had a TAs median that 
dropped significantly (p < 0.001) from 25.30 μg/g creat (min/
max 20.22/51.56) in 2003/2004 to 10.74 μg/g creat (min/
max 1.89/40.98 μg/g creat) in 2007, after undertaking the 
mitigation actions. This TAs median after 2 years from the 
end of the mitigation actions in Nova Lima is slightly higher 
than the TAs median in BH (8.90 μg/g creat [8.50–9.50]) as 
shown in Table 1.
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In another Brazilian locality called Vale do Ribeira, 
around 960 km from BH between São Paulo (SP) and Parana 
(PR) states, de Figueiredo et al. (2007) compared the urinary 
As levels of a group living near a contaminated river to a 
control group living 158 km distant upstream. The study 
reported the means of urinary TAs for children and adults 
from the exposed group as 8.94 μg/L (N = 89) and 8.54 μg/L 
(N = 86), and for children and adults from the control areas 

as 3.60 μg/L (N = 73) and 3.87 μg/L (N = 83). The levels of 
the exposed group are close to the GM of TAs from BH for 
the age 0–9 group (9.39 μg/L [7.0–12.6]) and age 20–59 
group (10.7 μg/L [9.85–11.5]) despite these levels are well 
below, for example, the TAs threshold of 50 μg/L for typical 
arsenic levels in the United States (ATSDR 2007). The levels 
found in BH were also compared to other studies world-
wide with representative population sampling, with TAs and 

Fig. 4  Total acid digested urinary arsenic and toxic fraction levels μg/g creat a and µg/L b in Belo Horizonte compared to other studies
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ToxAs data shown in Fig. 4, and arsenic species shown in 
Fig. 5. Complementary information to Figs. 4 and 5 are in 
Tables S4 and S5 in Supplementary Material. It can be seen 
in Fig. 4 that the distribution of TAs for BH is flatter than in 
the USA (CDC 2021) and Canada (CHMS 2013) since the 
GM and P50th in BH are higher than both, and the P95th 
is lower, for both concentrations μg/g creat and μg/L. The 
same pattern is not observed for ToxAs, since the BH levels 
are slightly higher than USA (all 95% CIs overlap) and quite 
close to Canada in concentrations μg/g creat. The GM of 
TAs in BH is different from France (Fillol et al. 2021), South 
Korea (Lee et al. 2012), and Malaysia (Anual et al. 2021), 
as both concentrations μg/g creat and μg/L and the P95th of 
BH are far smaller. The levels of ToxAs from BH are also 
slightly lower than in France (Fillol et al. 2021). Therefore, 
there is no clear indication of a significant influence of geo-
genic arsenic anomalies nearby.

It can be seen in Fig. 5 that the DMA P50th from the 
USA (CDC 2021) and Canada (CHMS 2021) were higher 
than BH (3.32 and 3.50 μg/g creat against 2.28 μg/g creat) 
with a statistical significance (no overlap of their 95% CI), 
but relative to the P95th, BH (16.5 μg/g creat) and Canada 
(17.0 μg/g creat) are close and both slightly higher than USA 
(12.6 μg/g creat). BH had a higher P95th of MMA than 
USA and Canada (4.75 μg/g creat against 1.31 and 1.20 μg/g 
creat) with no 95% CI overlap, and a higher P95th of AsB 
(65.0 μg/g creat) than USA (29.0 μg/g creat) and the sum of 
AsB and arsenocholine of Canada (1.30 μg/g creat). A study 
in Japan with a population not occupationally exposed, but 

with a high intake of seafood has also shown the predomi-
nance of DMA among toxic species, as well as the elevation 
of DMA when AsB is high (Hata et al. 2007).

The percentages of DMA, AsIII, and MMA relative to 
TAs in BH (20.7% [16.6–24.7%], 3.38% [2.11–4.65%], and 
5.75% [4.45–7.05%]) are quite different from the reported in 
France (Fillol et al. 2021), respectively as 84.2%, 12%, and 
3.7%, being more consistent with the percentages of USA 
with AsB 43.4% and DMA 29.8% (Caldwell et al. 2009),  
Korean with AsB 56.7% and ToxAs 43.3% (Lee et al. 2022), 
and Japan with AsB 40% and DMA 30% (Hata et al. 2007).

The European Union is advocating using the 95th percen-
tile to establish a population background of any urinary As 
concentration. The P95th of ToxAs for BH was 19.2 μg/L 
[12.1–35.4], slightly lower than that reported in France 
(Fillol et al. 2021) as 21.3 μg/L [17.6–25.2], higher than in 
the US (CDC 2021) 14.5 µg/L [12.8–17.3], but lower than 
in Canada (CHMS 2021) 27.0 μg/L [16.0–38.0]. Taking the 
upper limit of the P95th, the maximum exposure to ToxAs 
for BH is 35.4 μg/L, showing consistency with the Brazilian 
occupational legislation BEI 35 μg/L (Brasil 2020). This 
occupational comparison was due to the lack of Brazilian 
non-occupational legislation.

The various exposure pathways to arsenic and their health 
risk apportionment to the residents of Paracatu, a gold min-
ing town, 500 km away from BH were reported (Ng et al. 
2019). The gold mine is the largest gold producer in the 
country and stands out by the proximity (e.g., 2 km) of 
the open pit mine to residential areas. Food was the main 

Fig. 5  Urinary arsenic species μg/g creat a and in µg/L b to the total population of Belo Horizonte compared to other studies. < LOD means less 
than the limit of detection in μg/L. AsO* = arsenobetaine (AsB) + arsenocholine
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contributor to the daily total intake of arsenic (81.5%) with 
rice (37.5%) and beans, a staple food in Brazil, being the 
most significant ones (Ciminelli et al. 2017). The contri-
bution of water intake (1.34 μg/L As) to total intake was 
16.5% and of geogenic material (intake plus inhalation) was 
2%. Despite very high concentrations of arsenic in soil sam-
ples, the bioaccessibility was low, due to the entrapment of 
arsenic in iron oxyhydroxides (Antonio et al. 2021; Morais 
et al. 2019; Ciminelli et al. 2018). As rice and most food 
items surveyed were produced elsewhere, an exposure pat-
tern dominated by food is expected in other urban areas in 
Brazil. An investigation of As exposure to the residents for 
BH has not been undertaken. But food is likely the main 
exposure pathway whereas water ingestion (0.7 μg/L As) 
is less relevant to total intake if compared to Paracatu. The 
abundance of iron oxide deposits in the Iron Quadrangle 
offers a possibility for As remediation. In the present inves-
tigation, no clear influence of the nearby arsenic anomalies 
is evident.

The current study results can serve as a baseline of pop-
ulation levels for clinical reference, bio-monitoring, and 
future studies in cities with similar characteristics. The study 
showed the importance of speciation in assessing arsenic 
exposure, since the non-toxic species, AsB, in BH showed 
the largest contribution 43.8% [36.2–51.3%] in the TAs. The 
results highlight the danger of misinterpreting risks when 
considering only TAs in clinical evaluation. The determina-
tion of reference values should focus on the ToxAs with con-
centrations above 10 μg/L or 10 μg/g creat. If speciation is 
not performed, the dietary restrictions for seafood for 3 days 
before sample collection should be mandatory.

Conclusion

The present study provided, for the first time, the baseline 
urinary levels of total arsenic (TAs) and arsenic species con-
centrations in a representative population sampling in Belo 
Horizonte (BH), with stratifications in age, female-male and 
geopolitical regions. The levels of TAs geometric mean 9.68 
[9.17–10.2] μg/g creat) in BH were close to those reported in 
the USA and Canada, and below the values in France, South 
Korea, and Malaysia. The fractions referred to as toxic arse-
nic (i.e., ToxAs: AsIII + AsV + MMA + DMA) geometrical 
mean (GM: 5.23 [4.45–6.15] μg/L) are significantly below 
the international BEI (35 μg/L) The P95th (19.2 µg/L) is 
still 55% lower than the BEI value, whereas the upper limit 
is close to this index. We argue that the P95th threshold 
is suitable to represent the non-occupational index for BH, 
in agreement with many other authors who advocate this 
parameter as the exposure threshold for populations world-
wide. The TAs GM of males was 36% higher than those of 

females when using the μg/L unit but equal in μg/g creat, 
as urinary creatinine was also about 36% higher in males. 
The findings reinforce the authors understanding that both 
units should be considered, especially in male–female com-
parisons. In summary, no stratification group showed sta-
tistically different total arsenic concentrations (geometric 
mean) TAs GM (μg/g creat). Now regarding ToxAs (μg/L), 
the age 10–19 group showed GM (12.7 [6.49–24.8] μg/L) 
and creatinine statistically higher than the other age groups, 
thus resulting in no statistical difference in age stratifica-
tion after creatinine-correction. In one of the nine regions 
(Venda Nova), the ToxAs with creatinine-correction (GM 
of 3.64 μg/g creat [2.95–4.49%]) were statistically inferior 
(p < 0.01) than the values from the other regions Venda Nova 
is distant from the central and industrialized areas. This 
result suggests that further in-depth biomonitoring stud-
ies in areas closer to industries, soil anomalies, or mining 
sites—beyond the focus of the present investigation—are 
justifiable.

The main arsenic species found in BH was the non-toxic 
fraction AsB (43.8%), thus supporting the importance of 
speciation in exposure analysis. The overall findings from 
this work show the relative contribution of inorganic and 
organic arsenic in a large metropolis and offer a baseline 
population level for clinical reference and bio-monitoring 
studies.
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