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Consider the problem of comparing imaging tech-

niques where the study design is such that a participant

is subjected to both techniques. If the outcome of in-

terest is such that each technique results in only one

observation per participant, most of the commonly used

standard methods of statistical data analyses may be

applicable. However, an added complication to the

analysis occurs when the outcome of interest from the

imaging techniques that are being compared results in

multiple observations per subject. In particular, re-

searchers following the 17-segment left ventricular

model (recommended by the American Heart Asso-

ciation1) who are interested in the outcomes at the

segment level have to deal with 17 observations per

subject in the analyses.

The paper by Oldan et al,2 published in this issue,

investigates this type of scenario. The goal was to

compare the results of two imaging techniques with

respect to segmental uptake measurements: positron

emission tomography–computed tomography (PET–CT)

and positron emission tomography–magnetic resonance

(PET–MR). Therefore, each participant in their study

had a total of 34 correlated observations. Statistical

analyses should consider both between-segment and

between-techniques correlation assuming that the par-

ticipants are not associated with each other.

With only two techniques to compare, taking the

difference, e.g., PET–MR minus PET–CT, at each seg-

ment is one way to simplify the analyses. This method

reduces the number of observations per participant from

34 to 17 and leaves only the between-segment correla-

tion to consider. Oldan et al used this method and

modeled the difference in the two techniques to examine

factors (such as gender, BMI, segment) that may be

related to this difference.

Standard regression models will not be applicable in

this case as these methods ignore the between-segment

correlation, and hence may result in inflated type I errors

(i.e., erroneously concluding significant results).3 The

authors chose to use a generalized linear regression

model utilizing generalized estimating equations

(GEE).4,5 This model handles multiple observations per

subject by specifying a working covariance structure

that models the correlation between segments. It is

worth noting that the generalized linear model utilizing

GEE may also be used if the outcome being modeled is

continuous, binary, or count data.

Some common covariance structures include com-

pound symmetric, independent, and unstructured.

Compound symmetric, also known as the exchangeable

structure, assumes that the variance is the same for all

segments and correlation between any pair of segments

is the same and has two covariance parameters to esti-

mate. This is the covariance structure used by Olden

et al. Independent, also known as variance components,

assumes that all observations are independent (i.e.,

segments are not correlated), thus, have covariance of 0.

The independent structure is a structure that does not

assume common variance and therefore estimates 17

values associated with the variances of the 17 segments.

Unstructured is the most flexible and does not assume a

specific functional relationship, allowing the data to

speak for itself. However, this can result in a large

number of covariance parameters to estimate; in the case

of the 17-segment LV model, there are 136 covariance
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parameters to estimate. This large number of parameters

for estimation can cause estimation problems with small

sample sizes.

Another aspect of comparing two techniques is to

answer the question: Are the two techniques ‘‘equiva-

lent’’ with respect to an outcome of interest? Statistical

methods for testing equivalence should be used, such as

those proposed by Bland and Altman,6,7 drawing a

scatterplot of observations from both techniques and

comparing them against the x = y line (a line passing

through the origin with unit slope), and computing

measures of correlation such as intra-class correlation8

or the concordance correlation coefficient as proposed

by Lin.9 The more traditional Pearson correlation may

be used as a measure of equivalence only if the scat-

terplot shows a close proximity to the x = y line. If one

technique consistently gives a higher value than the

other by an almost constant amount, the Pearson corre-

lation will be high but clearly the two techniques are not

equivalent.

In Oldan et al, Figures 3, 5a, and 6a are scatterplots

comparing the values from the two techniques relative to

the x = y line with corresponding correlation values. It

is unclear what type of correlation is reported but, pre-

sumably, it is the Pearson correlation which is the

standard correlation coefficient paired with the scatter-

plot. These graphs and correlation are good descriptive

tools to see how the two techniques compare, however,

when making inferences (statistical test and confidence

interval estimation) about the correlation between the

readings from the two techniques; it is important to use

methods that account between-segment correlation such

as the GEE, as previously discussed.

As a final note, if the values from the imaging

techniques can be approximated by a multivariate nor-

mal distribution, one may use a generalized linear mixed

model (GLMM) instead of GEE to analyze the data.

GLMM will be more powerful than GEE if the as-

sumption of multivariate normal holds. Furthermore,

statistical packages such as SAS offer more working

covariance structures, including spatial functions, where

one can fit a distance-dependent model, which accounts

for the location of the LV segments in space. In this

case, the spatial working covariance structures account

for the fact that segments closer to each other are more

highly correlated than those farther apart. Bowman and

Waller,10 George and Aban,11 and Seals et al3 show how

one can apply these spatial functions to model correla-

tion among the segments. Statistical packages such as

SAS and Stata have model indices such as the Akaike

Information Criterion (AIC)12,13 and the Bayesian In-

formation Criterion (BIC),14 in the case of GLMM, or

the Quasi-likelihood under the Independence model

Criterion (QIC or QICu),15,16 in the case of GEE. Note

that because GEE does not rely on likelihood methods,

AIC and BIC are not applicable. These indices may be

used to choose from candidate models to find the model

that provides the best fit. We note that the AIC, BIC, and

QIC may be used to choose both the best working co-

variance structure as well as variable selection, whereas

the QICu is only valid for variable selection.
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