
Qual. Theory Dyn. Syst. (2018) 17:189–202
https://doi.org/10.1007/s12346-017-0228-1

Qualitative Theory
of Dynamical Systems

Stability for a New Discrete Ratio-Dependent
Predator–Prey System

Xiang-Lai Zhuo1 · Feng-Xue Zhang2

Received: 30 May 2016 / Accepted: 24 January 2017 / Published online: 17 February 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract The stability of a new two-species discrete ratio-dependent predator–prey
system is considered. By using the linearization method, we obtain some sufficient
conditions for the local stability of the positive equilibria. We also obtain a new suffi-
cient condition to ensure that the positive equilibrium is globally asymptotically stable
by using an iteration scheme and the comparison principle of difference equations,
which generalizes what paper (Chen and Zhou in J Math Anal Appl 27:7358–7366,
2003) has done. The method given in this paper is new and very resultful comparing
with articles (Damgaard in J Theor Biol 227:197–203, 2004; Edmunds in Theor Popul
Biol 72:379–388, 2007; Fan and Wang in Math Comput Model 35:951–961, 2002;
Muroya in J Math Anal Appl 330:24–33, 2007; Huo and Li in Appl Math Comput
153:337–351, 2004; Liao et al. in Appl Math Comput 190:500–509, 2007) and it can
also be applied to study other global asymptotic stability for general multiple species
discrete population systems. At the end of this paper, we present two open questions.

Keywords Discrete ratio-dependent predator–prey system · Local stability ·
Variational matrix · Global stability · Iteration scheme method

Mathematics Subject Classification 39A11 · 92D25

This work is supported by the National Natural Science Foundation of China (60672085), and the reform
of undergraduate education in Shandong Province Research Projects (2015M139).

B Xiang-Lai Zhuo
xlzhuo@126.com

1 College of Mathematics and Systems Science, Shandong University of Science and Technology,
Qingdao 266590, China

2 College of Mining and Safety Engineering, Shandong University of Science and Technology,
Qingdao 266590, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s12346-017-0228-1&domain=pdf


190 X.-L. Zhuo, F.-X. Zhang

1 Introduction

In recent years, the dynamical behaviors of the discrete-time predator–prey systems
have been widely investigated. Many important and interesting results can be found
in many articles, such as in [1–27] and the references cited therein. Particularly, the
discrete two-species predator–prey systems with ratio-dependent functional responses
were studied in [10–17,23,25]. What interested them are the dynamical behaviors,
such as, the study for the local and global stability of the equilibria, the persistence,
permanence and extinction of species, the existence of positive periodic solutions
and positive almost periodic solutions, the bifurcation and chaos phenomenon, etc..
Recently, Chen and Zhou [17] discussed the global stability for a nonautonomous two
species discrete competition system. However, the conditions of their results in [17]
is strong and complicated. Therefore, as an extension and improvement, we discuss
in the present paper the following discrete-time two-species competition system:

⎧
⎪⎪⎨

⎪⎪⎩

x(k + 1) = x(k) exp
[
r1

(
1 − xm (k)

K1
− μ2yn(k)

)]
,

y(k + 1) = y(k) exp
[
r2

(
1 − μ1xm(k) − yn(k)

K2

)]
.

(1.1)

where x(k) and y(k) represent the sizes or the densities of species x and y at kth
generation, respectively. Parameters ri , Ki and μi (i = 1, 2) are positive constants
and represent the intrinsic growth rates, the carrying capacities, and the competition
coefficients of species x and y, respectively. m and n are arbitrary positive integer.

In this paper, we will introduce a new method to discuss the global asymptotic
stability of system (1.1). The main results of this paper is to establish the criteria on
the existence and local asymptotic stability of equilibria for system (1.1) by using the
linear approximation method, and obtain some new sufficient conditions on the global
stability of the positive equilibrium for system (1.1) by using the iterative scheme
method and the comparison principle of difference equations.

2 Preliminary Lemmas

Let (x(k), y(k)) be any solution of system (1.1) satisfying the initial value x(0) > 0
and y(0) > 0 considered the biological background of system (1.1). It is clear that any
solution (x(k), y(k)) of system (1.1) is defined on Z+ and always remains positive,
where Z+ denotes the set of all nonnegative integers.

What interested us is the positive equilibrium of system (1.1). By a simple compu-
tation, we directly obtain the following results.

Lemma 2.1 If 1 − μ1K1 > 0 and 1 − μ2K2 > 0, then system (1.1) has a unique
positive equilibrium E+(x0, y0), where

xm0 = K1(1 − μ2K2)

1 − μ1μ2K1K2
, yn0 = K2(1 − μ1K1)

1 − μ1μ2K1K2
.
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Further, we need the following lemma, which can be easily proved by the relations
between roots and coefficients of a quadratic equation.

Lemma 2.2 Consider the function F(λ) = λ2 + pλ + q, here, both p and q are
constants. Suppose F(1) > 0 and λ1, λ2 are two roots of the quadratic equation
F(λ) = 0. Then we can easily prove that

1. |λ1| < 1 and |λ2| < 1 if and only if F(−1) > 0 and q < 1;
2. |λ1| < 1 and |λ2| > 1 if and only if F(−1) < 0;
3. |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and q > 1;
4. λ1 = −1 and |λ2| �= 1 if and only if F(−1) = 0 and p �= 0, 2;
5. λ1 and λ2 is a pair of conjugate complex root and |λ1| = |λ2| = 1 if and only if

p2 − 4q < 0 and q = 1.

Here, with λ1 and λ2 be the two roots of the characteristic equation F(λ) =
λ2 + pλ + q = 0 of J (x, y), we have the following definitions.

1. If |λ1| < 1 and |λ2| < 1, then J (x, y) is called a sink and is locally asymptotic
stable;

2. If |λ1| > 1 and |λ2| > 1 , then J (x, y) is called a source and is unstable;
3. If |λ1| > 1 and |λ2| < 1(or |λ1| < 1 and |λ2| > 1) , then J (x, y) is called a

saddle and is unstable;
4. If |λ1| = 1 or |λ2| = 1, then J (x, y) is called non-hyperbolic.

Lemma 2.3 Let f (u) = u exp(α −βun), where, α and β are both positive constants,

n is any a positive integer, then f (u) is nondecreasing on u ∈ (
0, n

√
1
nβ

]
.

Lemma 2.4 If the sequence {u(k)} satisfies

u(k + 1) = u(k) exp
(
α − βun(k)

)
, k = 1, 2, . . . ,

here, α and β are both positive constants, n is any a positive integer and u(0) > 0.
Then

1. If α < 2
n , then limk→∞ u(k) = n

√
α
β
.

2. If α ≤ 1
n , then u(k) ≤ n

√
1

βn for all k = 2, 3, . . ..

Proof Conclusion (1) can be proved using Theorem 2.8 in [4], so we omit it.

Note that the function x exp(α − βxn) has a unique maximum in x = n
√

1
βn , then

u(k + 1) = u(k) exp
(
α − βun(k)

)

≤ n

√
1

βn
exp

(

α − 1

n

)

≤ n

√
1

βn
, n = 1, 2, . . . ,

then conclusion (2) is proved. This ends the proof. ��
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Lemma 2.5 (see [23]) Assume that functions f, g : Z+ × [0,∞) → [0,∞) satisfy
f (n, x) ≤ g(n, x)( f (n, x) ≥ g(n, x)) for n ∈ Z+ and x ∈ [0,∞), g(n, x) is
nondecreasing for x > 0. Let sequences {x(n)}and {u(n)}be the nonnegative solutions
of the following difference equations

x(n + 1) = f (n, x(n)), u(n + 1) = g(n, u(n)), n = 0, 1, 2, . . . ,

respectively, with x(0) ≤ u(0)(x(0) ≥ u(0)), then we have for all n ≥ 0

x(n) ≤ u(n)(x(n) ≥ u(n)).

3 Local Stability

In this section, we use the eigenvalues of the variational matrix of system (1.1) at the
equilibria E+(x0, y0) to study its local stability.

Let J (E+) be the variational matrix of system (1.1) at equilibrium E+(x0, y0),
then

J (E+) =
(

1 − mr1xm0
K1

−nr1μ2x0y
n−1
0

−mr2μ1x
m−1
0 y0 1 − nr2yn0

K2

)

.

The corresponding characteristic equation of J (E+) can be written as

F(λ) = λ2 + pλ + q = 0, (3.1)

where

p = −
(

2 − mr1xm0
K1

− nr2yn0
K2

)

,

q =
(

1 − mr1xm0
K1

)(

1 − nr2yn0
K2

)

− mnr1r2μ1μ2x
m
0 yn0 .

Then we have the following result.

Theorem 3.1 Assume that 1 − μ1K1 > 0 and 1 − μ2K2 > 0, then we have

1. E+(x0, y0) is a sink if one of the following conditions holds:
(a) r1 < t2, r2 < t1, r2 ≤ 1

n(1−μ1K1)
, where

t1 = 2(1 − μ1μ2K1K2)

n(1 − μ1K1)
, t2 = 2[2(1 − μ1μ2K1K2) − nr2(1 − μ1K1)]

m(1 − μ2K2)[2 − nr2(1 − μ1K1)] .

(b) t1 > r2 > 1
n(1−μ1K1)

and r1 < min{t2, t3}, where

t3 = nr2(1 − μ1K1)

m(1 − μ2K2)(nr2(1 − μ1K1) − 1)
.
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(c) r2 > t4 and t3 > r1 > t2,where t4 = 2
n(1−μ1K1)

.

2. E+(x0, y0) is a source if one of the following conditions holds:
(a) 1

1−μ1K1
≤ r2 < t1 and t3 < r1 < t2;

(b) r2 > t4 and r1 > max{t2, t3}.
3. E+(x0, y0) is non-hyperbolic if one of the following conditions holds:

(a) r1 = t2 and r2 = t1;
(b) r1 = t2 and r2 > t4.;

4. E+(x0, y0) is a saddle if one of the following conditions holds:
(a) r2 < t1 and r1 > t2;
(b) t1 ≤ r2 ≤ t4;
(c) r2 > t4 and r1 < t2.

Proof Here, we only prove conclusion (1) of Theorem 3.1. The others can also be
proved by the same way.

From (3.1), we have

F(1) = 1 + p + q = mnr1r2x
m
0 yn0

1 − μ1μ2K1K2

K1K2
> 0,

F(−1) = 1 − p + q = 4 − 2

(
mr1xm0
K1

+ nr2yn0
K2

)

+ mnr1r2x
m
0 yn0

1 − μ1μ2K1K2

K1K2

= 4(1 − μ1μ2K1K2) − 2nr2(1 − μ1K1)

1 − μ1μ2K1K2

−mr1(1 − μ2K2)[2 − nr2(1 − μ1K1)]
1 − μ1μ2K1K2

,

and

q − 1 = mr1(1 − μ2K2)[nr2(1 − μ1K1) − 1] − nr2(1 − μ1K1)

1 − μ1μ2K1K2
.

If 2(1−μ1μ2K1K2)− nr2(1−μ1K1) > 0, then we have r2 < t1 and 2− nr2(1−
μ1K1) > 0. Hence, F(−1) > 0 if

r1 <
2[2(1 − μ1μ2K1K2) − nr2(1 − μ1K1)]

m(1 − μ2K2)[2 − nr2(1 − μ1K1)] � t2.

If nr2(1 − μ1K1) − 1 ≤ 0, then q < 1. If nr2(1 − μ1K1) − 1 > 0, then q < 1 is
equivalent to the following inequality

r1 <
nr2(1 − μ1K1)

m(1 − μ2K2)(nr2(1 − μ1K1) − 1)
� t3.

Hence, if condition (a) or (b) of conclusion (1) of Theorem 3.1 holds, then we have
F(−1) > 0 and q < 1. From Lemma 2.2, we can obtain E+(x0, y0) in system (1.1)
is a sink.

On the other hand, if r2 > 2
n(1−μ1K1)

� t4, then we have 2(1 − μ1μ2K1K2) −
nr2(1− μ1K1) < 0. Hence, F(−1) > 0 if r1 < t3. Since r2 > t4, a similar argument
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as in above we have q < 1 if r1 < t3. Hence, if condition (c) of conclusion (1) of
Theorem 3.1 holds, then we have F(−1) > 0 and q < 1. From Lemma 2.2, we obtain
E+(x0, y0) in system (1.1) is also a sink. This completes the proof. ��

4 Global Stability

In this section,wewill use themethod of iteration scheme and the comparison principle
of difference equations to study the global stability of the positive equilibrium of
system (1.1).

Theorem 4.1 Assume that 1− μ1K1 > 0 and 1− μ2K2 > 0. If r1 ≤ 1
m and r2 ≤ 1

n ,
then equilibrium E+(x0, y0) of system (1.1) is globally asymptotically stable.

Proof Assume that (x(k), y(k)) is any a solution of system (1.1) with initial value
x(0) > 0 and y(0) > 0. Let

U1 = lim sup
k→∞

x(k) V1 = lim inf
k→∞ x(k),

U2 = lim sup
k→∞

y(k) V2 = lim inf
k→∞ y(k).

In the following, we will prove that U1 = V1 = x0 and U2 = V2 = y0.
From the first equation of system (1.1) we obtain

x(k + 1) ≤ x(k) exp

(

r1 − r1
K1

xm(k)

)

, k = 0, 1, 2, . . . .

Consider the auxiliary equation

u(k + 1) = u(k) exp

(

r1 − r1
K1

um(k)

)

. (4.1)

Let u(k) be any a solution of Eq. (4.1) with initial value u(0) > 0. For 0 < r1 ≤ 1
m ,

by conclusion (2) of Lemma 2.4, we have that u(k) ≤ m
√

K1
mr1

for all n ≥ 2. From

Lemma 2.3, we have f (u) = u exp(r1 − r1
K1

um) is nondecreasing for u ∈ (
0, m

√
K1
mr1

]
.

Hence, from Lemma 2.5, we have x(k) ≤ u(k) for all k ≥ 2, where u(k) is the
solution of Eq. (4.1) with u(2) = x(2). By conclusion (1) of Lemma 2.4, we further
obtain

U1 = lim sup
k→∞

x(k) ≤ lim
k→∞ u(k) = m

√
K1 � Mx

1 .

Hence, for any ε > 0 small enough, there exists a N1 > 2 such that if n ≥ N1, then
x(k) ≤ Mx

1 + ε.
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From the second equation of system (1.1) we have

y(k + 1) ≤ y(k) exp

(

r2 − r2
K2

yn(k)

)

, k ≥ N1.

By the same way, we can obtain

U2 = lim sup
k→∞

y(k) ≤ n
√
K2 � My

1 .

Hence, for any ε > 0 small enough, there exists a N2 > N1 such that if k ≥ N2, then
y(k) ≤ My

1 + ε.

From the first equations of system (1.1) again, we further have

x(k + 1) ≥ x(k) exp

[

r1

(

1 − 1

K1
xm(k) − μ2

(
My

1 + ε
)n

)]

, k ≥ N2.

Consider the auxiliary equation

u(k + 1) = u(k) exp

[

r1

(

1 − 1

K1
um(k) − μ2

(
My

1 + ε
)n

)]

. (4.2)

From the arbitrariness of ε, we can let ε <
1− n√μ2M

y
1

n√μ2
. From 1 − μ2K2 > 0, we have

0 < r1(1 − μ2(M
y
1 + ε)n) < 1

m . By conclusion (2) of Lemma 2.4, we conclude that

u(k) ≤ m
√

K1
mr1

for all k ≥ N2, where u(k) is any solution of Eq. (4.2) with initial value

u(0) > 0. FromLemma2.3,wehave that f (u) = u exp(r1−r1μ2(M
y
1 +ε)n− r1

K1
um) is

nondecreasing for u ∈
(
0, m

√
K1
mr1

]
. Hence from Lemma 2.5 we have that x(k) ≥ u(k)

for all k ≥ N2, where u(k) is the solution of Eq. (4.2) with u(N2) = x(N2). From
conclusion (1) of Lemma 2.4 again, we have

V1 = lim inf
n→∞ x(k) ≥ lim

k→∞ u(k) = m

√

K1

(
1 − μ2

(
My

1 + ε
)n

)
.

From the arbitrariness of ε > 0, we have V1 ≥ Nx
1 , where

Nx
1 = m

√

K1
(
1 − μ2(M

y
1 )n

)
.

Hence, for ε > 0 small enough, there exists a N3 > N2 such that if k ≥ N3, then
x(k) ≥ Nx

1 − ε.

From the second equations of system (1.1) we further have

y(k + 1) ≥ y(k) exp

[

r2

(

1 − 1

K2
yn(k) − μ1

(
Mx

1 + ε
)m

)]

, k ≥ N3.
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By the same way, we can obtain

V2 = lim inf
k→∞ y(k) ≥ n

√

K2
(
1 − μ1

(
Mx

1 + ε
)m)

.

From the arbitrariness of ε > 0, we get V2 ≥ N y
1 , where

N y
1 = n

√

K2
(
1 − μ1

(
Mx

1

)m)
<

n
√
K2.

Hence, for ε > 0 small enough, there exists a N4 ≥ N3 such that if k ≥ N4, then
y(k) ≥ N y

1 − ε > 0.
Further, from the first equations of system (1.1) we have

x(k + 1) ≤ x(k) exp

[

r1

(

1 − μ2
(
N y
1 − ε

)n − xm(k)

K1

)]

, k ≥ N4.

Using the similar argument as in above, we can get

U1 = lim sup
k→∞

x(k) ≤ m

√

K1

(
1 − μ2

(
N y
1 − ε

)n
)
.

From the arbitrariness of ε > 0, we claim that U1 ≤ Mx
2 , where

Mx
2 = m

√

K1

(
1 − μ2

(
N y
1

)n
)

<
m
√
K1.

Hence, for any ε > 0 small enough, there exists a N5 ≥ N4 such that if k ≥ N5, then
x(k) ≤ Mx

2 + ε.
From the second equations of system (1.1) we further obtain

y(k + 1) ≤ y(k) exp

[

r2

(

1 − μ1
(
Nx
1 − ε

)m − yn(k)

K2

)]

, k ≥ N5.

Similarly to the above argument, we can obtain

U2 = lim sup
k→∞

y(k) ≤ n
√

K2
(
1 − μ1

(
Nx
1 − ε

)m)
.

From the arbitrariness of ε > 0, we obtain U2 ≤ My
2 , where

My
2 = n

√

K2
(
1 − μ1

(
Nx
1

)m)
<

n
√
K2.

Hence, for ε > 0 small enough, there exists a N6 > N5 such that if k ≥ N6, y(k) ≤
My

2 + ε.
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Further, from the first equations of system (1.1) we obtain

x(k + 1) ≥ x(k) exp

[

r1

(

1 − μ2
(
My

2 + ε
)n − xm(k)

K1

)]

, k ≥ N6.

Using a similar argument, we again can obtain

V1 = lim inf
k→∞ x(k) ≥ m

√

K1

(
1 − μ2

(
My

2 + ε
)n

)
.

From the arbitrariness of ε > 0, we get that V1 ≥ Nx
2 , where

Nx
2 = m

√

K1

(
1 − μ2

(
My

2

)n
)

>
m

√

K1

(
1 − μ2

(
My

1

)n
)

= Nx
1 .

Hence, for any ε > 0 small enough, there exists a N7 > N6 such that if k ≥ N7,
x(k) ≥ Nx

2 − ε > 0.
From the second equations of system (1.1) we further have

y(k + 1) ≥ y(k) exp

[

r2

(

1 − μ1
(
Mx

2 + ε
)m − yn(k)

K2

)]

, k ≥ N7.

Using a similar discussion, we again can obtain

V2 = lim inf
k→∞ y(k) ≥ n

√

K2
(
1 − μ1

(
Mx

2 + ε
)m)

.

From the arbitrariness of ε > 0, we claim that V2 ≥ N y
2 , where

N y
2 = n

√

K2
(
1 − μ1

(
Mx

2

)m)
>

n
√

K2
(
1 − μ1

(
Mx

1

)m) = N y
1 .

Repeating the above process, we can finally obtain four sequences {Mx
k }, {Nx

k },
{My

k } and {N y
k } such that

Mx
k = m

√

K1

(
1 − μ2

(
N y
k−1

)n
)

My
k = n

√

K2
(
1 − μ1

(
Nx
k−1

)m)
, (4.3)

and

Nx
k = m

√

K1

(
1 − μ2

(
My

k

)n
)

N y
k = n

√

K2
(
1 − μ1

(
Mx

k

)m)
. (4.4)

Clearly, we have for any integer k > 0

Nx
k ≤ V1 ≤ U1 ≤ Mx

k N y
k ≤ V2 ≤ U2 ≤ My

k . (4.5)
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In the following, we will prove that {Mx
k } and {My

k } are monotonically decreasing,
{Nx

k } and {N y
k } are monotonically increasing, by means of inductive method.

Firstly, it is clear that

Mx
2 ≤ Mx

1 , My
2 ≤ My

1 , Nx
2 ≥ Nx

1 , N y
2 ≥ N y

1 .

For k(k ≥ 2),we assume that Mx
k ≤ Mx

k−1 and Nx
k ≥ Nx

k−1, then we further have

My
k = n

√

K2
(
1 − μ1

(
Nx
k−1

)m) ≤ n
√

K2
(
1 − μ1

(
Nx
k

)m) = My
k−1, (4.6)

and

N y
k = n

√

K2
(
1 − μ1

(
Mx

k

)m) ≥ n
√

K2
(
1 − μ1

(
Mx

k−1

)m) = N y
k−1. (4.7)

From (4.6) and (4.7) we have

[
Mx

k+1

]m − [
Mx

k

]m = K1

(
1 − μ2

(
N y
k

)n
)

− K1

(
1 − μ2

(
N y
k−1

)n
)

= −K1μ2
[
N y
k )n − N y

k−1)
n]

≤ 0. (4.8)
[
My

k+1

]n − [
My

k

]n = K2
(
1 − μ1

(
Nx
k

)m) − K2
(
1 − μ1

(
Nx
k−1

)m)

= −K2μ1
[
Nx
k )m − Nx

k−1)
m]

≤ 0. (4.9)

Note that an − bn and a − b have the same sign, when both a and b are positive
constants. Therefore, from (4.8) and (4.9), we have Mx

k+1 ≤ Mx
k and My

k+1 ≤ My
k .

From (4.8) and (4.9) we further have

[
Nx
k+1

]m − [
Nx
k

]m = K1

(
1 − μ2

(
My

k+1

)n
)

− K1

(
1 − μ2

(
My

k

)n
)

= −K1μ2

[(
My

k+1

)n − (
My

k

)n
]

≥ 0.

and

[
N y
k+1

]n − [
N y
k

]n = K2
(
1 − μ1

(
Mx

k+1

)m) − K2
(
1 − μ1

(
Mx

k

)m)

= −K2μ1
[(
Mx

k+1

)m − (
Mx

k

)m]

≥ 0.

This means that {Mx
k } and {My

k } are monotonically decreasing, {Nx
k } and {N y

k } are
monotonically increasing. Therefore, by the criterion of monotone bounded, we have
proved that every one of this four sequences has a limit.
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From (4.3) and (4.4), we can obtain

(
Mx

k

)m = K1

[
1 − μ2

(
N y
k−1

)n
]

= K1
[
1 − μ2K2

(
1 − μ1

(
Mx

k−1

)m)]

and

(
My

k

)n = K2
[
1 − μ1

(
Nx
k−1

)m] = K2

[
1 − μ1K1

(
1 − μ2

(
My

k−1

)n
)]

.

Taking k → ∞ in both sides of the above two equations, respectively, then we have

lim
k→∞ Mx

k = x0, lim
k→∞ My

k = y0.

By the same way, we also can obtain

lim
k→∞ Nx

k = x0, lim
k→∞ N y

k = y0.

It follows from (4.5) that

U1 = V1 = x0, U2 = V2 = y0.

Therefore, we finally have

lim
k→∞ x(k) = x0, lim

k→∞ y(k) = y0.

This shows that equilibrium E+(x0, y0) of system (1.1) is globally attractive.
From Theorem 3.1, we can obtain that equilibrium E+(x0, y0) of system (1.1) is

locally asymptotically stable. Therefore, we finally obtain that E+(x0, y0) is globally
asymptotically stable. This completes the proof. ��
Remark 1 The main results obtained in the present paper is for any positive integer m
and n, which generalizes what paper [7] has obtained. The method given in this paper
is new and very resultful comparing with articles [6,9,10,14,16,19,22] on the study
of global stability for discrete predator–prey systems. Note that our conditions is more
better than the conditions of theorem 3 in paper [7]. For example, the conditions of
theorem 3 in paper [7] has been obtained as follows:

(H1) 1 − μ1x∗ > 0 and 1 − μ2y∗ > 0, where

x∗ = K1

r1
exp(r1 − 1), y∗ = K2

r2
exp(r2 − 1).

(H2)

λ1 = max

{∣
∣
∣
∣1 − r1

K1
x∗

∣
∣
∣
∣ ,

∣
∣
∣
∣1 − r1

K1
x∗

∣
∣
∣
∣

}

+ μ2r1y
∗ < 1



200 X.-L. Zhuo, F.-X. Zhang

and

λ2 = max

{∣
∣
∣
∣1 − r2

K2
y∗

∣
∣
∣
∣ ,

∣
∣
∣
∣1 − r2

K2
y∗

∣
∣
∣
∣

}

+ μ1r2x
∗ < 1,

where

x∗ = K1(1 − μ2y
∗) exp

[

r1

(

1 − μ2y
∗ − x∗

K1

)]

and

y∗ = K2(1 − μ1x
∗) exp

[

r2

(

1 − μ1x
∗ − y∗

K2

)]

.

Note that exp(r−1)
r > 1 for r > 0, therefore, it is easy to see that condition (H1) is

stronger than 1 − μ1K1 > 0 and 1 − μ2K2 > 0.
We can also see that condition (H2) is complicated comparing with our conditions

r1 ≤ 1
m and r2 ≤ 1

n , and not easy to verify. Furthermore, if taking r1 = r2 = 1,
then we have x∗ = K1, y∗ = K2, x∗ = K1(1 − μ2K2) exp(−μ2K2) and y∗ =
K2(1 − μ1K1) exp(−μ1K1). Then

λ1 = 1 + μ2K2 exp(−μ2K2) − exp(−μ2K2) + μ2K2.

It is clear to see that λ1 > 1 for μ2K2 > 1
2 . This shows that (H2) is stronger than

r1 = r2 = 1, here m = n = 1.

Remark 2 According toTheorem4.1 of this paper,we have known that the equilibrium
E+(x0, y0) of system (1.1) is globally asymptotically stable for r1 ≤ 1

m , r2 ≤ 1
n , and is

locally asymptotically stable for r1 < t2, r2 < t1 and r2 ≤ 1
n(1−μ1K1)

(Theorem 3.1).
However, whether the equilibrium E+(x0, y0) is also globally asymptotically stable
for 1

m < r1 < t2,
1
n < r2 < t1 and r2 ≤ 1

1−μ1K1
, it is still open.

Remark 3 Another important and interesting open question is whether we can also
obtain the same inequality (4.5) but do not apply the comparison principle. If it is
possible, then the conditions on the global stability of positive equilibrium of system
(1.1) may be extended.

Remark 4 The condition in Theorem 3.1 is to guarantee the existence of positive
equilibrium E+(x0, y0) of system (1.1), and the possibility of how the two species
can coexist. If the conditions in conclusion (1) of Theorem 3.1 do not hold, then the
positive equilibrium of system (1.1) will be unstable.

Remark 5 The approach can also be devoted to studying the global asymptotic stabil-
ity of positive equilibrium for the other general multiple species discrete population
systems. We would like to do some valuable research about the subject.
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