Skip to main content

Advertisement

Log in

Analysis for optimal pattern synthesis of time modulated concentric circular antenna array using memetic firefly algorithm

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

In this paper the optimal performance of time modulated nine-ring concentric circular antenna array with isotropic elements has been studied based on an evolutionary optimization algorithm hybridized with local heuristic search called memetic firefly algorithm (MFA). The firefly algorithm has been applied followed by Nelder–Mead simplex method for the local heuristic search to achieve the optimal fine tuning. Other algorithms like real coded genetic algorithm (RGA) and particle swarm optimization (PSO) have been used for the comparison purpose. The comparisons among the algorithms have been made with two case studies as Case-1 and Case-2, and with two different fitness functions \((f_{{ fitness}1}, f_{{ fitness}2})\) and three control parameters like inter-element uniform/non-uniform spacing in rings, inter-ring radii and the switching-on times of rings. The simulation results show that the MFA outperforms RGA and PSO for both the cases Case-1, Case-2 and \(f_{{ fitness}1}\), \(f_{{ fitness}2}\), respectively with respect to better side lobe level (SLL). The fitness function \(f_{{ fitness}2}\) is better than the \(f_{{ fitness}1}\) with respect to sideband level. Apart from this, powers radiated at the centre/fundamental frequency and the first two sideband frequencies, and dynamic efficiency have been computed. It is found that power radiated by any sideband frequency is much less as compared to the power radiated at the centre frequency. It has been observed that as the sideband frequency increases, SBL decreases to the greater extent as compared to SLL. As per authors’ knowledge there is a little research contribution by any other previous researcher regarding numerical computation of radiation characteristics as SBLs, powers radiated at the fundamental frequency and its two sideband frequencies, directivity, and dynamic efficiency for time-modulated CCAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ballanis A (1997) Antenna theory analysis and design, 2nd edn. Willey, New York

    Google Scholar 

  2. Elliott RS (2003) Antenna theory and design. Wiley, New Jersey (revised edition)

    Book  Google Scholar 

  3. Shanks HE, Bickmore RW (1959) Four-dimensional electromagnetic radiators. Can J Phys 37:263–275

    Article  MATH  Google Scholar 

  4. Kummer WH, Villeneuve AT, Fong TS et al (1963) Ultra-low sidelobes from time-modulated arrays [J]. IEEE Trans Antennas Propag 11(5):633–639

    Article  Google Scholar 

  5. Lewis BL, Evins JB (1983) A new technique for reducing radar response to signals entering antenna sidelobes [J]. IEEE Trans Antennas Propag 31(6):993–996

    Article  Google Scholar 

  6. Yang S, Gan YB, Qing A (2002) Sideband suppression in timemodulated linear arrays by the differential evolution algorithm. IEEE Antennas Wirel Propag Lett 1:173–175

    Article  Google Scholar 

  7. Yang S, Gan YB, Tan PK (2003) A new technique for power-pattern synthesis in time-modulated linear arrays. IEEE Antennas Wirel Propag Lett 2:285–287

    Article  Google Scholar 

  8. Fondevila J, Bregains JC, Ares F, Moreno E (2004) Optimizing uniformly excited arrays through time modulation. IEEE Antennas Wirel Propag Lett 3:298–301

    Article  Google Scholar 

  9. Yang S, Gan YB, Qing A, Tan PK (2005) Design of a uniform amplitude time modulated linear array with optimized time sequences. IEEE Trans Antennas Propag 53(7):2337–2339

    Article  Google Scholar 

  10. Yang S, Gan YB, Qing A (2004) Antenna array pattern nulling using a differential evolution algorithm. Int J RF Microwave Comput-Aided Eng 14:57–63

    Article  Google Scholar 

  11. Zhu Q, Yang S, Zheng L, Nie Z (2012) Design of a low sidelobe time modulated linear array with uniform amplitude and sub-sectional optimized time steps. IEEE Trans Antennas Propag 60(9):4436–4439

    Article  MathSciNet  Google Scholar 

  12. Yang Shiwen, Gan Yeow Beng, Tan Peng Kiang (2004) Evaluation of directivity and gain for time-modulated linear antenna arrays. Microwave Opti Technol Lett 42(2):167–171

    Article  Google Scholar 

  13. Das R (1966) Concentric ring array. IEEE Trans Antennas Propag 14(3):398–400

    Article  Google Scholar 

  14. Stearns C, Stewart A (1965) An investigation of concentric ring antennas with low sidelobes. IEEE Trans Antennas Propag 13(6):856–863

    Article  Google Scholar 

  15. Goto N, Cheng DK (1970) On the synthesis of concentric-ring arrays. IEEE Proc 58(5):839–840

    Article  Google Scholar 

  16. Huebner MDA (1978) Design and optimization of small concentric ring arrays. In: Proceedings of IEEE AP-S symposium, pp 455–458

  17. Holtrup MG, Margulnaud A, Citerns J (2001) Synthesis of electronically steerable antenna arrays with element on concentric rings with reduced sidelobes. In: Proceesings of IEEE AP-S symposium, pp 800–803

  18. Dessouky M, Sharshar H, Albagory Y (2006) Efficient sidelobe reduction technique for small-sized concentric circular arrays. Progr Electromagn Res PIER 65:187–200

    Article  Google Scholar 

  19. Haupt RL (2008) Optimjzed element spacing for low sidelobe concentric ring arrays. IEEE Trans Antennas Propag 56(1):266–268

    Article  Google Scholar 

  20. Munson DC, O’Brian JD, Jenkins WK (1983) A tomographic formulation of spot-light mode synthetic aperture radar. Proc IEEE 71:917–925

    Article  Google Scholar 

  21. Compton RT (1978) An adaptive array in a spread-spectrum communication system. Proc IEEE 66:289–298

    Article  Google Scholar 

  22. Kak AC (1985) Tomographic imaging with diffracting and non diffracting sources. In: Haykin S (ed) Array signal processing, Prentice- Hall, Englewood Cliffs

  23. Chen XS, Ong YS, Lim MH, Tan KC (2011) A multi-facet survey of memetic computing. IEEE Trans Evol Comput 15(5):591–607

    Article  Google Scholar 

  24. Lim MH, Krasnogor N, Ong YS, Gustafson S (2012) Editorial. Memet Comput 4:1

    Article  Google Scholar 

  25. Dawkins R (1976) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  26. Galinier P, Hao JK (1999) Hybrid evolutionary algorithms for graph coloring. J Comb Optim 3:379–397

    Article  MathSciNet  MATH  Google Scholar 

  27. Fister I, Yang X-S, Brest J, Iztok Jr (2013) Fister “4—memetic self-adaptive firefly algorithm”. In: Swarm intelligence and bio-inspired computation, theory and applications, pp 73–102

  28. Fister I Jr, Yang XS, Fister I, Brest J (2012) Memetic firefly algorithm for combinatorial optimization. In: Filipič B, Šilc J (eds) Bioinspired optimization methods and their applications: Proceedings of the fifth international conference on bioinspired optimization methods and their applications— BIOMA 2012. Jozef Stefan Institute, pp 75–86

  29. António Carlos Conceição (2014) A memetic algorithm based on multiple learning procedures for global optimal design of composite structures. Memet Comput 6:113–131. doi:10.1007/s12293-014-0132-z

    Article  Google Scholar 

  30. Saha Suman Kumar, Kar Rajib, Mandal Durbadal, Ghoshal Sakti Prasad (2013) Design and simulation of FIR band pass and band stop filters using gravitational search algorithm. Memet Comput 5:311–321. doi:10.1007/s12293-013-0122-6

    Article  Google Scholar 

  31. Panduro MA, Mendez AL, Dominguez R, Romero G (2006) Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms. Int J Electron Commun (AEO) 60:713–717

    Article  Google Scholar 

  32. Panduro MA, Brizuela CA, Balderas LI, Acosta DA (2009) A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays. Progr. Electromag Res B 13:171–186

    Article  Google Scholar 

  33. Ram Gopi, Mandal D, Kar R, Ghoshal SP (2013) Optimized hyper beamforming of linear antenna arrays using collective animal behaviour. Sci World J Hindwai 2013:1–13 (Article ID 982017)

  34. Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4:1942–1948

    Article  Google Scholar 

  35. Helal Ayah M, Abdelbar Ashraf M (2014) Incorporating domain-specific heuristics in a particle swarm optimization approach to the quadratic assignment problem. Memet Comput 6:241–254. doi:10.1007/s12293-014-0141-y

    Article  Google Scholar 

  36. Lalwani Soniya, Kumar Rajesh, Gupta Nilama (2015) A novel two-level particle swarm optimization approach for efficient multiple sequence alignment. Memet Comput 7:119–133. doi:10.1007/s12293-015-0157-y

    Article  Google Scholar 

  37. Shihab M, Najjar Y, Dib N, Khodier M (2008) Design of non-uniform circular antenna arrays using particle swarm optimization. J Electr Eng 59(4):216–220

    Google Scholar 

  38. Mandai D, Ghoshal SP, Bhattacharjee AK (2010) Design of concentric circular antenna array with central element feeding using particle swarm optimization with constriction factor and inertia weight approach and evolutionary programing technique. J Infrared Milli Terahz Waves 31(6):667–680

    Google Scholar 

  39. Mandai D, Ghoshal SP, Bhattacharjee AK (2010) Radiation pattern optimization for concentric circular antenna array with central element feeding using craziness based particle swarm optimization. Int J RF Microwave Comput-Aided Eng 20(5):577–586

    Article  Google Scholar 

  40. Zheng L, Yang S, Zhu Q, Nie Z (2011) Synthesis of pencil-beam patterns with time-modulated concentric circular ring antenna arrays. In: PIERS Proceedings, Suzhou, China, September, pp 372–376

  41. Yang XS (2009) Firefly algorithms for multimodal optimization. In: Proceedings of the 5th international conference on stochastic algorithms: foundations and applications, SAGA 2009, vol 5792. LNCS-Springer, pp 169–178

  42. Basu B, Mahanti GK (2011) Firefly and artificial bees colony algorithm for synthesis of scanned and broadside linear array antenna. Progr Electromag Res B 32:169–190

    Article  Google Scholar 

  43. Yang XS, Hosseini SS, Gandomi AH (2012) Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl Soft Comput 12(3):1180–1186

    Article  Google Scholar 

  44. Yang XS, Deb S (2010) Eagle strategy using Levy walk and firefly algorithms for stochastic optimization, nature inspired cooperative strategies for optimization (NICSO). Stud Comput Intell 284:101–111

    Article  Google Scholar 

  45. Yang XS (2013) Multiobjective firefly algorithm for continuous optimization. Eng Comput 29(2):175–184

    Article  Google Scholar 

  46. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(2):308–313

    Article  MATH  Google Scholar 

  47. Hong-feng X, Guan-Zheng T (2010) A novel particle swarm optimizer without velocity: simplex-PSO. J Centr South Univ 17(2):349–356

    Article  Google Scholar 

  48. Walpole RE, Myer RH (1978) Probability and statistics for engineers and scientists. Macmillan, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopi Ram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ram, G., Mandal, D., Ghoshal, S.P. et al. Analysis for optimal pattern synthesis of time modulated concentric circular antenna array using memetic firefly algorithm. Memetic Comp. 8, 63–82 (2016). https://doi.org/10.1007/s12293-015-0169-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-015-0169-7

Keywords

Navigation