Skip to main content
Log in

Hierarchical three-dimensional flower-like Co3O4 architectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this work, we rationally design a high-capacity electrode based on three-dimensional (3D) hierarchical Co3O4 flower-like architectures with a mesocrystal nanostructure. The specific combination of the micro-sized 3D hierarchical architecture and the mesocrystal structure with a high porosity and single crystal-like nature can address the capacity fading and cycling stability as presented in many conversion electrodes for lithium-ion batteries. The hierarchical 3D flower-like Co3O4 architecture accommodates the volume change and mitigates mechanical stress during the lithiation–delithiation processes, and the mesocrystal structure provides extra lithium-ion storage and electron/ion transport paths. The achieved hierarchical 3D Co3O4 flower-like architectures with a mesocrystal nanostructure exhibit a high reversible capacity of 920 mA·h·g−1 after 800 cycles at 1.12 C (1 C = 890 mA·h·g−1), improved rate performance, and cycling stability. The finding in this work offers a new perspective for designing advanced and long-lived lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  2. Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

    Article  Google Scholar 

  3. Sun, H. T.; Xin, G. Q.; Hu, T.; Yu, M. P.; Shao, D. L.; Sun, X.; Lian, J. High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat. Commun. 2014, 5, 4526.

    Article  Google Scholar 

  4. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Article  Google Scholar 

  5. Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265–270.

    Article  Google Scholar 

  6. Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M. L.; Foix, D.; Gonbeau, D.; Walker, W. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 2013, 12, 827–835.

    Article  Google Scholar 

  7. Guo, B. K.; Wang, X. Q.; Fulvio, P. F.; Chi, M. F.; Mahurin, S. M.; Sun, X. G.; Dai, S. Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv. Mater. 2011, 23, 4661–4666.

    Article  Google Scholar 

  8. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Article  Google Scholar 

  9. Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 2012, 4, 2526–2542.

    Article  Google Scholar 

  10. Zhou, Y.; Candelaria, S. L.; Liu, Q.; Uchaker, E.; Cao, G. Z. Porous carbon with high capacitance and graphitization through controlled addition and removal of sulfur-containing compounds. Nano Energy 2015, 12, 567–577.

    Article  Google Scholar 

  11. Uchake, E.; Cao, G. Z. Mesocrystals as electrode materials for lithium-ion batteries. Nano Today 2014, 9, 499–524.

    Article  Google Scholar 

  12. Wang, F.; Lu, C. C.; Qin, Y. F.; Liang, C. C.; Zhao, M. S.; Yang, S. C.; Sun, Z. B.; Song, X. P. Solid state coalescence growth and electrochemical performance of plate-like Co3O4 mesocrystals as anode materials for lithium-ion batteries. J. Power Sources 2013, 235, 67–73.

    Article  Google Scholar 

  13. Su, D. W.; Dou, S. X.; Wang, G. X. Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. Nano Res. 2014, 7, 794–803.

    Article  Google Scholar 

  14. Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

    Article  Google Scholar 

  15. Hu, T.; Xin, G. Q.; Sun, H. T.; Sun, X.; Yu, M. P.; Liu, C. S.; Lian, J. Electrospray deposition of a Co3O4 nanoparticlesgraphene composite for a binder-free lithium ion battery electrode. RSC Adv. 2014, 4, 1521–1525.

    Article  Google Scholar 

  16. Chen, S.; Wang, M.; Ye, J. F.; Cai, J. G.; Ma, Y. R.; Zhou, H. H.; Qi, L. M. Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance. Nano Res. 2013, 6, 243–252.

    Article  Google Scholar 

  17. Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006, 312, 885–888.

    Article  Google Scholar 

  18. Tan, G. Q.; Wu, F.; Yuan, Y. F.; Chen, R. J.; Zhao, T.; Yao, Y.; Qian, J.; Liu, J. R.; Ye, Y. S.; Shahbazian-Yassar, R. et al. Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes. Nat. Commun. 2016, 7, 11774.

    Article  Google Scholar 

  19. Shen, Z.; Hu, Y.; Chen, Y. L.; Zhang, X. W.; Wang, K. H.; Chen, R. Z. Tin nanoparticle-loaded porous carbon nanofiber composite anodes for high current lithium-ion batteries. J. Power Sources 2015, 278, 660–667.

    Article  Google Scholar 

  20. Meng, J. S.; Niu, C. J.; Liu, X.; Liu, Z.; Chen, H. L.; Wang, X. P.; Li, J. T.; Chen, W.; Guo, X. F.; Mai, L. Q. Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction. Nano Res. 2016, 9, 2445–2457.

    Article  Google Scholar 

  21. Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Selfsupported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258–262.

    Article  Google Scholar 

  22. Wang, S. W.; Wang, L. J.; Zhang, K.; Zhu, Z. Q.; Tao, Z. L.; Chen, J. Organic Li4C8H2O6 nanosheets for lithium-ion batteries. Nano Lett. 2013, 13, 4404–4409.

    Article  Google Scholar 

  23. Wang, C.; Wang, F. X.; Zhao, Y. J.; Li, Y. H.; Yue, Q.; Liu, Y. P.; Liu, Y.; Elzatahry, A. A.; Al-Enizi, A.; Wu, Y. P. et al. Hollow TiO2–X porous microspheres composed of well-crystalline nanocrystals for high-performance lithium-ion batteries. Nano Res. 2016, 9, 165–173.

    Article  Google Scholar 

  24. Aurbach, D. Electrode-solution interactions in Li-ion batteries: A short summary and new insights. J. Power Sources 2003, 119–121, 497–503.

    Article  Google Scholar 

  25. Koo, B.; Xiong, H.; Slater, M. D.; Prakapenka, V. B.; Balasubramanian, M.; Podsiadlo, P.; Johnson, C. S.; Rajh, T.; Shevchenko, E. V. Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett. 2012, 12, 2429–2435.

    Article  Google Scholar 

  26. Wang, X.; Wu, X. L.; Guo, Y. G.; Zhong, Y. T.; Cao, X. Q.; Ma, Y.; Yao, J. N. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv. Funct. Mater. 2010, 20, 1680–1686.

    Article  Google Scholar 

  27. Zhao, D. D.; Wang, L.; Yu, P.; Zhao, L.; Tian, C. G.; Zhou, W.; Zhang, L.; Fu, H. G. From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries. Nano Res. 2015, 8, 2998–3010.

    Article  Google Scholar 

  28. Zhu, J. X.; Yin, Z. Y.; Yang, D.; Sun, T.; Yu, H.; Hoster, H. E.; Hng, H. H.; Zhang, H.; Yan, Q. Y. Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation. Energ. Environ. Sci. 2013, 6, 987–993.

    Article  Google Scholar 

  29. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

    Article  Google Scholar 

  30. Wu, R. B.; Qian, X. K.; Rui, X. H.; Liu, H.; Yadian, B.; Zhou, K.; Wei, J.; Yan, Q. Y.; Feng, X. Q.; Long, Y. et al. Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 2014, 10, 1932–1938.

    Article  Google Scholar 

  31. Ge, D. H.; Geng, H. B.; Wang, J. Q.; Zheng, J. W.; Pan, Y.; Cao, X. Q.; Gu, H. W. Porous nano-structured Co3O4 anode materials generated from coordination-driven self-assembled aggregates for advanced lithium ion batteries. Nanoscale 2014, 6, 9689–9694.

    Article  Google Scholar 

  32. Chen, M. H.; Xia, X. H.; Yin, J. H.; Chen, Q. G. Construction of Co3O4 nanotubes as high-performance anode material for lithium ion batteries. Electrochim. Acta 2015, 160, 15–21.

    Article  Google Scholar 

  33. Mujtaba, J.; Sun, H. Y.; Huang, G. Y.; Mølhave, K.; Liu, Y. G.; Zhao, Y. Y.; Wang, X.; Xu, S. M.; Zhu, J. Nanoparticle decorated ultrathin porous nanosheets as hierarchical Co3O4 nanostructures for lithium ion battery anode materials. Sci. Rep. 2016, 6, 20592.

    Article  Google Scholar 

  34. Su, D. W.; Xie, X. Q.; Munroe, P.; Dou, S. X.; Wang, G. X. Mesoporous hexagonal Co3O4 for high performance lithium ion batteries. Sci. Rep. 2014, 4, 6519.

    Article  Google Scholar 

  35. Li, Z. P.; Yu, X. Y.; Paik, U. Facile preparation of porous Co3O4 nanosheets for high-performance lithium ion batteries and oxygen evolution reaction. J. Power Sources 2016, 310, 41–46.

    Article  Google Scholar 

  36. Wang, Y.; Wang, B. F.; Xiao, F.; Huang, Z. G.; Wang, Y. J.; Richardson, C.; Chen, Z. X.; Jiao, L. F.; Yuan, H. T. Facile synthesis of nanocage Co3O4 for advanced lithium-ion batteries. J. Power Sources 2015, 298, 203–208.

    Article  Google Scholar 

  37. Wang, X. L.; Zhang, J. M.; Kong, X.; Huang, X.; Shi, B. Increasing rigidness of carbon coating for improvement of electrochemical performances of Co3O4 in Li-ion batteries. Carbon 2016, 104, 1–9.

    Article  Google Scholar 

  38. Tan, Y. L.; Gao, Q. M.; Li, Z. Y.; Tian, W. Q.; Qian, W. W.; Yang, C. X.; Zhang, H. Unique 1D Co3O4 crystallized nanofibers with (220) oriented facets as high-performance lithium ion battery anode material. Sci. Rep. 2016, 6, 26460.

    Article  Google Scholar 

  39. Wang, T. X.; Cölfen, H.; Antonietti, M. Nonclassical crystallization: Mesocrystals and morphology change of CaCO3 crystals in the presence of a polyelectrolyte additive. J. Am. Chem. Soc. 2005, 127, 3246–3247.

    Article  Google Scholar 

  40. Hou, C.; Lang, X. Y.; Han, G. F.; Li, Y. Q.; Zhao, L.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Lian, J. S. et al. Integrated solid/nanoporous copper/oxide hybrid bulk electrodes for high-performance lithium-ion batteries. Sci. Rep. 2013, 3, 2878.

    Article  Google Scholar 

  41. Huang, G. Y.; Xu, S. M.; Lu, S. S.; Li, L. Y.; Sun, H. Y. Micro-/nanostructured Co3O4 anode with enhanced rate capability for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 7236–7243.

    Article  Google Scholar 

  42. Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J. Mater. Chem. 2008, 18, 4397–4401.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11374377, 61575225, 11404414, 11074312 and 11474174), and the Undergraduate Research Training Program of Minzu University of China (Nos. GCCX2016110009 and GCCX2016110010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Wang, W., Shi, H. et al. Hierarchical three-dimensional flower-like Co3O4 architectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries. Nano Res. 11, 1437–1446 (2018). https://doi.org/10.1007/s12274-017-1759-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1759-0

Keywords

Navigation