Skip to main content
Log in

Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Yolk–shell ternary composites composed of a Ni sphere core and a SnO2(Ni3Sn2) shell were successfully prepared by a facile two-step method. The size, morphology, microstructure, and phase purity of the resulting composites were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy (TEM), high-resolution TEM, selected-area electron diffraction, and powder X-ray diffraction. The core sizes, interstitial void volumes, and constituents of the yolk–shell structures varied by varying the reaction time. A mechanism based on the time-dependent experiments was proposed for the formation of the yolk–shell structures. The yolk–shell structures were formed by a synergistic combination of an etching reaction, a galvanic replacement reaction, and the Kirkendall effect. The yolk–shell ternary SnO2 (Ni3Sn2)@Ni composites synthesized at a reaction time of 15 h showed excellent microwave absorption properties. The reflection loss was found to be as low as–43 dB at 6.1 GHz. The enhanced microwave absorption properties may be attributed to the good impedance match, multiple reflections, the scattering owing to the voids between the core and the shell, and the effective complementarities between the dielectric loss and the magnetic loss. Thus, the yolk–shell ternary composites are expected to be promising candidates for microwave absorption applications, lithium ion batteries, and photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lv, H. L.; Zhang, H. Q.; Zhao, J.; Ji, G. B.; Du, Y. W. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res. 2016, 9, 1813–1822.

    Article  Google Scholar 

  2. Xia, T.; Zhang, C.; Oyler, N. A.; Chen, X. B. Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Adv. Mater. 2013, 25, 6905–6910.

    Article  Google Scholar 

  3. Wang, G. Z.; Gao, Z.; Tang, S. W.; Chen, C. Q.; Duan, F. F.; Zhao, S. C.; Lin, S. W.; Feng, Y. H.; Zhou, L.; Qin, Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 2012, 6, 11009–11017.

    Article  Google Scholar 

  4. Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; Xia, F.; Wu, Q. S.; Wang, M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012, 8, 1214–1221.

    Article  Google Scholar 

  5. Du, Y. C.; Liu, W. W.; Qiang, R.; Wang, Y.; Han, X. J.; Ma, J.; Xu, P. Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 2014, 6, 12997–13006.

    Article  Google Scholar 

  6. Tian, C. H.; Du, Y. C.; Xu, P.; Qiang, R.; Wang, Y.; Ding, D.; Xue, J. L.; Ma, J.; Zhao, H. T.; Han, X. J. constructing uniform core–shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl. Mater. Interfaces 2015, 7, 20090–20099.

    Google Scholar 

  7. Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Zhang, R. Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core–shell structure. Phys. Chem. Chem. Phys. 2015, 17, 2531–2539.

    Article  Google Scholar 

  8. Zhao, B.; Fan, B. B.; Shao, G.; Zhao, W. Y.; Zhang, R. Facile synthesis of novel heterostructure based on SnO2 nanorods grown on submicron ni walnut with tunable electromagnetic wave absorption capabilities. ACS Appl. Mater. Interfaces 2015, 7, 18815–18823.

    Article  Google Scholar 

  9. Liu, J.; Qiao, S. Z.; Budi Hartono, S.; Lu, G. Q. Monodisperse yolk–shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem. Int. Ed. 2010, 49, 4981–4985.

    Article  Google Scholar 

  10. Wei Seh, Z.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P.-C.; Cui, Y. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 2013, 4, 1331.

    Article  Google Scholar 

  11. Tan, L. F.; Chen, D.; Liu, H. Y.; Tang, F. Q. A silica nanorattle with a mesoporous shell: An ideal nanoreactor for the preparation of tunable gold cores. Adv. Mater. 2010, 22, 4885–4889.

    Article  Google Scholar 

  12. Wu, S.; Dzubiella, J.; Kaiser, J.; Drechsler, M.; Guo, X. H.; Ballauff, M.; Lu, Y. Thermosensitive Au-PNIPA yolk–shell nanoparticles with tunable selectivity for catalysis. Angew. Chem. Int. Ed. 2012, 51, 2229–2233.

    Article  Google Scholar 

  13. Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A yolk–shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315–3321.

    Article  Google Scholar 

  14. Liu, J. W.; Xu, J. J.; Che, R. C.; Chen, H. J.; Liu, M. M.; Liu, Z. W. Hierarchical Fe3O4@TiO2 yolk–shell microspheres with enhanced microwave-absorption properties. Chem.—Eur. J. 2013, 19, 6746–6752.

    Article  Google Scholar 

  15. Liu, J. W.; Xu, J. J.; Che, R. C.; Chen, H. J.; Liu, Z. W.; Xia, F. Hierarchical magnetic yolk–shell microspheres with mixed barium silicate and barium titanium oxide shells for microwave absorption enhancement. J. Mater. Chem. 2012, 22, 9277–9284.

    Article  Google Scholar 

  16. Yu, M.; Liang, C. Y.; Liu, M. M.; Liu, X. L.; Yuan, K. P.; Cao, H.; Che, R. C. Yolk–shell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted sol-gel method for high temperature stable microwave absorption. J. Mater. Chem. C 2014, 2, 7275–7283.

    Article  Google Scholar 

  17. Liu, J. W.; Cheng, J.; Che, R. C.; Xu, J. J.; Liu, M. M.; Liu, Z. W. Double-shelled yolk–shell microspheres with Fe3O4 cores and SnO2 double shells as high-performance microwave absorbers. J. Phys. Chem. C 2013, 117, 489–495.

    Article  Google Scholar 

  18. Liu, J. W.; Cheng, J.; Che, R. C.; Xu, J. J.; Liu, M. M.; Liu, Z. W. Synthesis and microwave absorption properties of yolk–shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells. ACS Appl. Mater. Interfaces 2013, 5, 2503–2509.

    Article  Google Scholar 

  19. Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Chen, Y. Q.; Zhang, R. Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties. RSC Adv. 2015, 5, 9806–9814.

    Article  Google Scholar 

  20. Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science 2004, 304, 711–714.

    Article  Google Scholar 

  21. Liang, X.; Wang, X.; Zhuang, Y.; Xu, B.; Kuang, S. M.; Li, Y. D. Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via kirkendall effect. J. Am. Chem. Soc. 2008, 130, 2736–2737.

    Article  Google Scholar 

  22. Mu, L. J.; Wang, F. D.; Sadtler, B.; Loomis, R. A.; Buhro, W. E. Influence of the nanoscale kirkendall effect on the morphology of copper indium disulfide nanoplatelets synthesized by ion exchange. ACS Nano 2015, 9, 7419–7428.

    Article  Google Scholar 

  23. Oh, M. H.; Yu, T.; Yu, S.-H.; Lim, B.; Ko, K.-T.; Willinger, M.-G.; Seo, D.-H.; Kim, B. H.; Cho, M. G.; Park, J.-H. et al. Galvanic replacement reactions in metal oxide nanocrystals. Science 2013, 340, 964–968.

    Article  Google Scholar 

  24. Goris, B.; Polavarapu, L.; Bals, S.; Van Tendeloo, G.; Liz-Marzá n, L. M. Monitoring galvanic replacement through three-dimensional morphological and chemical mapping. Nano Lett. 2014, 14, 3220–3226.

    Article  Google Scholar 

  25. Liu, Y. L.; Hight Walker, A. R. Preferential outward diffusion of cu during unconventional galvanic replacement reactions between HAuCl4 and surface-limited Cu nanocrystals. ACS Nano 2011, 5, 6843–6854.

    Article  Google Scholar 

  26. Nicolson, A. M.; Ross, G. Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 1970, 19, 377–382.

    Article  Google Scholar 

  27. Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049–2053.

    Article  Google Scholar 

  28. Sun, G. B.; Dong, B. X.; Cao, M. H.; Wei, B. Q.; Hu, C. W. Hierarchical dendrite-like magnetic materials of Fe3O4, ?-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 2011, 23, 1587–1593.

    Article  Google Scholar 

  29. Lin, L.; Xing, H. L.; Shu, R. W.; Wang, L.; Ji, X. L.; Tan, D. X.; Gan, Y. Preparation and microwave absorption properties of multi-walled carbon nanotubes decorated with Ni-doped SnO2 nanocrystals. RSC Adv. 2015, 5, 94539–94550.

    Article  Google Scholar 

  30. Chen, T. T.; Deng, F.; Zhu, J.; Chen, C. F.; Sun, G. B.; Ma, S. L.; Yang, X. J. Hexagonal and cubic Ni nanocrystals grown on graphene: Phase-controlled synthesis, characterization and their enhanced microwave absorption properties. J. Mater. Chem. 2012, 22, 15190–15197.

    Article  Google Scholar 

  31. Susman, M. D.; Popovitz-Biro, R.; Vaskevich, A.; Rubinstein, I. pH-dependent galvanic replacement of supported and colloidal Cu2O nanocrystals with gold and palladium. Small 2015, 11, 3942–3953.

    Article  Google Scholar 

  32. Wang, L.; Yamauchi, Y. Metallic nanocages: Synthesis of bimetallic Pt–Pd hollow nanoparticles with dendritic shells by selective chemical etching. J. Am. Chem. Soc. 2013, 135, 16762–16765.

    Article  Google Scholar 

  33. Wang, W. S.; Dahl, M.; Yin, Y. D. Hollow nanocrystals through the nanoscale kirkendall effect. Chem. Mater. 2013, 25, 1179–1189.

    Article  Google Scholar 

  34. Zhou, T. J.; Lu, M. H.; Zhang, Z. H.; Gong, H.; Chin, W. S.; Liu, B. Synthesis and characterization of multifunctional FePt/ZnO core/shell nanoparticles. Adv. Mater. 2010, 22, 403–406.

    Article  Google Scholar 

  35. Wang, H. K.; Rogach, A. L. Hierarchical SnO2 nanostructures: Recent advances in design, synthesis, and applications. Chem. Mater. 2013, 26, 123–133.

    Article  Google Scholar 

  36. Zhao, B.; Zhao, W. Y.; Shao, G.; Fan, B. B.; Zhang, R. Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids. Dalton Trans. 2015, 44, 15984–15993.

    Article  Google Scholar 

  37. Li, W.; Deng, Y. H.; Wu, Z. X.; Qian, X. F.; Yang, J. P.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Y. Hydrothermal etching assisted crystallization: A facile route to functional yolk–shell titanate microspheres with ultrathin nanosheetsassembled double shells. J. Am. Chem. Soc. 2011, 133, 15830–15833.

    Article  Google Scholar 

  38. Fu, J. J.; Chen, T.; Wang, M. D.; Yang, N. W.; Li, S. N.; Wang, Y.; Liu, X. D. Acid and alkaline dual stimuli-responsive mechanized hollow mesoporous silica nanoparticles as smart nanocontainers for intelligent anticorrosion coatings. ACS Nano 2013, 7, 11397–11408.

    Article  Google Scholar 

  39. Hou, H. S.; Tang, X. N.; Guo, M. Q.; Shi, Y. Q.; Dou, P.; Xu, X. H. Facile preparation of Sn hollow nanospheres anodes for lithium-ion batteries by galvanic replacement. Mater. Lett. 2014, 128, 408–411.

    Article  Google Scholar 

  40. Chen, J. Y.; Wiley, B.; McLellan, J.; Xiong, Y. J.; Li, Z.-Y.; Xia, Y. N. Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett. 2005, 5, 2058–2062.

    Article  Google Scholar 

  41. Seo, D.; Song, H. Asymmetric hollow nanorod formation through a partial galvanic replacement reaction. J. Am. Chem. Soc. 2009, 131, 18210–18211.

    Article  Google Scholar 

  42. Park, J.; Zheng, H. M.; Jun, Y.-W.; Alivisatos, A. P. Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles. J. Am. Chem. Soc. 2009, 131, 13943–13945.

    Article  Google Scholar 

  43. Peng, S.; Sun, S. H. Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 4155–4158.

    Article  Google Scholar 

  44. Yang, Y.; Yang, R. B.; Fan, H. J.; Scholz, R.; Huang, Z. P.; Berger, A.; Qin, Y.; Knez, M.; Gösele, U. Diffusionfacilitated fabrication of gold-decorated Zn2SiO4 nanotubes by a one-step solid-state reaction. Angew. Chem. Int. Ed. 2010, 49, 1442–1446.

    Article  Google Scholar 

  45. Anderson, B. D.; Tracy, J. B. Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange. Nanoscale 2014, 6, 12195–12216.

    Article  Google Scholar 

  46. Cho, J. S.; Kang, Y. C. Nanofibers comprising yolk–shell Sn@void@SnO/SnO2 and hollow SnO/SnO2 and SnO2 nanospheres via the kirkendall diffusion effect and their electrochemical properties. Small 2015, 11, 4673–4681.

    Article  Google Scholar 

  47. Whittaker, E. J. W.; Muntus, R. Ionic radii for use in geochemistry. Geochim. Cosmochim. Acta 1970, 34, 945–956.

    Article  Google Scholar 

  48. Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125.

    Article  Google Scholar 

  49. Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Zhang, R. Time-sensitivity for the preparation and microwave absorption properties of core–shell structured Ni/TiO2 composite microspheres. J. Mater. Sci.Mater. Electron. 2015, 26, 8848–8853.

    Article  Google Scholar 

  50. Li, Y. N.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core–sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034–2045.

    Article  Google Scholar 

  51. Cao, M.-S.; Song, W.-L.; Hou, Z.-L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48, 788–796.

    Article  Google Scholar 

  52. Zhang, X. M.; Ji, G. B.; Liu, W.; Zhang, X. X.; Gao, Q. W.; Li, Y. C.; Du, Y. W. A novel Co/TiO2 nanocomposite derived from a metal-organic framework: Synthesis and efficient microwave absorption. J. Mater. Chem. C 2016, 4, 1860–1870.

    Article  Google Scholar 

  53. Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.

    Article  Google Scholar 

  54. Zhang, X. M.; Ji, G. B.; Liu, W.; Quan, B.; Liang, X. H.; Shang, C. M.; Cheng, Y.; Du, Y. W. Thermal conversion of an Fe3O4@metal-organic framework: A new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 2015, 7, 12932–12942.

    Article  Google Scholar 

  55. Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Xie, Y. J.; Zhang, R. Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J. Mater. Chem. A 2015, 3, 10345–10352.

    Article  Google Scholar 

  56. Toneguzzo, P.; Viau, G.; Acher, O.; Fié vet-Vincent, F.; Fié vet, F. Monodisperse ferromagnetic particles for microwave applications. Adv. Mater. 1998, 10, 1032–1035.

    Article  Google Scholar 

  57. Ding, Y.; Zhang, L.; Liao, Q. L.; Zhang, G. J.; Liu, S.; Zhang, Y. Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res. 2016, 9, 2018–2025.

    Article  Google Scholar 

  58. Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014, 7, 704–716.

    Article  Google Scholar 

  59. Wang, Z. J.; Wu, L. N.; Zhou, J. G.; Cai, W.; Shen, B. Z.; Jiang, Z. H. Magnetite nanocrystals on multiwalled carbon nanotubes as a synergistic microwave absorber. J. Phys. Chem. C 2013, 117, 5446–5452.

    Article  Google Scholar 

  60. Li, X. A.; Zhang, B.; Ju, C. H.; Han, X. J.; Du, Y. C.; Xu, P. Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4 nanostructures from iron alkoxide precursors. J. Phys. Chem. C 2011, 115, 12350–12357.

    Article  Google Scholar 

  61. Zhao, B.; Fan, B. B.; Xu, Y. W.; Shao, G.; Wang, X. D.; Zhao, W. Y.; Zhang, R. Preparation of honeycomb SnO2 foams and configuration-dependent microwave absorption features. ACS Appl. Mater. Interfaces 2015, 7, 26217–26225.

    Article  Google Scholar 

  62. Hong, X. Y.; Wang, Q.; Tang, Z. H.; Khan, W. Q.; Zhou, D. W.; Feng, T. F. Synthesis and electromagnetic absorbing properties of titanium carbonitride with quantificational carbon doping. J. Phys. Chem. C 2016, 120, 148–156.

    Article  Google Scholar 

  63. Xing, H. L.; Liu, Z. F.; Lin, L.; Wang, L.; Tan, D. X.; Gan, Y.; Ji, X. L.; Xu, G. C. Excellent microwave absorption properties of Fe ion-doped SnO2/multi-walled carbon nanotube composites. RSC Adv. 2016, 6, 41656–41664.

    Article  Google Scholar 

  64. Ma, J. J.; Zhan, M. S.; Wang, K. Ultralightweight silver nanowires hybrid polyimide composite foams for highperformance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2015, 7, 563–576.

    Article  Google Scholar 

  65. Yuan, K. P.; Che, R. C.; Cao, Q.; Sun, Z. K.; Yue, Q.; Deng, Y. H. Designed fabrication and characterization of three-dimensionally ordered arrays of core–shell magnetic mesoporous carbon microspheres. ACS Appl. Mater. Interfaces 2015, 7, 5312–5319.

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support from the National Natural Science Foundation of China (No. 51402264), and China Postdoctoral Science Foundation (No. 2014M561996).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Zhao.

Electronic supplementary material

12274_2016_1295_MOESM1_ESM.pdf

Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Guo, X., Zhao, W. et al. Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res. 10, 331–343 (2017). https://doi.org/10.1007/s12274-016-1295-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1295-3

Keywords

Navigation