Skip to main content
Log in

A scalable sulfuration of WS2 to improve cyclability and capability of lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional transition-metal dichalcogenides (WS2 and SnS2) have recently joined the family of energy storage materials (for lithium-ion batteries and supercapacitors) as a result of their favorable ion intercalation. So far, challenges in the synthesis of phase-pure WS2, restacking between WS2 nanosheets, low electronic conductivity, and the brittle nature of WS2, severely limit its use Li-ion battery application. Herein, we develop a facile low temperature solution sulfuration process to improve battery performance dramatically. The sulfuration process is demonstrated to be effective in converting WO3 impurities to WS2, and in repairing the sulfur vacancies, to improve cyclability and rate capability. Lithium-ion battery measurements demonstrate that the stable capacity of the WS2 anode could be enhanced by 48.4% via sulfuration reprocessing, i.e., from 381.7 to 566.8 mAh/g at a relatively high current density of 0.8 A/g after 50 cycles. We further show that the sulfuration process can be readily extended to other dichalcogenides, and may provide a class of versatile electrode materials for lithium-ion batteries with improved electrochemical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fang, X. P.; Hua, C. X.; Wu, C. R.; Wang, X. F.; Shen, L. Y.; Kong, Q. Y.; Wang, J. Z.; Hu, Y. S.; Wang, Z. X.; Chen, L. Q. Synthesis and electrochemical performance of graphene-like WS2. Chem.—Eur. J. 2013, 19, 5694–5700.

    Google Scholar 

  2. Yang, J.; Voiry, D.; Ahn, S. J.; Kang, D.; Kim, A. Y.; Chhowalla, M.; Shin, H. S. Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew. Chem., Int. Ed. 2013, 52, 13751–13754.

    Article  Google Scholar 

  3. Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z. Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.

    Google Scholar 

  4. Ma, Z. N.; Hu, Z. P.; Zhao, X. D.; Tang, Q.; Wu, D. H.; Zhou, Z.; Zhang, L. X. Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and MXene monolayer. J. Phys. Chem. C 2014, 118, 5593–5599.

    Article  Google Scholar 

  5. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  Google Scholar 

  6. Kumar, A.; Ahluwalia, P. K. Electronic transport and dielectric properties of low-dimensional structures of layered transition metal dichalcogenides. J. Alloy. Compd. 2014, 587, 459–467.

    Article  Google Scholar 

  7. Chen, D. Y.; Ji, G.; Ding, B.; Ma, Y.; Qu, B. H.; Chen, W. X.; Lee, J. Y. In situ nitrogenated graphene–few-layer WS2 composites for fast and reversible Li+ storage. Nanoscale 2013, 5, 7890–7896.

    Article  Google Scholar 

  8. Feng, C. Q.; Ma, J.; Li, H.; Zeng, R.; Guo, Z. P.; Liu, H. K. Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater. Res. Bull. 2009, 44, 1811–1815.

    Google Scholar 

  9. Feng, C. Q.; Huang, L. F.; Guo, Z. P.; Liu, H. K. Synthesis of tungsten disulfide (WS2) nanoflakes for lithium ion battery application. Electrochem. Commum. 2007, 9, 119–122.

    Google Scholar 

  10. Su, D. W.; Dou, S. X.; Wang, G. X. WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. Chem. Commun. 2014, 50, 4192–4195.

    Google Scholar 

  11. Liu, H.; Su, D. W.; Wang, G. X.; Qiao, S. Z. An ordered mesoporous WS2 anode material with superior electrochemical performance for lithium ion batteries. J. Mater. Chem. 2012, 22, 17437–17440.

    Google Scholar 

  12. Shivaa, K.; Matte, H. S. S. R.; Rajendraa, H. B.; Bhattacharyya, A. J.; Rao, C. N. R. Employing synergistic interactions between few-layer WS2 and reduced graphene oxide to improve lithium storage, cyclability and rate capability of Li-ion batteries. Nano Energy 2013, 2, 787–793.

    Article  Google Scholar 

  13. Xu, X. D.; Rout, C. S.; Yang, J.; Cao, R. G.; Oh, P.; Shin, H. S.; Cho, J. Freeze-dried WS2 composites with low content of graphene as high-rate lithium storage materials. J. Mater. Chem. A 2013, 1, 14548–14554.

    Article  Google Scholar 

  14. Liu, Y.; Wang, W.; Huang, H. B.; Gu, L.; Wang, Y. W.; Peng, X. S. The highly enhanced performance of lamellar WS2 nanosheet electrodes upon intercalation of single-walled carbon nanotubes for supercapacitors and lithium ions batteries. Chem. Commun. 2014, 50, 4485–4488.

    Google Scholar 

  15. Chen, D. Y.; Chen, W. X.; Ma, L.; Ji, G.; Chang, K.; Lee, J. Y. Graphene-like layered metal dichalcogenide/graphene composites: Synthesis and applications in energy storage and conversion. Mater. Today 2014, 17, 184–193.

    Google Scholar 

  16. Ovchinnikov, D.; Allain, A.; Huang, Y. S.; Dumcenco, D.; Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 2014, 8, 8174–8181.

    Article  Google Scholar 

  17. Huo, N. J.; Kang, J.; Wei, Z. M.; Li, S. S.; Li, J. B.; Wei, S. H. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv. Funct. Mater. 2014, 24, 7025–7031.

    Google Scholar 

  18. Mao, X. Z.; Xu, Y.; Xue, Q. X.; Wang, W. X.; Gao, D. Q. Ferromagnetism in exfoliated tungsten disulfide nanosheets. Nanoscale Res. Lett. 2013, 8, 430.

    Google Scholar 

  19. Pumera, M.; Sofer, Z.; Ambrosia, A. Layered transition metal dichalcogenides for electrochemical energy generation and storage. J. Mater. Chem. A 2014, 2, 8981–8987.

    Google Scholar 

  20. Jeffery, A. A.; Nethravathi, C.; Rajamathi, M. Two-dimensional nanosheets and layered hybrids of MoS2 and WS2 through exfoliation of ammoniated MS2 (M = Mo, W). J. Phys. Chem. C 2014, 118, 1386–1396.

    Google Scholar 

  21. Jung, Y. W.; Shen, J.; Liu, Y. H.; Woods, J. M.; Sun, Y.; Cha, J. J. Metal seed layer thickness-induced transition from vertical to horizontal growth of MoS2 and WS2. Nano Lett. 2014, 14, 6842–6849.

    Article  Google Scholar 

  22. Brunken, S.; Mientus, R.; Ellmer, K. Metal-sulfide assisted rapid crystallization of highly (001)-textured tungsten disulphide (WS2) films on metallic back contacts. Phys. Status Solidi A 2012, 209, 317–322.

    Article  Google Scholar 

  23. Morrish, R.; Haak, T.; Wolden, C. A. Low-temperature synthesis of n-type WS2 thin films via H2S plasma sulfurization of WO3. Chem. Mater. 2014, 26, 3986–3992.

    Google Scholar 

  24. Wei, J. W.; Ma, Z. W.; Zeng, H.; Wang, Z. Y.; Wei, Q.; Peng, P. Electronic and optical properties of vacancy-doped WS2 monolayers. AIP Adv. 2012, 2, 042141.

    Article  Google Scholar 

  25. Zou, Y. Q.; Wang, Y. Microwave solvothermal synthesis of flower-like SnS2 and SnO2 nanostructures as high-rate anodes for lithium ion batteries. Chem. Eng. J. 2013, 229, 183–189.

    Article  Google Scholar 

  26. Zhou, T. F.; Pang, W. K.; Zhang, C. F.; Yang, J. P.; Chen, Z. X.; Liu, H. K.; Guo, Z. P. Enhanced sodium-ion battery performance by structural phase transition from twodimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 2014, 8, 8323–8333.

    Article  Google Scholar 

  27. Liang, L. B.; Meunier, V. First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale 2014, 6, 5394–5401.

    Article  Google Scholar 

  28. Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tane, P. H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683.

    Article  Google Scholar 

  29. Bhandavat, R.; David, L.; Singh, G. Synthesis of surfacefunctionalized WS2 nanosheets and performance as Li-ion battery anodes. J. Phys. Chem. Lett. 2012, 3, 1523–1530.

    Article  Google Scholar 

  30. Liu, Y.; Wang, W.; Wang, Y. W.; Peng, X. S. Homogeneously assembling like-charged WS2 and GO nanosheets lamellar composite films by filtration for highly efficient lithium ion batteries. Nano Energy 2014, 7, 25–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shancheng Yan or Yi Shi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Yan, S., Pan, L. et al. A scalable sulfuration of WS2 to improve cyclability and capability of lithium-ion batteries. Nano Res. 9, 857–865 (2016). https://doi.org/10.1007/s12274-015-0966-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0966-9

Keywords

Navigation