Skip to main content
Log in

Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithiumion batteries: Nano vs micro, ordered phase (P4332) vs disordered phase (Fd \(\bar 3\) m)

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Since the high-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is one of the most attractive cathode materials for lithium-ion batteries, how to improve the cycling and rate performance simultaneously has become a critical question. Nanosizing is a typical strategy to achieve high rate capability due to drastically shortened Li-ion diffusion distances. However, the high surface area of nanosized particles increases the side reaction with the electrolyte, which leads to poor cycling performance. Spinels with disordered structures could also lead to improved rate capability, but the cyclability is low due to the presence of Mn3+ ions. Herein, we systematically investigated the synergic interaction between particle size and cation ordering. Our results indicated that a microsized disordered phase and a nanosized ordered phase of LNMO materials exhibited the best combination of high rate capability and cycling performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  CAS  Google Scholar 

  2. Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J. Functional materials for rechargeable batteries. Adv. Mater. 2011, 23, 1695–1715.

    Article  CAS  Google Scholar 

  3. Xiao, X. L.; Liu, X. F.; Wang, L.; Zhao, H.; Hu, Z. B.; He, X. M.; Li, Y. D. LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries. Nano Res. 2012, 5, 395–401.

    Article  CAS  Google Scholar 

  4. Zhou, L.; Zhao, D. Y.; Lou, X. W. LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium ion batteries. Angew. Chem. Int. Ed. 2012, 51, 239–241.

    Article  CAS  Google Scholar 

  5. Xiao, J.; Chen, X. L.; Sushko, P. V.; Sushko, M. L.; Kovarik, L.; Feng, J. J.; Deng, Z. Q.; Zheng, J. M.; Graff, G. L.; Nie, Z. M.; et al. High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv. Mater. 2012, 24, 2109–2116.

    Article  CAS  Google Scholar 

  6. Arrebola, J. C.; Caballero, A.; Cruz, M.; Hernán, L.; Morales, J.; Castellón, E. R. Crystallinity control of a nanostructured LiNi0.5Mn1.5O4 spinel via polymer-assisted synthesis: A method for improving its rate capability and performance in 5 V lithium batteries. Adv. Funct. Mater. 2006, 16, 1904–1912.

    Article  CAS  Google Scholar 

  7. Wang, L. P.; Li, H.; Huang, X. J.; Baudrin, E. A comparative study of 3 Fd \(\bar 3\) m and P4332 “LiNi0.5Mn1.5O4”. Solid State Ionics 2011, 193, 32–38.

    Article  CAS  Google Scholar 

  8. Kim, J.-H.; Myung, S.-T.; Yoon, C. S.; Kang, S. G.; Sun, Y.-K. Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: 3 Fd \(\bar 3\) m and P4332. Chem. Mater. 2004, 16, 906–914.

    Article  CAS  Google Scholar 

  9. Cabana, J.; Cabans-cabanas, M.; Omenya, F. O.; Chernova, N. A.; Zeng, D. L.; Whittingham, M. S.; Grey, C. P. Composition-structure relationships in the Li-ion battery electrode material LiNi0.5Mn1.5O4. Chem. Mater. 2012, 24, 2952–2964.

    Article  CAS  Google Scholar 

  10. Song, J.; Shin, D. W.; Lu, Y. H.; Amos, C. D.; Manthiram, A.; Goodenough, J. B. Role of oxygen vacancies on the performance of Li[Ni0.5–x Mn1.5+x ]O4 (x = 0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem. Mater. 2012, 24, 3101–3109.

    Article  CAS  Google Scholar 

  11. Ma, X. H.; Kang, B.; Ceder, G. High rate micron-sized ordered LiNi0.5Mn1.5O4. J. Electrochem. Soc. 2010, 157, A925–A931.

    Article  CAS  Google Scholar 

  12. Shin, D. W.; Bridges, C. A.; Huq, A.; Paranthaman, M. P.; Manthiram, A. Role of cation ordering and surface segregation in high-voltage spinel LiMn1.5Ni0.5–x MxO4 (M = Cr, Fe, and Ga) cathodes for lithium-ion batteries. Chem. Mater. 2012, 24, 3720–3731.

    Article  CAS  Google Scholar 

  13. Zheng, J. M.; Xiao, J.; Yu, X. Q.; Kovarik, L.; Gu, M.; Omenya, F.; Chen, X. L.; Yang, X.-Q.; Liu, J.; Graff, G. L.; et al. Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder. Phys. Chem. Chem. Phys. 2012, 14, 13515–13521.

    Article  CAS  Google Scholar 

  14. Chen, Z. X.; Qiu, S.; Cao, Y. L.; Ai, X. P.; Xie, K.; Hong, X. B.; Yang, H. X. Surface-oriented and nanoflake-stacked LiNi0.5Mn1.5O4 spinel for high-rate and long-cycle-life lithium ion batteries. J. Mater. Chem. 2012, 22, 17768–17772.

    Article  CAS  Google Scholar 

  15. Wang, H. L.; Tan, T. A.; Yang, P.; Lai, M. O.; Lu, L. High-rate performances of the Ru-doped spinel LiNi0.5Mn1.5O4: Effects of doping and particle size. J. Phys. Chem. C 2011, 115, 6102–6110.

    Article  CAS  Google Scholar 

  16. Shaju, K. M.; Bruce, P. G. Nano-LiNi0.5Mn1.5O4 spinel: A high power electrode for Li-ion batteries. Dalton Trans. 2008, 5471–5475.

    Google Scholar 

  17. Kunduraci, M.; Amatucci, G. G. The effect of particle size and morphology on the rate capability of 4.7 V LiMn1.5+δNi0.5+δO4 spinel lithium-ion battery cathodes. Electrochim. Acta 2008, 53, 4193–4199.

    Article  CAS  Google Scholar 

  18. Cheng, F. Y.; Wang, H. B.; Zhu, Z. Q.; Wang, Y.; Zhang, T. R.; Tao, Z. L.; Chen, J. Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy Environ. Sci. 2011, 4, 3668–3675.

    Article  CAS  Google Scholar 

  19. Li, C. S.; Zhang, S. Y.; Cheng, F. Y.; Ji, W. Q.; Chen, J. Porous LiFePO4/NiP composite nanospheres as the cathode materials in rechargeable lithium ion batteries. Nano Res. 2008, 1, 242–248.

    Article  CAS  Google Scholar 

  20. Lee, H.-W.; Muralidharan, P.; Ruffo, R.; Mari, C. M.; Cui, Y.; Kim, D. K. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett. 2010, 10, 3852–3856.

    Article  CAS  Google Scholar 

  21. Li, T.; Ai, X. P.; Yang, H. X. Reversible electrochemical conversion reaction of Li2O/CuO nanocomposites and their application as high-capacity cathode material for Li-ion batteries. J. Phys. Chem. C 2011, 115, 6167–6174.

    Article  CAS  Google Scholar 

  22. Okubo, M.; Hosono, E.; Kim, J.; Enomoto, M.; Kojima, N.; Kudo, T.; Zhou, H. S.; Honma, I. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 2007, 129, 7444–7452.

    Article  CAS  Google Scholar 

  23. Xiao, X. L.; Lu, J.; Li, Y. D. LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Res. 2010, 3, 733–737.

    Article  CAS  Google Scholar 

  24. Jiang, Y.; Yang, Z.; Luo, W.; Hu, X. L.; Huang, Y. H. Hollow 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 microspheres as a high-performance cathode material for lithium-ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 2954–2960.

    Article  CAS  Google Scholar 

  25. Liu, J. L.; Chen, L.; Hou, M. Y.; Wang, F.; Che, R. C.; Xia, Y. Y. General synthesis of xLi2MnO3· (1−x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: Towards a high capacity and high power cathode for rechargeable lithium batteries. J. Mater. Chem. 2012, 22, 25380–25387.

    Article  CAS  Google Scholar 

  26. Lee, K. T.; Cho, J. Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today 2011, 6, 28–41.

    Article  CAS  Google Scholar 

  27. Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887.

    Article  CAS  Google Scholar 

  28. Talyosef, Y.; Markovsky, B.; Lavi, R.; Salitra, G.; Aurbach, D.; Kovacheva, D.; Gorova, M.; Zhecheva, E.; Stoyanova, R. Comparing the behavior of nano- and microsized particles of LiMn1.5Ni0.5O4 spinel as cathode materials for Li-ion batteries. J. Electrochem. Soc. 2007, 154, A682–A691.

    Article  CAS  Google Scholar 

  29. Arrebola, J. C.; Caballero, A.; Hernán, L.; Morales, J. Expanding the rate capabilities of the LiNi0.5Mn1.5O4 spinel by exploiting the synergistic effect between nano and microparticles. Electrochem. Solid-State Lett. 2005, 8, A641–A645.

    Article  CAS  Google Scholar 

  30. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Schalkwijk, W. V. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Article  Google Scholar 

  31. Liu, J.; Manthiram, A. Understanding the improved electrochemical performances of Fe-substituted 5 V spinel cathode LiMn1.5Ni0.5O4. J. Phys. Chem. C 2009, 113, 15073–15079.

    Article  CAS  Google Scholar 

  32. Zhang, X. L.; Cheng, F. Y.; Yang, J. G.; Chen, J. LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. Nano Lett. 2013, 13, 2822–2825.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangyi Cheng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Han, X., Zhang, X. et al. Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithiumion batteries: Nano vs micro, ordered phase (P4332) vs disordered phase (Fd \(\bar 3\) m). Nano Res. 6, 679–687 (2013). https://doi.org/10.1007/s12274-013-0343-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0343-5

Keywords

Navigation