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Abstract 

Well-mixed zone models are often employed to compute indoor air quality and occupant exposures. 

While effective, a potential downside to assuming instantaneous, perfect mixing is underpredicting 

exposures to high intermittent concentrations within a room. When such cases are of concern, 

more spatially resolved models, like computational-fluid dynamics methods, are used for some 

or all of the zones. But, these models have higher computational costs and require more input 

information. A preferred compromise would be to continue with a multi-zone modeling approach 

for all rooms, but with a better assessment of the spatial variability within a room. To do so, we 

present a quantitative method for estimating a room’s spatiotemporal variability, based on influential 

room parameters. Our proposed method disaggregates variability into the variability in a room’s 

average concentration, and the spatial variability within the room relative to that average. This 

enables a detailed assessment of how variability in particular room parameters impacts the 

uncertain occupant exposures. To demonstrate the utility of this method, we simulate contaminant 

dispersion for a variety of possible source locations. We compute breathing-zone exposure during 

the releasing (source is active) and decaying (source is removed) periods. Using CFD methods, 

we found after a 30 minutes release the average standard deviation in the spatial distribution of 

exposure was approximately 28% of the source average exposure, whereas variability in the 

different average exposures was lower, only 10% of the total average. We also find that although 

uncertainty in the source location leads to variability in the average magnitude of transient 

exposure, it does not have a particularly large influence on the spatial distribution during the 

decaying period, or on the average contaminant removal rate. By systematically characterizing a 

room’s average concentration, its variability, and the spatial variability within the room important 

insights can be gained as to how much uncertainty is introduced into occupant exposure predictions 

by assuming a uniform in-room contaminant concentration. We discuss how the results of these 

characterizations can improve our understanding of the uncertainty in occupant exposures relative 

to well-mixed models. 
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1 Introduction 

Well-mixed multi-zone airflow models are commonly 
used to predict contaminant transport in indoor settings 
and predict occupant exposures to airborne contaminants. 

These models decompose a building into a series of zones, 
each assumed to have instantaneous perfect mixing. They 
are especially efficient in simulating large spatial-scale 
problems. For example, they have been used to assess 
contaminant transport scenarios in settings ranging from a 
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List of symbols 

General notation 

C concentration (conc.) [kg/m3]  
 massless concentration [m−3] 
E exposure (exp.) [s·kg/m3] 
 massless exposure [s/m3] 
t time/time from start of release [s] 
tavg averaging time [s]  
td time from end of release [s] 
tmix mixing time [s] 
trel releasing time [s] 
T temporary time-integration variable 
X  arithmetic mean of a set X  
X  variable/uncertain value of X  

Subscripts 

D decaying period  
fit parameter from curve fit 
i measuring location index 
j source location index 
R releasing period  
WM well-mixed (WM) model 
*  mean-normalized quantity 

Room parameters 

G contaminant generation rate [kg/s]  
V room volume [m3] 
Q volume flow rate [m3/s] 
Cin supply air conc. [kg/m3] 
C(t) WM room conc. [kg/m3] 

Well-mixed model parameters  

C0,WM WM initial conc. [kg/m3] 

CD,WM decaying period WM conc. [kg/m3] 
CR,WM releasing period WM conc. [kg/m3] 
CSS,WM WM steady-state conc. [kg/m3] 
ER,WM releasing period WM exp. [kg/m3] 
ED,WM decaying period WM exp. [kg/m3] 
τWM WM room time constant [s] 

Variability metrics 

sX sample standard deviation in set X 
2
Xs  sample standard variance in set X 

δX general measure of variability in X 
Xδ*  normalized variability in X  

Average metrics 

( , )iij j t xº    conc. of source-j at point ix   

j  source-averaged conc. of source-j  

j  total-average concentration 

( , )iij j t xº     exp. to source-j at point ix  

j  source-averaged exp. to source-j 

j  total-average exposure  

Curve fit parameters 

0,fit decaying period initial fit conc. 
0,CFD decaying period CFD initial conc. 
D,fit(td) decaying period fitted avg. conc. 
R,fit(t) releasing period fitted avg. conc. 
SS,fit releasing period scaling term 

SS,fit*  steady-state conc. 
I,D,fit decaying period mixing-stage offset  
I,R,fit releasing period mixing-stage offset 
τR,fit releasing period time constant  
τD,fit decaying period time constant  

  
 

wing or floor of a building (Faulkner et al. 2022a, 2022b; 
Ma et al. 2022), to an entire building (Li et al. 2005; Lim  
et al. 2010), or city and regional scale analyses (Shrubsole et 
al. 2012; Jones et al. 2015; Shi et al. 2015; Lu et al. 2020; 
Molina et al. 2021). Similarly, well-mixed models can also 
efficiently assess long temporal-scale problems, such as 
simulations of contaminant concentrations over the course 
of a year. And they have been widely shown to provide 
good estimations of average transient indoor contaminant 
concentrations in many situations.  

While well-mixed approaches are well-suited and practical 
for many applications, they have some potential downsides. 
For example, they may underpredict occupant exposures 

by not capturing areas of high intermittent contaminant 
concentrations within a zone, or room. The heterogeneity 
in the distribution of contaminants within a room can be 
caused by a myriad of in-room conditions (e.g. source 
locations, ventilation strategies, temperature gradients). 
More spatially resolved approaches, such as computational 
fluid dynamics (CFD) methods, are often applied to address 
these scenario-specific concerns. Their ability to model the 
influence of complex airflow patterns on airborne contaminant 
transport has been studied in both experimental (Jayaraman 
et al. 2006; Zhang et al. 2007; Yin et al. 2009; Barbosa   
and de Carvalho Lobo Brum 2021; Fu et al. 2022) and 
real-world settings (Ho 2021), for a variety of enclosed 



Castellini et al. / Building Simulation / Vol. 16, No. 6 

 

891

spaces. Studies have applied CFD methods to investigate 
spatial distributions of contaminants in medical settings 
(Méndez et al. 2008; Qian et al. 2009; King et al. 2013; Hang 
et al. 2015; Bhattacharyya et al. 2020), on public transportation 
(Zhu et al. 2012; Li et al. 2016; Yan et al. 2017; Yang et al. 
2020), in classrooms (Abuhegazy et al. 2020; Ascione et al. 
2021; Mirzaie et al. 2021), at restaurants (Chitaru et al. 
2018; Ho 2021), and in different office settings (Lee et al. 
2009; Kong et al. 2015; Barbosa and de Carvalho Lobo 
Brum 2021; Castellini et al. 2022), often with the aim of 
understanding the influence of particular boundary conditions on 
in-room contaminant distributions. However, the added 
model fidelity of these methods increases the computational 
burden and information needed, making them impractical 
for some applications (Morozova et al. 2020). An ideal 
compromise would be to continue to use multi-zone 
approaches, but with a better assessment of the spatial and 
temporal (i.e. spatiotemporal) variability of concentrations 
and occupant exposure that goes beyond the well-mixed 
assumption.  

A recent review of the state of airborne contaminant 
modeling (Bueno de Mesquita et al. 2022) noted the 
investigation of spatial heterogeneity within rooms and the 
quantification of its impact on exposure predictions as key 
research priorities in the field of airborne infectious disease 
modeling requiring further exploration. Another review (Dias 
and Tchepel 2018) of personal exposure to contaminants in 
urban environments concluded that the spatiotemporal 
dynamics of contaminant transport can vary greatly based 
on the specific exposure scenario, and the authors call for 
strategies to quantitatively compare trends in variability in 
different scenarios.  

In this paper we take the first steps towards developing 
the desired intermediate models to predict the uncertain 
spatiotemporal distribution of possible exposures occupants 
may see in a given room, while also helping to fill the gaps 
noted in Bueno de Mesquita et al. (2022) and Dias and 
Tchepel (2018), with the ultimate aim of incorporating 
these uncertain-room models into a multi-zone modeling 
framework. Here we present a method for systematically 
quantifying the levels of spatiotemporal variability in the 
distributions of a generic airborne contaminant within a 
room. We develop a series of performance metrics to 
quantify the spatiotemporal variability in the contaminant 
concentration, and demonstrate the application of these 
metrics using a simplified case of an empty room with a 
single uncertain input condition, the location of the source 
within the room. Though the proposed methodology could 
be used to quantify the spatiotemporal variability in scenarios 
defined by any number of uncertain inputs, provided   
that spatially- and temporally-dense measurements of 
concentration are available for a representative sample of 

instances of the uncertain space. The metrics developed  
in this study enable the quantitative comparison of 
spatiotemporal trends in a wide range of scenarios, like 
those listed above, and meet the need noted by Dias and 
Tchepel (2018). The method enables the characterization 
of the impact that uncertainty in specific room parameters 
has on the temporal development of the contaminant 
distributions within the space. We first assess and quantify 
the variability in the average transient concentrations for the 
set of observed instances, while vary particular parameter(s) 
of interest, e.g. the source location. We then apply a regression 
curve fit to characterize the transient behavior of each case 
with a set of characteristic fit-parameters and evaluate how 
the transient contaminant profile varies in the sample as a 
result of the uncertain experimental variable(s). The level 
of variability in the spatial distribution of concentration is 
then quantified relative to the observed transient average in 
each instance, to distinguish between variability in the total 
magnitude and variability in space. Finally, we evaluate the 
total spatiotemporal variability in concentration for a given 
situation, quantifying the impact of uncertainty in the 
examined input room parameters on the total variability in 
possible local exposures and comparing these results to the 
well-mixed prediction.  

Using a validated CFD model, we generated a spatially 
and temporally dense set of concentration measurements 
for each sample source location. Studies, such as Castellini 
et al. (2022) and Singer et al. (2022), have shown that the 
location of a source within a room and how it interacts 
with the room airflow greatly influences the pattern and 
level of heterogeneity in a room’s contaminant distribution. 
For this reason, we focus on the source location as the 
uncertain variable of interest in this case study, and note that 
it is often a primary concern for indoor hazard assessments. 
We simulate a pseudo-random sample of 50 possible source 
locations, discuss the trends we observe during both the 
releasing and decaying periods of the concentration time 
series, and then draw conclusions about the relationship 
between uncertainty in the source location and the level of 
spatiotemporal variability in occupant exposures we expect 
in this room. Finally, we compare the CFD predictions to 
those from a well-mixed model to draw insight into the 
expected discrepancies in occupant exposures.  

The remainder of this paper is organized as follows. 
First, we discuss the standard mass balance for a single 
well-mixed zone and derive an equation for the well-mixed 
transient concentration. We then describe the CFD model 
used in this study to calculate the spatially resolved transient 
concentrations, including a discussion of the model 
validation. Next, we present the novel method for quantifying 
spatiotemporal uncertainty in more detail. And then describe 
the room examined in our case study, as well as the set of 
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possible point source locations which define our experimental 
space. We then present the results of the case study in 
detail, applying our proposed method to characterize the 
spatiotemporal variability in this room, and assess the 
impact of source location uncertainty on spatially-resolved 
predictions of uncertain local exposures. Finally, we 
summarize some of the major findings from this study  
and highlight several potential future applications for this 
method.  

2 Background 

In this section, we first discuss typical well-mixed models 
used in multi-zone building simulations. We present the 
derivation of the well-mixed models from a single-zone mass 
balance and discuss some of the simplifying assumptions 
made in this work in the interest of modeling a generic 
contaminant. We then discuss the CFD model used in this 
study to capture the spatially resolved transient concentrations 
used as our uncertain data set in this study.  

2.1 Well-mixed model 

Well-mixed contaminant transport models often divide a 
building into multiple zones (typically, a zone contains 
one or more rooms). In each zone, the average transient 
concentration, C(t) [kg/m3], is assumed to be uniform and 
is calculated using a contaminant mass balance of the 
following form:  

[ ] [ ]
( )

in
d ( ) ( ) ( ) / ( ) /

d

g t rC t G t QC t V C t Q V λ
t

= + - +
 

         (1) 

where V [m3] is the volume of the room, G [kg/s] is the 
internal contaminant generation rate in the space, Q [m3/s] 
is the room ventilation rate, and Cin [kg/m3] is the 
concentration of contaminants in the air being supplied  
to the room. In a multi-zone context, Q and Cin can be 
decomposed further to represent transport between multiple 
rooms. However, this paper focuses on contaminant 
transport in a single room with one inlet and one outlet. 
The parameter λ [s−1] represents a series of contaminant- 
dependent decay rates such as the virus inactivation rate, 
or the expected deposition rate of a given contaminant. 
The term g(t) [(kg/s)/m3], on the right hand side of Eq. (1), 
represents the room’s total volumetric generation rate, while 
the term r [s−1] represents the total contaminant removal 
rate of the room.  

To focus on the transient dispersion of an arbitrary 
contaminant located within our room of interest, we make 
several convenient assumptions to modify Eq. (1). First,  
we assume that no contaminants are being introduced by 

outside supply airflow (Cin = 0). Here, we will consider the 
case of a constant source with an arbitrary strength G, 
which results in a simplified volumetric generation rate g(t) 
= G/V. Second, we neglect the deposition and decay of the 
airborne contaminant (λ = 0). For fine aerosolized particles 
(< 3 μm) and contaminants that decay slowly (i.e. λ  Q/V), 
these rates are small relative to the removal of contaminants 
through mechanical ventilation. Similar studies have also 
made this simplifying assumption (i.e. λ = 0, or r = Q/V) 
when simulating contaminant transport in enclosed spaces 
(Zhu et al. 2012; Hang et al. 2015; Li et al. 2016; Ai et al. 
2020b; ElDegwy et al. 2020; Barbosa and de Carvalho 
Lobo Brum 2021; Castellini et al. 2022) and others have 
experimentally confirmed that trace-gases, which exhibit 
no decay or deposit, are a suitable analog for fine aerosol 
particles (Yin et al. 2009; Ai et al. 2020a, 2020b). When not 
assessing specific in-room interventions designed to increase 
these rates (e.g. deposition onto barriers (Abuhegazy et al. 
2020; Ren et al. 2021) or UV germicidal irradiation (Kanaan 
2019; Buchan et al. 2020; Hou et al. 2021)) the overall effect 
of variability in these quantities on uncertainty in occupant 
exposure predictions can be examined more efficiently 
using well-mixed models, such as in Liao et al. (2005) and 
Jones et al. (2021).  

We can divide the family of solutions to Eq. (1) into 
periods based on the source strength, (1) the releasing period 
and (2) the decaying period. During the releasing period, 
the source strength is a constant rate G. During the decaying 
period, there is no source release and the indoor contaminant 
concentration decays from its peak concentration. Solutions 
to Eq. (1) are shown in Eq. (2) and Eq. (3), respectively.  

( ) ( )WM
R,WM SS,WM rel( ) 1 e 1 e , iftr t τgC t C t t

r
- - /= - = - £   (2) 

[ ] d d WM
D,WM d R,WM rel 0,WM d( ) ( ) e e , if 0t r t τC t C t C t- - /= = ³   (3) 

Several key parameters describing the transient behavior 
of the room are represented in Eqs. (2) and (3). The room 
time constant, τWM [s], represents the inverse of the 
contaminant removal rate in a well-mixed room. When a 
room is observed to have a time constant higher than the 
well-mixed model, its contaminant removal rate is lower. 
This leads to faster build-up/slower removal of contaminants 
than well-mixed models predict. In Eq. (2), CSS,WM [kg/m3] 
is the steady-state contaminant-concentration that the room 
will reach as t→∞ for a constant, continuous contaminant 
release, and is equal to the ratio of contaminant generation 
and removal rates in the room. Here t [s] is the time from 
the start of the release. In Eq. (3), td [s] indicates the time 
from the start of the decaying period, after a finite source of 
duration trel, td = t − trel. Equation (3) also assumes that the 



Castellini et al. / Building Simulation / Vol. 16, No. 6 

 

893

initial decay-period concentration, C0,WM [kg/m3], is given 
by the concentration at the end of some finite releasing 
period, C0,WM = CR,WM(trel).  

The exposure for an occupant in a well-mixed room is 
the time-integrated concentration in the room, stated in 
the units of [s·kg/m3]. The duration of the exposure period, 
ta − tb, is thus expressed as Eq. (4), and Eq. (5), where T is 
simply a dummy variable used in integration:  

R,WM R,WM
0

( ) ( )d
t

E t C= ò T T                         (4) 

d

D,WM d D,WM
0

( ) ( )d
t

E t C= ò T T                       (5) 

2.2 Computational fluid dynamics model 

This study uses CFD to calculate the spatially-resolved 
transient concentrations (ANSYS® Fluent 2021 R2, ANSYS 
2021). We used a steady-state RNG k-ε model to simulate 
the turbulent airflow in this space. Zhang et al. (2007) and 
Zhai et al. (2007) compared several turbulence models and 
demonstrated the capability of this type of model to predict 
airflows and contaminant dispersion in a variety of enclosed 
spaces with forced ventilation, and it has since been widely 
applied and validated in a variety of indoor environments. 
A Boussinesq approximation was used to solve for the effects 
of buoyant forces on the flow field and link the energy 
equation to the Reynolds-Averaged Navier-Stokes (RANS) 
airflow model. Radiation effects were ignored because of 
the relatively small temperature differences in our designed 
case, described in Section 4.  

We used a Lagrangian particle-track model because it 
has been demonstrated to be more efficient in simulating 

the transient dispersion of a contaminant when the airflow 
field is steady (Zhang and Chen 2007). In the interest of 
evaluating trends for a generic contaminant and enabling a 
more broad interpretation and application of our results, 
we employ a massless contaminant transport model in this 
study. This model ignores thermal, inertial, and gravitational 
effects on the simulated contaminant trajectories, calculating 
them based only on the local steady-state airflow field. This 
simplification also enables the easy scaling of the reported 
results based on different source strengths. The impact of 
turbulence on the trajectories is simulated using a discrete 
random walk (DRW) model (ANSYS 2021) at each 
Lagrangian particle time-step. We also ignore diffusive 
forces and any particle-particle interactions because we are 
simulating a sparse contaminant.  

The above assertions represent the transport of a neutrally 
buoyant trace gas contaminant. There are a variety of gaseous 
contaminants that can be found in indoor environments 
(WHO 2010). And previous studies have shown both 
experimentally (Yin et al. 2009; Ai et al. 2020a, 2020b) and 
numerically (Zhu et al. 2012; Hang et al. 2015; Li et al. 2016; 
ElDegwy et al. 2020; Ai et al. 2020b; Barbosa and de 
Carvalho Lobo Brum 2021) that tracer gases can also serve 
as a suitable surrogate for the transport of fine particulate 
contaminants as well, such as PM2.5 or smaller virus-laden 
respiratory aerosols, in enclosed ventilated spaces.  

3 Methods 

In this section, we propose a method for systematically 
evaluating the spatiotemporal variability of contaminants 
within enclosed spaces (Figure 1). We first discuss the 
utility of developing our model using source normalized 

 
Fig. 1 Methodology for assessing the spatiotemporal variability in indoor contaminant distributions presented in this study 
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massless measures of concentration. We then present the 
regression-based curve fit model used to characterize the 
trends in the average transient concentration and present 
the notation used to discuss variability in the spatial 
distribution of contaminants and different aspects of the 
room’s average behavior. We then present additional detail 
on the methods used to accelerate the Lagrangian contaminant 
transport model used to generate the spatially resolved 
concentration data in this study and present the results of 
the simulations used to validate these methods.  

3.1 Massless concentration and exposure 

The subscript i refers to a measurement at a location in 
space, ( , , )i i i ix y zx =  [m]. The subscript j refers to some 
instance of the uncertain scenario being modeled, here it 
refers measurements corresponding to some source location 

( , , )j j j jx y zx = [m]. The concentration from source j 
measured at a particular point, ix , and time t, is written 
as Cij(t). In this study, we present values of concentration 
normalized by the mass of contaminants released by the 
source over an arbitrary time period. Here we use Δt = 0.5 s, 
as the sampling and integration time-step. Equation (6) 
shows an example of this normalization:  

Δ
C

G t
=                                       (6) 

where  represents the mass normalized concentration in 
units of [m−3], used for the remainder of this paper. Our 
discussion of exposure is also presented in a mass normalized 
form, using  to denote a mass normalized measure of 
exposure in units of [s/m3], which is equal to an integral of 
 over some exposure period:  

0
( ) ( )d

t
t = ò  T T                               (7) 

We chose to develop our model in terms of an arbitrary 
massless contaminant for several reasons. Firstly, this 
enables the results of our arbitrary contaminant model 
to quickly be scaled based on the generation rate of some 
particular contaminant of interest, such as the quanta 
generation of some particular virus. The model we develop 
here to describe the transient behavior of a room with an 
arbitrary massless contaminant source of constant strength, 
G, and releasing duration, trel, can be extended to describe 
a similar source with a transiently varying strength, G(t). 
Consider, any transient releasing function G(t) could be 
discretized into a linear combination of k constant strength 
finite duration releases described by our proposed model. 
Because we are dealing with sparse contaminants (i.e., 
mass diffusivity is negligible), we can similarly use linear 

combinations of our models’ outputs (i.e., the uncertain 
concentration/exposure), scaled by some strength Gk and 
duration trel,k, to predict the uncertain transient concentration 
for any releasing function G(t). However, for brevity, we 
will limit our discussion in this work to releases of constant, 
arbitrary strength, G.  

3.2 Measures of average concentration and exposure 

We define the source average concentration or exposure as 
the average concentration or exposure from a particular 
source, j, at all npts breathing zone measuring points, i as:  

pts

pts 1

1( ) ( )
n

ijj
i

t t
n =

= å                                (8) 

pts

pts 1

1( ) ( )
n

ijj
i

t t
n =

= å                               (9) 

Next, we define the total average concentration or exposure 
as the average of all the source average concentrations or 
exposure from all of the ns scenarios considered, which 
in the example that follows is the set of source average 
concentrations from the ns = 50 different source locations 
considered:  

s

s 1

1( ) ( )
n

jj
j

t t
n =

= å                                (10) 

s

s 1

1( ) ( )
n

jj
j

t t
n =

= å                               (11) 

3.3 Curve fitting of the source-average concentrations 

To consider the time-varying trends in a room’s average 
concentration, we develop a regression model to fit the 
transient change in the room’s source average concentration. 
The model allows us to assess the specific ways in which 
particular uncertain input parameters influence the variability 
in the room’s transient average concentration. To better 
understand how ( )j t  differs from the well-mixed model 
for different source locations we used a least-squares 
regression technique to estimate the parameters in Eq. (12), 
for the releasing, and Eq. (13), for the decaying periods, 
both based on the form of the well-mixed model, Eqs. (2) 
and (3) respectively. 

R,fit
SS,fit I,R,fitR,fit( ) (1 e )t τt - /= - +                    (12) 

d D,fit
d 0,fitD,fit( ) e t τt - /= ⋅                          (13) 

where τR,fit and τD,fit [s] are the observed room time-constants 
calculated for the releasing and decaying periods respectively, 
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SS,fit  and 0,fit  are scaling terms, and I,R,fit  is a linear intercept 
term, all in the units of (massless) concentration [m−3]; 
while R,fit  and D,fit  are the transient room average 
concentrations predicted by the proposed curve fitting 
model for the two periods.  

For the most part, these fit-parameters have similar 
physical meanings to the WM-parameters discussed in 
Section 2.1. For example, τR,fit and τD,fit have the same 
physical meaning as τWM in Eqs. (2) and (3). The only 
significant difference was the addition of an intercept term, 

I,R,fit , in Eq. (12). We introduced it in order to better 
account for and quantify the initial shift in the behavior  
of the average concentration during the mixing stage, the 
initial portion of each period before the observed source 
average curve begins to follow the smooth curves predicted 
by Eqs. (12) and (13). The source average curves do not 
follow a predictable path during this stage, and for this room 
and air flow rate, the duration of the initial mixing stage 
tends to be fairly short, tmix < 120 s, and so we focus in this 
paper on characterizing the variability outside this period. 
As a result of including a non-zero intercept, the steady-state 
concentration predicted by this model equivalent to the 
well-mixed term, SS,WM , is slightly different and can be 
written as SS,fit I,R,fitSS,fit* = +   .  

For the decaying period, 0,fit  represents the initial 
concentration we would expect at td = 0, based on the behavior 
of the average concentration after the mixing stage. This  
is approximately equivalent to 0,WM  in Eq. (3). However 

0,fit will typically differ from the actual concentration 
observed at the start of the decaying period in CFD, denoted 

0,CFD j=  (td = 0). This is due to a similar initial shift in 
the behavior of the source average concentration during 
the decaying period’s mixing stage, just after the source is 
stopped. To help quantify this decay-period mixing stage 
shift, we define an additional term, I,D,fit 0,CFD 0,fit= -   , 
as the difference between the observed CFD initial value and 
that predicted by the curve fit. This is roughly equivalent to 
the I,R,fit  term in the releasing period.  

3.4 Measuring variability  

The proposed methodology will facilitate the assessment  
of several aspects of a room’s spatiotemporal variability; 
variability in the source average, variability in space, and 
the combined total variability. Steps 3–5 in Figure 1. We use 
the notation δX to represent a measurement of variability in 
some set of observed quantities X. In this study, we assume 
Gaussian statistics for all the variabilities discussed and 
use the sample standard deviation sX = δX, for discussing 
variability in different quantities. It is defined as the 
square root of the sample variance 2

Xs , shown in Eq. (14) 

for a sample of size N:  

2
2 ( )

1
i

X
X Xs
N

-
=

-
å                               (14) 

We examine the variability in a variety of different data 
sets using the metrics described above including the transient 
variability in the set of average concentrations ( ( )

j
δ t


), as 
well as the variability in the sets of fit parameters (

SS,WM
δ , 

etc.), and the total variability of concentration in space 
( ( )

ij
δ t ). To better compare the amount of variability in 

these data sets, we normalize the measured variabilities by 
the mean of the corresponding set, X , giving a standard 
dimensionless measure of variability denoted as X Xδ δ X* = / , 
which can be discussed in the units of [% of X ]. And finally, 
as a shorthand representation of an uncertain (varying) 
parameter we will use the following notation:  


XX X δº                                     (15) 

where X  is a probability distribution of possible values for 
a parameter X, with X  and δX representing its known or 
observed mean and variability for a specified situation. 
Each component of Eq. (15) may vary with time and 
may also be dependent on other known or uncertain room 
parameters. The proposed method enables the investigation 
of these trends in time and the interactions between different 
room parameters and the uncertainty in exposure predictions 
for different cases. 

3.5 Accelerating the Lagrangian transport model 

In this study, we employed two methods, described in Chen 
et al. (2015), for accelerating the Lagrangian simulations 
by reducing the number of particle trajectories required 
to explain the trends in the contaminant transport within 
a room. The first technique leverages the steady-state 
nature of the flow field and employs the principle of linear 
superimposition. The transient trajectories of an instantaneous 
release of Npar Lagrangian particles can be superimposed a 
number of times, nsuper with each successive superimposition 
shifted in time by some time step, Δt [s]. This can effectively 
simulate a constant source of strength G = Npar/Δt and 
duration nsuperΔt, but calculating only 1/nsuper the number 
of trajectories one would need to simulate when not using 
superimposition in order to have a similarly sufficient 
number of Lagrangian particles.  

The other technique described in Chen et al. (2015)  
was the use of time-averaging, or taking a centered rolling 
average of the transient concentration. This smooths the 
high-frequency fluctuations in local measures of concentration 
that are caused by having too few Lagrangian particles in  
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the simulation, resulting in local concentrations changing 
dramatically from one time step to the next. When these 
fluctuations are large relative to the instantaneous local 
concentration, it introduces an additional local measurement 
uncertainty, which would confound our efforts to accurately 
measure the instantaneous spatial variability in our set of 
monitoring points. Time averaging allows us to reduce this 
measurement uncertainty without simulating additional 
trajectories, which would also reduce the relative magnitude 
of the fluctuations but simultaneously would increase the 
computational time, which is roughly proportional to the 
number of trajectories simulated.  

3.6 Validation and verification of CFD methods 

For this work, we verified that the poly-hexcore mesh settings 
used in these simulations provided a mesh-independent 
solution of the airflow field in our validation case, shown in 
Figure 2(a). Many studies, including Castellini et al. (2022), 
have validated the steady-state RNG k-ε RANS model used 
in this study by comparing predicted and experimentally 
measured airflow data in a variety of environments. We 
compared traces of the steady-state temperature and velocity 
fields at multiple points in the room for three meshes of 
increasing density. Each mesh had surface refinements at 
inlets and outlets and used boundary-layer cells at each wall, 
with max cell lengths of 0.1, 0.2, and 0.3 m respectively. 
The middle set of mesh settings (max length 0.2 m) was 
found to be sufficiently fine to resolve the airflow field and 
provide a mesh-independent solution.  

To validate our transient contaminant transport model, 
we used experimental data from a study by Fu et al. (2022). 

Figure 2(a) shows the set-up of the experimental chamber 
in this study. The test chamber was an empty room with a 
side-wall mixing ventilation setup; it has two inlets near the 
top of the room, and a single outlet on the lower portion of 
the same wall. The ventilation rate was approximately 5.6 
air changes per hour (ACH). Under steady-state airflow 
conditions, a tracer-gas, 1% SF6 solution, was released at a 
constant rate (0.2 L/min) from a 3 cm spherical point-source 
for a release duration of trel = 10 s.  

While measurements of local flow velocities were 
unavailable for this case, this data set included two sets of 
concentration measurements at multiple points in space. 
The measurements from the quartz-enhanced photoacoustic 
spectroscopy (QEPAS) sensor provide a highly time-resolved 
data set for the concentration, and these QEPAS measurements 
agree well with the more prevalent Brüel and Kjær (B&K) 
sampling system. The local concentrations from CFD were 
calculated using a user-defined-function (UDF) inFluent 
which counted the number of Lagrangian particles within 
a spherical measuring volume, Vmeas = 0.015 m3, centered 
about each measuring point. Figure 2(b) shows that the 
prediction of our CFD model matches fairly well with the 
experimentally measured local concentrations at several 
points in the room. The result verifies that this modeling 
methodology is able to capture the major trends in transient 
contaminant dispersion within this and similar rooms.  

4 Case description 

In the interest of focusing our discussion on our proposed 
methodology for characterizing a room’s spatiotemporal 
variability, we evaluate a relatively simple case in this study 

     

(a) Diagram of experimental chamber (b) Validation results at two points 

Fig. 2 (a) Schematic of the experimental chamber set-up used in Fu et al. (2022) with the source location (purple) and the eight sampling 
points (black), as well as the airflow inlets (blue) and outlet (red). (b) shows a comparison of the experimentally measured transient 
tracer gas concentration from the two measurement systems used in the experiment, the QEPAS (red) and B&K (blue), as well as 
the CFD-measured concentration (black), shown for a trel = 10 s point-source release measured at two of the sampling locations 
denoted in (a) 
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with only a single uncertain input condition, the location of 
a source within a room. We will discuss in Sections 6.1 and 
8 how this process can be extended to evaluate more detailed 
scenarios and applied to evaluate trends in a room’s 
uncertain performance for a higher-dimensional uncertain 
space, i.e. considering a larger number of uncertain boundary 
conditions.  

Here we investigate the trends in an empty, rectangular 
office room 4.3 × 3.0 × 3.2 [m] (14 × 10 × 10.5 [ft]), depicted 
in Figure 3. This room is similar in many ways to the 
validation case discussed previously. It has a mixing ventilation 
system with an eight-way-throw 0.3 m (1 ft) square inlet 
diffuser, modeled using the momentum inlet method 
described in Srebric and Chen (2002), with an inlet angle of 
30° relative to ceiling plane. The airflow outlet was a single 
0.6 m (2 ft) square HVAC return diffuser also located on 
the ceiling. A uniform surface heat flux of 28 W/m2 was 
applied to the floor to simulate a total room heat load of 
361 W. This is meant to represent some arbitrary arrangement 
of heat sources within a hypothetical one or two-person 
office. In a real room, the thermal plumes created by local 
heat sources (e.g. occupants, electronics) would create 
different local flow patterns that would influence the 
contaminant transport (Ivanov and Mijorski 2019; Sun 
et al. 2021). While this case ignores these geometry-specific 
impacts, our arbitrary floor heat source enables us to 
capture the added buoyant mixing effect (Baughman et al. 
1994) that might be expected in a real office. We simulated 
a variable air volume system operating in a cooling condition 
with an air exchange rate of 3.7 ACH (43 L/s or 91 cfm) 
and a supply air temperature of 14 °C and a room set-point  

 
Fig. 3 Diagram of the investigated room showing the dimensions, 
locations of the airflow inlet (blue) and outlet (red), the monitored 
room breathing zone (grey), and the locations of the point sources 
used in the multidimensionally uniform Latin-Hypercube sample 
(black). The two source locations used as examples in Section 5.2 
are also highlighted (purple/pink) 

of 20 °C. Using the same set of mesh controls as in our 
validation case, we also performed a mesh independence 
study for this room generating meshes of 110,241, 234,753, 
and 1,102,459 cells. As in our validation case, we found  
that the 234,753 cell mesh provided a mesh-independent 
representation of the flow field in our case study room.  

The unknown input condition we focus on in this study 
is the uncertain location of an arbitrary contaminant within 
this room. We define the experimental space of possible 
source locations as the entire volume of the room, i.e, 
black lines in Figure 3. We used the algorithm presented 
in Deutsch and Deutsch (2012) to generate a 50-point 
multi-dimensionally uniform Latin Hypercube sample 
of this space, shown as the points in Figure 3, which we 
assume to be representative of the population of possible 
source locations. For each source location, we simulated an 
instantaneous point-release of Npar = 29,685 particles and 
tracked their trajectories over a 30-minute simulation period. 
Using the method of superimposition (Chen et al. 2015), 
discussed in Section 3.5, we then constructed our data 
sets for sources of different durations ranging from 15 s to 
a continuous release for each location. By developing our 
model based on point releases of massless contaminants, 
we can use the concept of superimposition again (this time 
in space instead of time) to approximate an arbitrary 
source of any size/shape within the experimental space 
we investigated (e.g., a gaseous release from a surface, or 
a combination of multiple sources). Consider, a release of 
any shape/size within this domain could be thought of as 
some combination of point releases within the uncertain 
space represented by our simulated sample, therefore, 
assuming the sample is truly representative of our scenario 
of interest, the user needs only consider the magnitude 
of the uncertain contaminant release within the room, as 
we discussed in Section 3.1. Alternatively, if we sought to 
construct a model for a specific type of sources, such as an 
exhaled pathogen or a surface release of some gaseous 
contaminant, we would change the sample space of sources 
we simulated accordingly, by limiting the release locations 
to where occupants are likely to be or to the surface(s) 
releasing contaminants. Constraining the possible source 
location in this way would likely reduce the associated 
spatiotemporal uncertainty in a given case and result in 
different fit-parameter distributions.  

As with the possible source location, the possible location 
of a room’s occupants, i.e. the region we wish to model, 
may be known to some greater or lesser degree and taken 
into account in the design of the CFD experiment. For 
example, if we know how occupants tend to use a given 
space we could define some three-dimensional probability 
density function, p(xi, yi, zi) = wi where wi represents the 
likely hood of a occupant being located at some measuring 
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point [ , , ]i i i ix y zx = . In this example arbitrary example 
case we measured the transient concentration from each 
release at two sets of measuring points ix . The first was a 
set of 964 points distributed throughout the entire domain. 
And the second set was constrained to the region of the 
room where occupants are likely to breath-in an airborne 
contaminant. This set of npts = 448 uniformly-spaced 
measuring points located within the room’s breathing-zone, 
defined based on ASHRAE’s definition of 0.6 m (2 ft) from 
each wall and between 0.9–1.8 m (3–6 ft) above the floor 
(ASHRAE 2019), will be the focus of this study. Because 
have no additional information as to how the occupants  
are likely to use this space arbitrary space, we applied a uniform 
weighting function, wi = 1/npts, to our set of measuring 
points. In the remainder of this paper, all discussions of 
variability, and all figures (excepting Figure 12) will refer 
only to this second set of occupied breathing zone measuring 
points. Comparisons of differences in the observed variability 
for the two different sets of monitoring points were omitted 
for brevity.  

5 Results 

We start with a brief discussion of the airflow field in the 
room. Next, the contaminant distribution from two example 
source locations are shown to discuss some of the general 
trends in the transient behavior of the spatial distribution 
of contaminants in this room. We then discuss in detail the 
observed variability in the breathing zone source averages 
for the full set of 50 source locations. We then analyze 
the trends of variability in space about these averages, and 
finally discuss the combined total variability in the range 
of expected concentrations and exposure in this room when 
the contaminant source’s location is unknown.  

5.1 Room airflow 

The paths taken by contaminants away from particular 
source locations are highly dependent on the airflow in 
the room. Differences in local airflow velocities explain the 
variability in both the average concentration computed 
from different source locations and the spatial variability  
of concentration within the room. For example, when a 
source is located in a region with higher than average 
local flow velocity, the contaminants tend to disperse more 
quickly than when the source is located in a region with 
low flow velocity. Similarly, if the source is located near 
the outlet or where the airflow is moving directly towards 
an outlet, they are removed from the room at a significantly 
faster rate compared to sources in regions of low velocity, 
or within a local recirculation zones. Figure 4 shows the 
velocity vector field at the mid-plane of this room, y = 0, 

as well as the location of the two example sources. Both of 
these sources were located fairly close to this mid-plane 
and are shown projected onto it to give a sense of the flow 
near these releasing locations which we will discuss in more 
detail in the following section. We can see at the mid-plane 
that the velocity field is characterized by a relatively high 
velocity counter-clockwise outer flow starting from the 
inlet diffuser, moving down through the room, then along 
the floor, and up towards the room outlet. There are also 
two smaller, low velocity recirculating zones nested within 
the main outer flow region.  

Figure 5 shows the contours of the temperature in the 
room at the mid-plane, y = 0. It shows that, despite local 
differences in the velocity field, this room is close to a 
well-mixed assumption of uniform temperature. Apart 
from the colder than average region near the inlet caused 
by the 14 °C supply air and a very small thermal boundary 
layer near the heated floor, the majority of this room is 

 
Fig. 4 Vector field of velocity, v , at the mid-plane, y = 0, colored 
by the local velocity magnitude. The locations of the two example 
sources, discussed in Section 5.2, are also shown projected onto 
the mid-plane 

 
Fig. 5 Contours of the steady-state temperature field, T [°C], at the 
mid-plane, y = 0 
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close to the room set-point temperature of 20 °C, and the 
entire occupied zone falls within the ASHRAE Standard 55 
recommended thermal comfort guidelines (ASHRAE 2020).  

5.2 General trends of contaminant distribution 

In this section, we introduce some of the trends in transient 
contaminant concentration observed in this room. We 
first present the transient distribution of concentration 
from two example sources, discussing the trends during the 
releasing period and decaying period. We then discuss the 
impact the releasing duration of a source has on decaying 
period trends. Finally, we show a contour of the fully- 
developed relative concentration and discuss the relationship 
with the steady-state airflow field.  

5.2.1  Releasing period 

Figures 6 and 7 show the transient distributions of 
contaminants in the breathing zone during the releasing 
and decaying periods, respectively. Two example source 
locations are used, which are highlighted in Figures 3 and 4. 
Snapshots of the transient distributions are shown in the 
form of box and whisker plots at intervals of 1 min. The 
plots show the median (orange), the interquartile range 
(IQR) (), and outliers () in the set of local concentrations, 
ij, for each example source. Here, any points i where 
ij(t) > 1.5IQR + Q3 or < Q1 – 1.5IQR, are considered outliers, 
where Q1 and Q3 are the 1st and 3rd quartiles of the set ij(t). 
These figures also show the source-average concentration, 

( )j t , for both sources (blue) and the corresponding 
well-mixed concentration (grey).  

 
Fig. 6 Box and whisker plots of the transient distribution of 
concentration in space during the releasing period, as well as 
the average concentration, ( )j t  (blue) for two example source 
locations. Both plots also show the same transient well-mixed 
concentration, R,WM(t) (grey) 

Figure 6 shows that during the releasing period in this 
room, there are noticeable differences in the source average 
concentration, j , for the two example source locations. 
After an 1800 s release, the source average for Source 1 is 
13.5% greater than the well-mixed prediction, while for 
Source 2 it is nearly 16% lower than the well-mixed 
prediction. There are also major differences in the spatial 
distribution of concentration from these two sources. 
For Source 1, there are a significant number of outlying 
high concentration measuring points, which cause the 
source-average concentration to be notably higher than 
the median. In contrast, the contaminants from Source 2 
appear to be approximately normally distributed, since  
the source-average concentration matches closely with  
the median concentration. There are both high- and 
low-concentration outliers, indicating that the data set is 
more clustered near the mean compared to the contaminant 
distribution from Source 1. Source 1 shows a strong positively 
skewed distribution with a long tail of high-concentration 
measuring points which increases the mean, source average, 
and cause it to be notably higher than the median.  

The differences between these two sources can largely 
be explained by their respective source locations and the 
local airflow in those areas, shown in Figure 4. For 
example, Source 1 is located within the rooms occupied 
breathing-zone, unlike Source 2. The high concentration 
outliers in the set of local concentrations, i1, correspond  
to the measuring points nearby the source location, which 
see much higher local concentrations. The differences in 
the source average concentrations reflect how quickly 
contaminants are removed from a particular regions of 
the room, and can be used to inform differences in the 
relative ventilation effectiveness at different source locations. 
Figure 4 shows that Source 1 is located in a region of 
relatively low velocity and is also near the two recirculating 
zones. A large portion of the contaminants released   
from Source 1 may be trapped in these recirculation  
zones, increasing the residence time of these airborne 
contaminants in the room. By comparison, Source 2 is 
located in a region of relatively high velocity within the main 
outer flow region. A large portion of the contaminants 
released from Source 2 are carried by the main outer flow 
along the floor and up towards the room outlet. The 
differences in the contaminant dispersion paths away from 
the particular source locations help to explain the major 
differences in the transient distributions of contaminants 
from these two sources.  

5.2.2 Decaying period 

Similarly to Figure 6, Figure 7 shows the distribution of 
local concentrations in the occupied breathing zone for the  
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Fig. 7 Box and whisker plots of the transient distribution of 
concentration in space during the decaying period, as well as 
the average concentration, d( )j t , (blue) for two example source 
locations, jx , noted in Figure 3. Both plots also show the same 
transient well-mixed concentration, D,WM(td) (grey) 

same two example source locations, but for the decaying 
period after a release of duration trel = 300 s. Again, we  
see that the well-mixed assumption underestimates the 
observed source average concentration for Source 1 while 
overestimating for Source 2. This difference stems from the 
differences in the ventilation effectiveness at the two source 
locations during the releasing period, and the resulting 
differences in their initial decaying period values, 0,CFD. 
The differences in the general trend of the source average 
curves during the initial mixing stage are also notable. As 
we see in Figure 9 for Source 1, the average concentration 
quickly drops from a high initial concentration before 
smoothly decaying in a predictable way. By contrast, the 
average concentration for Source 2 initially increases from 
some low concentration before reaching a peak, and then 
decaying in the expected manner. This delayed peak for 
Source 2 is a result of the time it takes for the majority of 
the contaminants to move from the source location up and 
into the breathing zone and thus contribute to the source 
average measurement.  

Similarly, the sharp drop in Source 1’s average 
concentration during the mixing stage can be explained by 
the rapid dispersion of contaminants away from the region 
near the source. The high-concentration outlying measuring 
points near the source quickly move toward the average 
after the release ends and the contaminants quickly spread 
throughout the room. This also causes the set of local 
contaminant concentrations, i1, to quickly become more 
normally distributed, and the strong positive skew noted in 
the releasing period quickly dissipates. The distribution of 
local concentrations, ij, from any source quickly becomes 
approximately normal in the decaying period. The relative 
variability of concentration in space for different source 

locations all approach the same fully-developed relative 
spatial variability, FDi

δ*
, , discussed further in Section 5.4.1. 

5.2.3 Example of regression curve fitting 

Here we apply the curve fit models to characterize the 
transient behavior of source average concentration observed 
in our CFD simulations. Using a least squares regression, 
the transient behavior of each source is summarized using 
scalar fit-parameters to describe the development of the 
source average concentrations in time. As we noted in 
Section 3.3, at the start of both the releasing and decaying 
periods there is a brief mixing stage. During this stage, the 
slopes of the different source average curves, ( )j t , can 
vary dramatically depending upon the source location and 
the initial path the contaminants take away from the source 
as they disperse. Capturing the diverse range of behavior 
during this brief mixing stage using a curve fit method is 
impractical. However, after this brief mixing stage all the 
different source average curves follow smooth paths 
similar to those predicted by the well-mixed model, Eqs. (2) 
and (3). We use the term mixing time, tmix, to describe the 
duration of this stage at the start of each period before the 
source average curves take on their smooth predictable 
forms. While the mixing times can also vary with different 
source locations, in both periods after approximately 120 s 
the all the curves have taken on the smooth shapes of   
Eqs. (12) and (13). Since the concentration time series do 
not follow these curves during the initial mixing stage, to 
avoid the confounding influence of this period, we ignore 
the first 120 s of each period when calculating the fit 
parameters.  

Releasing period  

Figure 8 shows an example of the releasing period 
regression curve fit, Eq. (12), being applied to represent the 
source average concentration from Source 1. A key difference 
Eq. (12) and the well-mixed average concentration model, 
Eq. (2), is the addition of the intercept term, I,R,fit. We 
introduce this term in order to account for the initial shift 
in the source average concentration which occurs during 
the mixing stage. Figure 8 also demonstrates why the I,R,fit 
term was added to Eq. (12). It compares the result of the 
three-parameter fit described in Eq. (12) (dashed line) with 
a similar two parameter fit where we do not attempt to 
account for this initial shift that occurs during the mixing 
stage, I,R,fit = 0 (dotted line). It is clear, particularly in the 
subfigure, that the three-parameter fit does a much better 
job of predicting the transient source average than the 
two-parameter fit. Adding an intercept term is particularly 
helpful in accurately assessing the observed breathing-zone 
contaminant removal rates, 1/τR,fit. The variability in set of 
calculated intercept terms also enables us to better understand  
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Fig. 8 Breathing-zone average concentration from Source 1 (blue), 
the releasing-period curve-fit (navy) for this source of the form 
shown in Eq. (12), and the concentration predicted by the well 
mixed model (grey)  

how uncertainty in a particular input parameter can 
influence the magnitude of uncertainty in this mixing 
stage behavior.  

Decaying period  

Figure 9 shows an example of the decaying period curve 
fit, Eq. (13), for Source 1 after a trel = 300 s release. In this 
figure, we see that shortly after a brief mixing stage the 
source average concentration is very well described by the 
Eq. (13). We also point out that the mixing stage shift in 
concentration, I,D,fit = 1.79 [m−3], is similar to the initial 
shift in concentration during the releasing stage, I,R,fit = 
1.84 [m−3], and we find that this is the case for all the 
different source locations tested, with I,D,fit ≈ I,R,fit for any 
particular source location.  

We computed similar fits for each source average 
concentration, giving us a varying set of 50 instances for each 
parameter. The variability in these sets of fitting parameters 

 
Fig. 9 Breathing-zone average concentration from Source 1 (blue), 
the decay-period curve-fit (navy) for this source of the form 
shown in Eq. (13), and the concentration predicted by the well 
mixed model (grey) 

can then be analyzed to understand how the average 
concentration varies in response to our uncertain input 
parameter, i.e. does variability in the source location 
influence the room time constant, the average magnitude, 
or the mixing stage behavior? Some of the fit-parameters 
may be more sensitive to changes in source location while 
others are not, but maybe affected by other uncertain 
room parameters. This enables us to better understand 
how to incorporate the impact of different uncertain input 
parameter on the spatiotemporal variability in the average 
concentration.  

5.2.4 Impact of releasing time on the decaying period 
concentration 

In previous sections, we showed examples of the decaying 
period after a trel = 300 s release. In this section, we discuss 
the trends in the decaying period as trel increases from 15 s 
to a continuous release, trel = ∞, for a single example source. 
Figure 10(a) shows the trends in the average concentration 
from Source 1, 1 . Because all of these releases of different 
duration’s are generated by superimposing the same 
instantaneous release, the different 1  curves overlap while 
t < trel. For each finite release, the source averages appear 
to follow a similar pattern during the decaying period 
also. We can see in Figure 10(a) that the sharp drop in the 
source average during the decaying period mixing stage, 
I,D,fit, is of a similar magnitude, and appears to take a 
similar amount of time, tmix, regardless of the releasing 
duration. Both these observations support the explanation 
that this abrupt shift during the mixing stage is a result 
of the high concentration region near Source 1 quickly 
dissipating just after the release. Due to the nature of the 
contaminant release and steady airflow, the same absolute 
amount of recently released contaminants will be in these 
high-concentration regions and take the same amount of 
time to move out of it. For this source location, there is a 
sharp dip in the source average during the mixing stage. 
Figure 13 shows that this constant magnitude shift has a 
greater impact on the the mixing stage model accuracy 
when the release is shorter and the recently released 
contaminants make up a larger fraction of all the contaminants 
in the room. We see for trel = 15 s the 1  curve dips below 
the fitted curve during this stage approximately by 
approximately 30% of 0,WM but for longer releases, such 
as trel = 300 s shown in Figure 9, the magnitude of this dip 
is negligible.  

Figure 10(b) shows the same set of source average 
concentrations, but only during the decaying period and 
also normalized by their respective well-mixed initial 
decaying period concentrations, 0,WM = R,WM(trel). A brief 
examination of Eqs. (2) and (3) shows that C0,WM is 
proportional to the total amount of contaminants released 
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over a period t < trel. We note that the different source 
average curves decay at the same rate regardless of the total 
amount of contaminant or length of release. In the terms 
of the curve fit model, Eq. (3), for a given source location 
the terms 0,fit/0,WM and τD,fit are extremely consistent for 
different release durations. Because of these observed 
consistencies in the decaying period behavior and for the 
sake of brevity, the rest of this work will focus on the trends 
in the decaying period after a trel = 300 s release.  

5.2.5 Fully-developed relative concentration 

In this section, we discuss the link between the spatial 
variability in the velocity field and the distribution of the 
contaminant concentration in space. Figure 11 shows the 
contours of the relative concentration distribution from 
Source 1 at the mid-plane, y = 0, well into the decaying 
period, td = 900 s. This plot was generated using a quadratic 
interpolation of the measured concentrations from the sets 
of the equally spaced full-room (×) and breathing zone (+) 
sets of measuring points, ix , where yi = 0. 

In comparing Figures 4 and 11, we can see that there 
is a strong correlation between the velocity field and the 
relative concentration field. The regions of lower than 
average concentration correspond with regions of higher 
than average velocity, and regions of higher concentration 
correspond to areas of lower velocity. The relative spatial 
distribution of the concentration well into the decaying 
period, td  tmix, depends almost entirely on the airflow in 
the room. After examining similar contours to Figure 11 
for a subset of the sources at various points in the releasing 
and decaying periods, we found that during the releasing 
period and mixing stage the concentration field depends 
upon the source location. However, well into the decaying 

period, the relative concentration fields are nearly constant 
and identical to the cross-section of the fully-developed field 
shown in Figure 11. We will refer to this common level of 
relative spatial variability for different source locations long 
into the decay period that as the fully developed spatial 
variability, ,FDiCδ* . Once the concentration field reaches this 
fully developed point, contaminant concentration everywhere 
in the room decays uniformly at a rate proportional to the 
local concentration, which causes the relative concentration 
field to remain constant.  

While the fully developed level of relative spatial 
variability, ,FDiCδ* , is not influenced by the source location, 
the average concentration is strongly influenced by the 
source location within the flow field. We observed that this 
fully-developed concentration field also predicts how well 

 
Fig. 11 Contours of the relative concentration from Source 1, 
interpolated from the measuring points (grey × and +) at the 
room mid-plane, yi = 0. The boundary of the breathing-zone (grey 
dashed) and the location of Source 1 (pink) are also shown 

     

(a) Releasing and decaying periods (b) Normalized decaying period 

Fig. 10 Source-average concentration from Source 1, 1 , shown for increasing releasing times, trel. (a) shows both the releasing and 
decaying periods for finite releases ranging from 15 s < trel < 600 s (solid colored), as well as a continuous releasing case (dotted black). 
(b) shows the same data, during only the decay-period, and normalized by the predicted well-mixed initial decay-period concentration, 
0,WM (solid colored), as well as the well-mixed decay-period concentration, D,WM(td), equivalently normalized (grey) 
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contaminants are removed from a given location. The regions 
in the fully-developed field with low relative concentrations, 

d( )j jx t, /


  < 1 in Figure 11, tend to be the regions from 
which the contaminant sources are removed more efficiently, 
and likewise sources that are removed less efficiently (higher 
ss,fit and 0,fit terms) are often located in regions where  
in the fully-developed field d( )j jx t, /


  > 1. This indicates 

that when designing a space the fully-developed relative 
concentration field can provide significant insight into   
the levels of spatial variability in a room and how best to 
reduce this spatial variability by eliminating these high 
concentration zones.  

5.3 Variability in room average measures 

In this section, we discuss the variability in the source- 
average transient behavior of the room due to different 
source locations. We first present the source-average 
concentration from all 50 of the CFD-simulated sources for 
both the releasing and decaying periods. We also discuss 
the insights which can be gained about the trends in these 
average concentrations using our proposed curve fitting 
regression model, and discuss the relationship between 
the source location and the trends in the source average 
concentration. And finally, we present the observed variability 
in the source-average exposures in both periods.  

5.3.1 Variability in average concentration  

Releasing period  

Figure 12 shows the set of all 50 source-average con-
centrations, ( )j t , during the releasing period as well as 
the total-average concentration, ( )ij t . There is significant 
variability in the observed source averages, and they often 
deviate significantly from the well-mixed prediction. At  
t = 1800 s, the observed source average concentrations  
in this study ranged from 82%–130% of the well-mixed 
prediction, with the total average equal to approximately 
114% of the well-mixed concentration. In summation, 
during the releasing period the well-mixed assumption tends 
to under predict the contaminant concentration in this 
room’s breathing zone.  

The releasing period fit-parameters (I,fit, SS,fit, and τR,fit) 
are described in Eq. (12) in Section 3.3 and are summarized 
Table 1. There are several trends in the variability of the 
source average during the releasing period that can be better 
understood using the distributions of these fit-parameters. 
First, the term representing the constant shift in the 
concentration resulting from to the initial mixing stage, 
I,R,fit, is small relative to the main scaling term, SS,fit. The 
different I,R,fit’s range from −3.8% to 7.0% of the SS,WM 
term, with a mean of I,R,fit = 0.3% of SS,WM, close to the well  

 
Fig. 12 Releasing period breathing-zone source-averaged 
concentrations from each of the 50 source locations (blue), as 
well as the total average (black) and the expected well-mixed (grey) 
concentrations 

mixed intercept of 0. The relatively small average magnitude 
of this initial offset, I,R,fit = 3% of SS,WM, means that for 
long releases when the concentration in the room is at or 
near a steady-state level the significance of this initial offset 
is minimal, but in situations when the releasing duration is 
short and the and the peak concentration is significantly 
less than SS,WM, this initial deviation can cause differences 
between the well-mixed model and spatially resolved 
predictions of a room’s average concentration.  

On average the scaling term, SS,fit , is 18% higher than 
its well-mixed equivalent, SS,WM, and ranges from 9% lower 
to 31% higher than the well-mixed value. The absolute 
variability in the set of SS,fit terms was notably higher than 
for I,R,fit, with 

SS,fit
s = 7.1% of SS,WM. This indicates that for 

longer releases the initial variability related to the mixing 
stage offset has less of an impact on the overall variability 
in the average than the variability in the SS,fit term. The set 
of observed average time constants τR,fit is notably less 
variable than either SS,fit or I,R,fit, with a relative variability 
of 

R,fitτδ* = 1.5%. This indicates that while the overall magnitude 
of the concentration can vary significantly with different 
source locations, the average rate of contaminate removal, 
1/τR,fit, is not significantly impacted by where in the room 
a source is located. It is also important to note that the 
observed contaminant removal rate in this room is 
consistently lower than that of the well-mixed model, with 

R,fitτ  11% higher than τWM.  
By understanding the relative levels of variability in the 

underlying parameters describing the transient behavior, as 
well as the way these parameters relate to the average, we can 
better explain the trends we see in the relative variability 
in ( )j t , shown in Figure 13. The relative variability is  
very high during the mixing stage because the average 
concentration in the room is very low and there is significant 
variability in the mixing stage behavior, represented by 

I,R,fit
δ  
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Fig. 13 Relative variability in the set of transient source-average 
concentrations during the releasing period 

which is large relative to j  at this time. The relative 
variability in the observed averages quickly decreases after 
the mixing stage however, and appears to approach a constant 
steady-state value near 7%. Because of the minimal variability 
in the time constant terms, τR,fit, this variability in set of 
averages long after the mixing period is equivalent to the 
relative variability in the set of steady-state concentration 
terms, SS,fit* .  

Decaying period  

Figure 14 shows the set of all 50 decaying period source- 
average concentrations, d( )j t , and the total-average 
concentration, d( )ij t . Similarly to the releasing period, on 
average in this room the concentration during the decaying 
period is consistently higher than what the well-mixed 
model would predict. During the initial mixing stage when 
the source average is highest, there is significant variability 
in both the initial decaying period concentration, 0,CFD, 
and in the initial path that the source average curve takes. 
The 0,CFD terms range between 71% and 142% of the 
well-mixed initial decaying period concentration, 0,WM, with  

 
Fig. 14 Decaying period breathing-zone source-averaged 
concentrations from each of the 50 source locations (blue), as 
well as the total average (black) and the expected well-mixed (grey) 
concentrations 

0 CFD, =109% of 0,WM and a relative standard deviation 
of 

0 ,CFDCδ* = 15%. This initial variability is by definition 
equivalent to the variability in the source averages during 
the releasing period at trel (t = 300 s in Figure 12). Figure 14 
also shows how the shapes of the source average curves 
from different source locations during the mixing stage. 
As shown in the example sources, the behavior in this 
period is strongly tied to the source location within the local 
airflow and the trajectories that contaminants follow just 
after they are released from a particular source location. 

There are several notable observations from the 
distribution of decaying period fit-parameters, which are 
all summarized in Table 1. The calculated 0,fit terms range 
from 82% to 123% of 0,WM, with 0,fit = 108% and 

0,fit
s = 

7.4% of 0,WM. Indicating that 0,fit is significantly impacted 
by the source location. While the set of observed decaying 
period time constants, D,fitτ , was nearly identical to the  
set R,fitτ  and was not impacted by the source location.  
The higher initial average concentration and average time 
constant, relative to those of the well-mixed model, results 
in a higher average concentration than the well-mixed 
prediction throughout this period. This consistently higher 
concentration would lead to significantly higher levels of 
exposure during this period compared to the well-mixed 
model’s prediction.  

Figure 15 shows the transient development of the 
relative variability in the decaying period source averages, 

d( )
j

δ t*


. Similar to the releasing stage, the variability is 
significantly higher during the mixing stage, then approaches 
a constant, lower level of variability. This constant level is 
approximately equivalent to the variability observed in the 
set of scaling terms, 0,fit.  

5.3.2 Variability in curve fit parameters  

Several of the parameters in Eqs. (12) and (13) have the 
same or analogous meanings, and are therefore similarly 
effected by variability in particular room parameters. Table 1  

 
Fig. 15 Relative variability in the set of transient source-average 
concentrations during the decaying period 
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demonstrates the similarities between the calculated 
distributions of particular releasing and decaying period 
fit-parameters. First, the room time constants calculated 
during the two periods, τR,fit and τD,fit are nearly identical 
for any particular source location. The observed room time 
constants were significantly higher than the well-mixed 
model would predict and did not appear to be too 
dependant on the source location. The distributions of the 
terms describing the mixing stage offsets in the two periods 
are also nearly identical for any given source location,  
I,D,fit ≈ I,R,fit. Figure 10(a) shows the magnitude of I,D,fit 
was also consistent regardless of trel. Together this indicates 
that the shift which occurs during the mixing stage is 
extremely consistent for a given releasing location regardless 
of the releasing duration since it is a result of the initial 
path the contaminants take just after they are released.  

Unlike the room time constant terms however, the 
sets of intercept terms, I,R,fit and I,D,fit, are highly variable 
and extremely sensitive to the source location. Both sets of 
I,fit terms have bi-modal distributions with their means 
centered near 0, but with an average magnitude of I,fit = 
1.4 [m−3], or 2.6% of the predicted steady-state concentration, 

SS,fit* , and could be as high as 6% of SS,fit* . The uncertainty 
in this mixing stage offset term due to the source location is 
less critical in situations with long releasing periods when 
variability in the SS,fit term dominates, but for shorter 
duration releases when 0,fit is closer to I,D,fit| | , this initial 
decaying period variability is much more significant. The 
variability in the decaying period exposure, and specifically 

0 ,fitCδ* , will be much higher for short release cases due to the 
relative contribution of the consistent-magnitude mixing 
stage shift. Finally, the main linear scaling terms, SS,fit and 
0,fit, also have similar distributions and are highly correlated 
for the same source locations, with higher values of SS,fit 
corresponding to higher values of 0,fit for the same source 

location. High values of SS,fit also correlate with higher 
positive values of I,fit. Each of these terms are strongly 
influenced by the source location and inform how effectively 
contaminants are removed from different parts of the 
room.  

5.3.3 Variability in average exposure 

Releasing period  

Figure 16 shows the source-average exposures for each 
source location tested, as well as the mean-averaged 
exposure and the expected exposure in a well-mixed room 
for the releasing period. During the releasing period, the 
transient exposure continues to increase even after the 
concentration approaches its steady-state value. As a result, 
for long releases, the exposure accumulated during the initial 
mixing stage is less significant to the overall exposure, which 
depends primarily on the steady-state average and spatial 
distribution of concentration. However, for shorter releases, 
the high mixing stage variability has a more significant impact 

 
Fig. 16 Releasing period average breathing-zone exposures from 
each of the 50 source locations (red), as well as the total average 
(black) and the expected well-mixed exposures (grey) 

Table 1 Summary of the distribution of each curve-fit parameter for the set of 50 different source locations. It includes the minimum, 
mean, and maximum value of each of the corresponding parameter sets, as well as their standard deviations and the mean-normalized 
standard deviations of each set 

 Parameter, X Units Well-mixed value Min. X X  Max. X sX Xδ*  

τR,fit [s] 969 1032 1080 1114 16.7 1.5% 

SS,fit [m−3] 46.2 42.1 54.7 60.2 3.3 6.0% 

SS,fit* [m−3] 46.2 40.9 54.8 62.3 4.0 7.2% 

I,R,fit [m−3] 0 −1.8 0.2 3.2 1.6 — 

Releasing 

I,R,fit  [m−3] 0 0.1 1.4 3.2 0.78 57.1% 

τD,fit [s] 969 1032  1080 1114 17.0 1.6% 

0,fit [m−3] 12.3 10.1 13.3 15.2 0.9 6.8% 

0,CFD [m−3] 12.3 8.8  13.4 17.4 2.0 15.2% 

I,D,fit [m−3] 0  −1.8 0.1 3.3 1.6  — 

Decaying 

I,D,fit  [m−3] 0 0.1  1.4 3.3 0.78 55.9% 

 



Castellini et al. / Building Simulation / Vol. 16, No. 6 

 

906 

on the overall exposure. Since the concentration observed 
in CFD for this room is consistently higher than the 
well-mixed assumption would predict, the CFD-predicted 
exposures increasingly deviate from the well-mixed exposure 
as time goes on. After the 1800 s (30 min) continuous 
release shown in Figure 16, the source average exposure 
from different source locations can range from j = 80% to 
133% of the well-mixed exposure, WM, with a total average 
exposure of j = 112% and a standard deviation of 

j
s


= 
11% of WM.  

Decaying period  

Figure 17 shows the source-averaged exposures, j , for 
each source location tested, as well as the total-average 
exposure and the expected exposure in a well-mixed room 
for the decaying period. In contrast to the releasing period, 
the highest rate of exposure accumulation occurs during 
the initial mixing stage of the decaying period, shown by 
the slope of the source average curves which is greatest 
early in the decaying period. As this period progresses, the 
average concentration in the room decreases and the 
different source average exposure curves approach some 
final steady-state value when the all of the contaminants 
have been removed from a given room. Again, because 
the average concentrations are higher and decay slower 
compared to the well-mixed model, the well-mixed model 
tends to underestimate the level of exposure in this room 
and the deviation gets worse as time increase, until reaching 
some final value when all the contaminants are removed 
in both models. At the end of decaying period shown in 
Figure 17 (td = 1500 s), the observed source average 
exposures deviate significantly from the well-mixed prediction; 
ranging from j =120% to 177% of the well-mixed exposure, 
WM, with a total average exposure of 158% of WM and a 
standard-deviation 10% of WM. 

 
Fig. 17 Decaying period average breathing-zone exposures from 
each of the 50 source locations (red), as well as the average of 
these transient averages (black) and the expected well-mixed 
exposure (grey) 

5.4 Measures of variability in space 

This section discusses how the concentration and resulting 
exposure can vary in space within a particular room, relative 
to the corresponding source-average. First we discuss the 
variability of concentration in space for both the releasing 
and decaying period, and then similarly discuss the variability 
of exposure in space.  

5.4.1 Variability of concentration in space 

Releasing period  

Figure 18 shows the set of relative spatial variabilities for 
the 50 source locations, 

j
δ*


, during the releasing period. 
Initially, the relative variability approaches infinity since 
the denominator, j , is zero at t = 0, and the contaminants 
are concentrated near the releasing location. As time goes 
on, each source asymptotically approaches a source-specific 
level of relative steady-state spatial variability, ,SSij

δ*
 . Many 

of the sources have reached this ,SSij
δ*
  value by the end of 

the t = 1800 s continuous release, but some of the sources, 
particularly those approaching higher ,SSij

δ*
  values are 

still decreasing. At this point, the spatial variability can 
range between 

ij
δ*
 = 11% and 40% of the rooms source 

average concentration, with an average of 
ij

δ *
 = 22% and 

an associated standard deviation of 
ij

δs *


= 7.2% of the 
corresponding source average. With an average variability 
in spaces of 22% and a steady-state variability in the different 
averages of approximately 7%, we can say that in this room 
the relative spatial variability was nearly three times greater 
than the relative variability in the room average concentration 
for an uncertain source location. This indicates that, for 
this room on average, an occupant’s location within the 
breathing zone has more influence on the transient levels of 
concentration they will see than the location of the source 
within the room.  

 
Fig. 18 Relative variability of the releasing period concentration 
in space for each of the 50 source locations (blue), as well as the 
transient average this set of relative-variabilities 
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As shown previously in Figure 6, for some source 
locations (especially those within the breathing zone) 
the measured distribution of concentration in space can be 
extremely positively skewed with a small number of very 
high concentration monitoring points near the source. 
These source locations which produce highly skewed 
distributions also tend to correspond with higher levels of 
steady state variability, ,SSij

δ*
 .  

Decaying period  

Figure 19 shows the set of relative spatial variabilities during 
the decaying period after a trel = 300 s release. Similarly to 
the source average, due to the use of superposition, the 
initial spatial variability in comes from t = 300 s in Figure 18, 
and it varies greatly for different source locations. After the 
initial mixing stage however, the different source scenarios 
converge to the same fully developed level of spatial 
variability, ,FDi

δ*
 . The subfigure within Figure 19 shows 

the different paths the 
j

δ*


 curves take during this mixing 
period. But by approximately td = 300 s, all the sources 
reach a constant ,FDi

δ*
 = 15%, which is extremely consistent 

across the different source locations tested. At td = 300, the 
spatial variabilites range from only 

j
δ*


= 13% to 16% with 
a standard deviation of only 

ij
δs *


= 0.5%.  
It is also notable that for some source locations the 

steady-state spatial variability, ,SSij
δ*
  shown in Figure 18, 

ends up being lower than ,FDi
δ*
 . These sources are likely 

located in regions that have lower than average concentration 
in the fully-developed field, i.e. regions in Figure 11 where 
the relative concentration is less than one. If the source is 
in this region, the associated higher concentration near 
the source during the release can cause the overall spatial 
distribution of concentration to become slightly more 
uniform. These areas of low concentration also tend to 
correspond to higher local flow velocities, which also help  

 
Fig. 19 Relative variability of the decaying period concentration 
in space for each of the 50 source locations (blue), as well as the 
transient average of this set of relative-variabilities (black). The 
figure also shows a zoomed-in subfigure of the period td < 260 s 
to highlight the variability in the initial mixing stage  

to explain why the sources with the lowest values of 
,SSij

δ*
  tend to reach these levels most rapidly, because   

the contaminants spread out from these locations most 
quickly.  

5.4.2 Variability of exposure in space 

Releasing period  

Similarly to the concentration, the releasing period relative- 
variability of exposure in space, 

ij
δ*
  shown in Figure 20, 

begins as nearly infinity before decreasing towards different 
steady-state levels that depend upon the specific source 
location, referred to as ,ij SSδ*

 . Because exposure accumulates 
at specific points in space, the relative spatial variability in 
exposure tends to be slightly higher than the corresponding 
relative spatial variability in concentration. This is due to 
points that, over time, tend to see significantly higher or 
lower concentration than the room average, which causes 
the variability to increase as the extremes continue to 
diverge, relative to the mean. At the end of the t = 1800 s 
continuous release, the standard deviation in the set of 
locally measured exposures range from 

ij
δ*
 = 9.5% to 56% 

of the room’s average exposure, with an average of 
ijδ

*
 = 

28%, and 
ij

δs *


=11%.  

Decaying period  

Unlike the spatial variability in the decaying period 
concentration, the initial spatial variability in the decaying 
period exposure does not come directly from the releasing 
period (t = trel in Figure 20), rather these initial values 
reflect the variability in space of the instantaneous exposures 
in each room at trel, i.e., the distribution of local 
concentrations multiplied by the time integration time-step, 
ijΔt. Because trel, td = 0, is also the point of the highest 
variability in ij, the different relative spatial variabilities in 
exposure, 

ij
δ*
 , decay towards some fully developed state, 

but unlike for concentration this fully developed level does  

 
Fig. 20 Relative variability of exposure in space for each of the 50 
source locations during the releasing period (red), as well as the 
transient average this set of relative-variabilities (black)  
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vary somewhat with different source locations. The impact 
of the exposure accumulated during the mixing stage when 
concentration is highest causes the 

ij
δ*
 curves to decay 

towards a fully-developed state more slowly than the spatial 
variability in concentration. The difference in these decay 
rates can be seen by comparing the subfigure windows in 
Figures 21 and 19. At the end of the td = 1500 s decaying 
period shown in Figure 21, the most of the sources have 
reached this fully-developed spatial variability. The average 
spatial variability in exposure is close to ,FDi

δ*
 , ,FDiδ

*
 = 15%. 

However although for most of the decaying period each 
source location has the same fully developed level of spatial 
variability in the concentration field, ,FDi

δ*
 , the differences 

in the exposure accumulated during the high-concentration, 
highly-varying mixing stage lead to the observed differences 
in the fully developed spatial variability in exposure.   
The relative spatial variability can range from 11% to 19% 
with 

ij
δs *


= 1.8% compared to 0.5% for ,FDi
δ*
 .  

5.5 Total spatiotemporal variability 

In this section, we bring together the trends in the average 
variability with the trends in spatial variability to examine 
the total variability in the of observed concentration and 
exposures in this space from all possible source locations, 
ij and ij. Figures 22 and 23, concentration and exposure 
respectively, also demonstrate both the releasing and 
decaying period trends by depicting the case of a finite 
release of trel = 300 s followed by a 1500 s decaying period.  

5.5.1 Total variability in concentration 

Figure 22 summarizes the total range of possible breathing 
zone concentrations in this room for this finite release case 
with an unknown source location. The darker-shaded region 

 
Fig. 21 Relative variability of exposure in space for each of the 50 
source locations during the decaying period (red), as well as 
the transient average this set of relative-variabilities (black). The 
figure also shows a zoomed-in subfigure of the period td < 260 s to 
highlight the variability in the initial mixing stage 

 
Fig. 22 The total variability in the set of observed concentrations, 
ij, summarized with the inner 95th quantile of the entire set ij 
(light-red), and of the set of source-average concentrations j  
(darker-red), as well as the total-average ij  (black), and well-mixed 
(grey) concentrations, for a trel = 300 s release and 1500 s decaying 
period 

shows the inner 95th quantile for the set of source average 
concentrations, j , while the lighter-shaded region shows 
the same quantile for the full set of local concentrations, ij. As 
shown in Section 5.3.1, for both periods the distribution 
of j  becomes approximately normal after the mixing 
stage, and the total average during both periods is 
consistently higher than well-mixed prediction. During the 
releasing period, t < trel, there is significant positive skew 
in the set of local concentrations, resulting from the regions 
of high concentration near the particular source locations, 
and the absolute level of spatial variability reaches its peak 
at the trel. Considering the set of relative spatial variabilities 
at this point (t = 300 s in Figure 18) we can see that for 
most of the source locations tested, the room is far from 
its steady-state level, ,SSij

δ*
 . During the decaying period 

mixing stage, this skewness is quickly reduced until after 
the total distribution of ij also becomes approximately 
normal and, as shown in Figure 19, the relative level of 
spatial variability for each source location reaches the fully 
developed level, ,FDi

δ*
 . After this point the levels of relative 

variability in both the room average and in space reach   
a constant levels and as a result the total variability in 
concentration decreases proportionately to the decay in the 
total average, as shown in Figure 22.  

5.5.2 Total variability in exposure 

Figure 23 summarizes the variability in the total set of 
observed local exposures, ij, for the same finite releasing 
period shown in Section 5.5.1. The darker-shaded region 
shows the inner 95th quantile for the set of source-average 
exposures, j , while the lighter-shaded region shows the 
same quantile for the set ij. As shown in Section 5.3.3, 
because the source average concentrations are consistently  
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Fig. 23 The total variability in the set of observed exposures, ij, 
summarized with the inner 95th quantile of the entire set (light-red), 
and of the set of source-averaged exposures j  (darker-red), as 
well as the total-average ij  (black dashed), the mean-averaged 

j  (black solid), and well-mixed (grey) exposures, for a trel = 300 s 
release and 1500 s decaying period 

higher than the well-mixed concentration the total average 
exposure predicted by CFD diverges more and more 
rapidly from the well-mixed prediction with increasing 
time. The low observed contaminant removal rate, 10% 
lower than the well-mixed equivalent, also contributes 
to this increasing rate of divergence between the two 
predictions. Figure 23 highlights how important it is to 
accurately assess these major characteristics. At the end 
of this 1800 s exposure period an occupant in this room 
would be likely to see 50% more exposure to this arbitrary 
contaminant than the well-mixed model would predict and 
could see more than three times the well-mixed exposure at 
some locations in the breathing-zone.  

During the releasing period and the mixing stage of  
the decaying period, when the total average concentration, 

j , is the highest and the set of local concentration 
measurements, ij, is the most skewed, the distribution of 
exposure also becomes significantly skewed. This skewness 
in the spatial distribution of exposure persists long after the 
distribution of the contaminant concentration has returned 
to being approximately normal. The wide range of local 
exposures shown in Figure 23 demonstrates the high 
degree of uncertainty that exists in the possible exposure  
an occupant could see in this room when the source 
location is unknown, and how widely it can differ from 
the well-mixed assumption, particularly exposure near the 
source during the release. Users of traditional well-mixed 
models could take this uncertainty into consideration, 
possibly by including safety factors to account for the 
spatiotemporal uncertainty within a room and ensure a 
desired level of protection from a particular contaminant/ 
source of concern. 

6 Discussion 

For a majority of rooms, particularly those employing mixing 
ventilation strategies, the well-mixed model provides a 
good prediction of a room’s total average concentration 
and occupant exposure. However, these simplified models 
inherently introduce additional uncertainty in the model 
prediction (Keil 2000). Due to the complexities of real 
room airflows and the resulting heterogeneity in the spatial 
distributions of contaminants within a room, the actual 
level of exposure an occupant may see can deviate from 
an idealized well-mixed condition in several ways. First, 
the room on average may be better or worse at removing 
contaminants from the occupied zone than a well-mixed 
model would predict. Second, due to variability in room 
parameters (e.g. source location) or uncertainty in the 
room airflow pattern due to variability in boundary 
conditions (e.g. airflow rate or room heat load), the average 
breathing-zone concentration in a room can vary for 
different instances of the same release. The application of 
our regression curve fitting model enabled us to assess how 
the average transient concentration within the breathing-zone 
tends to deviate from the well-mixed prediction in response 
to some set of uncertain input conditions, in this case, an 
uncertain source location. Finally, there is also variability in 
the spatial distribution of the contaminant concentration 
within the room for each contaminant release scenario. 
The methodology presented in this study enables the 
detailed assessment and quantification of the specific ways 
in which a room’s occupant exposures can deviate from a 
well-mixed prediction, as well as quantifying the uncertainty 
in the range of possible local exposures in the occupied 
breathing-zone. These methods can be applied to quantify 
and evaluate the spatially resolved performance of different 
ventilation strategies, and other techniques for mitigating 
occupant exposure to airborne contaminants while 
considering uncertainty in different influential input 
parameters.  

The case study presented in this paper was deliberately 
simple for the purposes of demonstration. We examine the 
impact of a single uncertain in-room parameter, the source 
location. And while simple, this case illustrated several key 
features of this proposed methodology. First, it allows a 
user to characterize how a room on average can deviate 
from the well-mixed assumption over time, given some set 
of uncertain room parameter(s). For example, in this room 
(under this flow condition) after a thirty-minute release 
from some unknown source location, the total average 
concentration in the breathing-zone is 14% higher than  
the well-mixed prediction. Previous studies have attempted 
to characterize how real rooms deviate from perfectly 
well-mixed rooms such as Sohn and Small (1998), which  
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quantified the effective air exchange rates and effective 
mixing volumes of real rooms under specific conditions. 
The curve fitting method we proposed enables a more 
detailed characterization of how a room’s average con-
centration deviates from a well-mixed condition over time 
as a result of our multi-parameter curve fit. For example 
in this room, we determined that the room time constant 
and the steady-state concentrations were both higher 
than their corresponding well-mixed values, 11% and 
18% higher respectively. Second, this methodology 
enables the assessment of how a room’s average transient 
concentration may vary in response to some set of uncertain 
room parameter(s). For example, in this case with a 
single steady room airflow, the observed time constant 
was not impacted by changes in the source location. While 
conversely, the average steady-state concentration did vary 
significantly for different source locations. It ranged from 
89% to 135% of the well-mixed steady-state concentration 
for the set of source locations tested with a relative standard 
deviation of 7.2%. Finally, the in-room spatial variability 
and the way this variability itself can vary in response to 
some uncertain room parameter(s) can also be evaluated 
using this methodology. For example, in this case, after a 
30-minute release, the average standard deviation in the 
spatial distribution of contaminates was approximately 22% 
of the average concentration, but for the different source 
locations tested this ranged from 11% to 40%.  

6.1 Evaluating more complex uncertain scenarios 

The results of this example case would not necessarily be 
representative of the actual uncertainty in any real room, 
primarily because, while the source location is important, 
there are a myriad of other uncertain or variable room 
input parameters that could also influence the spatiotemporal 
variability in the in-room contaminant distribution. In this 
study, we only simulated a single airflow condition and 
limited our experimental space to the possible uncertain 
source locations within the room, [ ]j j j jx y zx = , , . However, 
this methodology could be extended to consider a much 
more complex higher-dimensional uncertain experimental 
space by considering more of the CFD model’s input 
parameters as uncertain. For example, things like the exact 
inlet flow condition (e.g., temperature, velocity, direction, 
turbulence), the distribution/magnitude of in-room heat 
sources, and possible arrangements of furniture/occupants 
are all potentially uncertain factors that could impact a 
room’s uncertain performance. Probability distribution 
functions could be obtained/estimated for each of the n 
input parameters, and the same algorithm used in this 
study (Deutsch and Deutsch 2012) could be applied to 
obtain a random sample of m instances of this n-dimensional 

experimental space. The mathematics presented in this 
paper would be identical, but the subscript j would refer  
to some instance of the entire space rather than simply a 
source location. Though the determining relationships 
between multiple uncertain inputs and spatiotemporal 
variability would require detailed covariance and sensitivity 
analysis.  

Evaluating a higher m-dimensional space would also  
of course require a larger number of samples (i.e. curse   
of dimensionality) and a corresponding increase in the 
computational requirements for constructing these   
room models. This high computational cost may limit the 
number of situations where it is feasible to apply such 
detailed modeling techniques (i.e. fully resolved CFD 
models) to high-risk scenarios or high-value (e.g. chemical 
manufacturing facilities or the pentagon). However, it is 
important to note that the methodology we have outlined 
could be used to process data from any spatially resolved 
transient concentration model or set of experimental 
measurements, provided sufficient measurement density. 
Therefore, for high-dimensional uncertain spaces when it 
is not feasible to run CFD simulations for a sufficiently 
large sample, other lower fidelity spatially resolved models 
could be used (e.g., fast fluid dynamics models (Zuo and 
Chen 2010), or coarse gird CFD methods (Wang and Zhai 
2012)). Using models with less spatial and/or multi-physics 
resolution models may result in a less accurate assessment 
than CFD models, but can still provide significantly more 
information about the in-room spatiotemporal variability 
than assuming rooms to be well-mixed. With these 
stochastic room surrogate models, building modelers will 
be able to incorporate the impact of in-room spatiotemporal 
variability into multi-zone assessments of the uncertain 
system performance to compare the relative significance of 
the airflow-driven variability in local occupant exposures 
compared to other sources of variability (e.g. source strength, 
decay rate, filtration rate, etc.) that are not impacted by 
variability in the local airflow.  

7 Conclusions 

This paper presented a method for the characterization  
and quantification of spatiotemporal uncertainty within a 
room. We use the method to estimate the spatiotemporal 
variability in a room’s contaminant distribution and the 
resulting uncertainty occupant exposures when the location 
of a generic in-room contaminant source is unknown. The 
metrics we propose decompose the total spatiotemporal 
variability in a room into the variability in a room’s 
transient average concentration and the variability of the 
concentration in space relative to that average. In the 
studied room, when the source location is uncertain, on 
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average the later variability in the possible breathing zone 
concentrations was approximately three times greater than 
the variability in the set of source average concentrations. 
We characterized the transient variability in source average 
concentrations using a regression curve-fit model to 
evaluate specific effects of room parameters, such as source 
location, on the uncertainty in an occupant’s expected 
exposure. For example, we observed that in this small room 
the contaminant removal rate was not impacted by different 
source locations, but the average magnitude did depend 
greatly on where the source was located. Our introduction 
of an intercept term to our models of the transient averages 
enables the efficient characterization of the mixing stage 
offset and resulting uncertainty.  

We also characterize the relative variability of 
concentration in space during the two periods studied. For 
example, we found that, regardless of the source location 
or absolute contaminant magnitude, the relative variability 
in the spatial distribution of contaminants quickly reaches 
a constant level after the brief decay-period mixing stage. 
This fully developed spatial variability is driven by the 
heterogeneity in the room’s airflow distribution. Building 
modelers and operators can apply this method to perform 
similar detailed assessments of the spatiotemporal variability 
in contaminant concentration for different rooms of interest, 
and elucidate which in-room factors have the greatest 
influence on this variability in different exposure scenarios. 
This case study also highlights the importance of accurately 
assessing a room’s total average behavior in order to 
accurately predict occupant exposures. We saw that relatively 
small errors in predicted concentrations can accumulate 
over time resulting in large differences in predicted levels 
of exposure.  

8 Future work 

The methodology for quantifying spatiotemporal variability 
presented in this study was a necessary first step in the 
development of a stochastic surrogate model for particular 
rooms (zones) for incorporation into multi-zone models in 
later works. Such a model must take into account the 
transiently varying spatial heterogeneity in the contaminant 
concentration within a room as well as its impact on 
occupant exposure. Here we limited our investigation to 
the trends in variability within a single room, under a 
single flow condition, and examined the variability in the 
transient concentration from different source locations.  
In future studies, we will investigate higher dimensional 
uncertain spaces and use the proposed methodology to 
perform detailed sensitivity analyses and determine  
which uncertain room inputs have the greatest impact on 
the spatiotemporal uncertainty. It will also allow users   

to identify how these parameters influence the transient 
development of the concentration distribution, i.e. which 
uncertain inputs influence which model parameters. The 
development of these models will ultimately enable     
the inclusion of in-room spatiotemporal uncertainty in 
larger-scale studies of indoor contaminant transport 
using multi-zone models. Stochastic models of each zone 
in a building could be constructed either from specific 
simulations/measurements of the uncertain conditions 
expected in some room(s) of interest. The end goal, once 
this methodology has been applied to characterize a wide 
range of rooms under various uncertain input conditions, 
will be to determine pseudo-empirical relationships 
between known or uncertain room inputs and our models 
characteristic fit-parameters that will enable the prediction 
of a room’s uncertain behavior as well as the deviation 
form the well-mixed assumption that would be expected, 
based on some set of critical in-room parameters known to 
impact spatiotemporal variability. The method proposed in 
this paper will facilitate the identification of these parameters, 
and enable the characterization of their relationships to 
specific aspects of the room’s transient behavior.  
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