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Introduction

Transcriptional coactivator with PDZ-binding motif (TAZ) 
has been identified as a phosphoprotein that interacts with 
14–3-3 protein and its activity is controlled by nuclear-
cytosol localization in a phosphorylation-dependent man-
ner (Kanai et al. 2000). TAZ shares structural and functional 
similarities with yes-associated protein (YAP) (Macias et al. 
1996; Piccolo et al. 2014). TAZ and YAP are phosphorylated 
and trapped in the cytoplasm via interaction with 14–3-3 or 
undergo proteasomal degradation through β-TrCP-mediated 
ubiquitination in response to Hippo signaling (Tian et al. 
2007; Liu et al. 2010). The upstream mammalian Ste20-
like kinases 1 and 2 (MST1/2) trigger the phosphorylation 
and activation of large tumor suppressor kinases 1 and 2 
(LATS1/2) in the Hippo signaling cascade, which in turn 
phosphorylate TAZ/YAP and control their cytoplasmic 
retention and protein stability (Pan 2010; Yu and Guan 2013; 
Piccolo et al. 2014). When the Hippo signaling pathway is 
inactive, TAZ/YAP are dephosphorylated and localized in 
the nucleus. TAZ and YAP are associated with many tran-
scription factors that control various physiological cellular 
events, including cell proliferation, differentiation, migra-
tion, apoptosis, and senescence, and thereby result in tran-
scriptional activation of target genes (Varelas et al. 2008; Di 
Palma et al. 2009; Jeong et al. 2010, 2017; Wang et al. 2016; 
Kim et al. 2019, 2020). In particular, TAZ and YAP inter-
act with transcription factors, in particular, transcriptional 
enhanced associate domain (TEAD) family and enhance the 
transcription of multiple targets involved in tumorigenesis, 
thereby affecting the self-renewal of stem cells, tumor pro-
gression, metastasis, and drug resistance (Chan et al. 2009; 
Zanconato et al. 2015, 2016; Lin et al. 2017). Nuclear locali-
zation and activation of TAZ and YAP are also regulated 
by mechanical signals, such as shear stress, cell shape, and 
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extracellular rigidity (Dupont et al. 2011; Dupont 2016; 
Pocaterra et al. 2020). Although TAZ and YAP are paralogs 
with functional redundancy and tumor-promoting effects 

(Kim 2019), it is clear that TAZ and YAP play distinctively 
essential roles in normal tissue development and homeo-
stasis (Yu et al. 2015; Reggiani et al. 2020). We clarify the 
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genetic and protein structural features of TAZ and further 
highlight its biological functions in normal tissue differ-
entiation from stem cells and in the regulation of tissue 
homeostasis.

Structural features of TAZ

TAZ gene is officially named as WW domain-containing 
transcriptional coregulatory 1 (WWTR1) gene, but it is 
more extensively and commonly used than WWTR1, and 
is different from tafazzin (TAZ). The TAZ gene, a Hippo 
mediator, is highly conserved among divergent species, 
and the human TAZ gene has orthologs in 288 organisms, 
including zebrafish, frog, mouse, rat, chicken, cow, dog, pig, 
and chimpanzee. The 207.6 kb portion of the human TAZ 
gene located on chromosome 3 contains 13 exons and pro-
duces four different TAZ transcript variants, which encode 
the same 400 amino acid (aa) protein (Fig. 1a). In mouse, 7 
exons transcribe two different transcript variants encoding 
two TAZ isoforms composed of 452 and 395 amino acids. 
The mouse TAZ isoform 1 is 100% homologous to mouse 
TAZ isoform 2 and additionally contains 57 aa at the N-ter-
minal, which is not found in human TAZ. The human TAZ 
protein shares 91% identity with the mouse TAZ in the entire 
amino acid sequence, and the WW domain is completely 
identical (Fig. 1b). The WW domain is a modular protein 
domain composed of 40 aa, which mediates specific interac-
tions with proteins containing P-rich motifs such as PPxY, 
LPxY, phosphor-(S/T)P, and PRR motifs (Hu et al. 2004). 
Many transcription factors, including Runt-related transcrip-
tion factors (RUNXs), peroxisome proliferator-activated 
receptor γ (PPARγ), TEADs, SMADs, ErbB-4, and p73 are 
known to interact with the WW domain in TAZ or YAP 
(Strano et al. 2001; Ferrigno et al. 2002; Komuro et al. 2003; 
Zhao et al. 2009). Since TAZ contains a single WW domain 
unlike two WW domains in YAP, its interaction with TEAD 
is structurally different from TEAD-YAP (Kaan et al. 2017; 
Reggiani et al. 2020). TAZ can be distinguished from YAP 
by its interactions with many P-rich proteins and functions 

within the cells. In addition, the coiled-coil domain and 
PDZ-binding motif are within a larger transcriptional regu-
latory regions at the C-terminal domain of TAZ and serve as 
additional protein–protein interaction domains (Kanai et al. 
2000; Hong et al. 2005).

TAZ is essential for self‑renewal and survival of stem 
cells

Stem cells are defined as undifferentiated cells capable of 
producing certain specialized cells and self-renewing prog-
eny cells, and are classified as fetal, embryonic, and adult 
stem cells. TAZ is required to maintain the self-renewal and 
pluripotency of embryonic stem cells, since its deficiency 
in human embryonic stem cells leads to differentiation into 
neuroectodermal lineage (Varelas et al. 2008). TAZ also 
plays key roles in the expansion, self-renewal, and mainte-
nance of stemness of tissue-specific adult stem cells. TAZ 
associates with snail/slug and cooperatively controls the 
self-renewal and osteoblastogenesis of adult skeletal stem 
cells (Tang et al. 2016; Tang and Weiss 2017). Exogenous 
TAZ expression reprograms primary differentiated mouse 
cells into tissue-specific stem cell or progenitor cell state, 
indicating the importance of TAZ for maintaining stemness 
of adult stem cells (Panciera et al. 2016). In addition, dys-
regulated TAZ expression in stem cells causes uncontrolled 
self-renewal and cell expansion, resulting in cancer growth 
and sustained survival of cancer stem cells (Bartucci et al. 
2015; Mohamed et al. 2016; Elaimy et al. 2018). TAZ is 
crucial for maintaining stem cell population and the potency 
of both embryonic and adult stem cells (Fig. 2).

TAZ modulates mesenchymal stem cell differentiation 
into bone, adipose, and muscle

Many transcription factors that contain P-rich motifs have 
been reported to interact with TAZ during the execution of 
many developmental programs (Hong and Yaffe 2006). TAZ 
associates with RUNX2 and strongly activates RUNX2-
driven gene transcription, resulting in enhanced osteoblast 
differentiation (Hong et al. 2005; Long 2011). TAZ also 
interacts with PPARγ but markedly suppresses PPARγ-
driven adipogenic and lipogenic gene expression, whereas 
TAZ deletion in mesenchymal stem cells increasingly drives 
adipocyte differentiation (Hong et al. 2005). TAZ is thus 
important for reprogramming of stem cell lineage commit-
ment. While exogenous TAZ overexpression increased bone 
mineral density in vivo, TAZ deletion impaired osteogenic 
differentiation, but enhanced adipogenic differentiation of 
human adipose tissue-derived stem cells (Yang et al. 2013; 
Zhu et al. 2018). In addition, TAZ induced myogenic dif-
ferentiation through interaction with MyoD and activation 
of myogenic gene transcription (Jeong et al. 2010) (Fig. 2). 

Fig. 1  Structural features of TAZ. a Genome structure of human 
TAZ. Five different transcript variants of TAZ (NM_015472.6, 
NM_001168278.3, NM_001168280.3, NM_001348362.2, and 
XM_017006122.1) are produced from human chromosome 3 
(GRCh38.p13) and are encoded as the same human TAZ compris-
ing of 400 amino acids. b Mouse chromosome 3 (GRCm39) com-
prises of TAZ exons and introns. Two different transcript variants 
(NM_00168281.1 and NM_00168281.1) are generated and encoded 
as two isoforms of TAZ; isoform 1, 452 aa and isoform 2, 395 aa. c 
Amino acid alignment between human and mouse TAZ. Mouse TAZ 
isoform 1 contains additional 57 aa at the N-terminus and has no sim-
ilarity with human TAZ. d Schematic structure of human and mouse 
TAZ proteins. The percent identity for a given sequence is presented. 
TB, TEAD-binding domain; WW, W-containing domain; CC, coiled-
coil domain; and (p) sites, phosphorylation sites

◂
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YAP has also been reported to regulate osteo-adipogenic 
differentiation from human mesenchymal stem cells (Lor-
thongpanich et al. 2019) and myogenic differentiation (Watt 
et al. 2010; Chen et al. 2017). Although TAZ and YAP pro-
mote proliferation of myoblasts, TAZ, but not YAP, stimu-
lates late myogenic differentiation, suggesting a distinctive 
role of TAZ from YAP in skeletal muscle stem cell function 
(Sun et al. 2017). TAZ is also essential for inducing cell 
proliferation and chondrocyte marker expression during 
chondrocyte differentiation; however, hyperactivation of 
YAP and TAZ inhibit chondrocyte maturation by repress-
ing the transcription factor SOX9 (Deng et al. 2016; Goto 
et al. 2018). It remains to be clarified whether YAP and TAZ 
play redundant roles during chondrocyte differentiation and 
whether TAZ promotes or represses chondrocyte differentia-
tion in vivo.

TAZ promotes injury‑induced liver regeneration 
and intestinal regeneration

The Hippo signaling pathway plays critical roles in liver 
size control and tumorigenesis through phosphorylation 
and activation of the large tumor suppressor kinases 1/2 
(Lats1/2) and inhibition of YAP activation. Any defects in 
Hippo signaling molecules, including YAP, induce aberrant 

hepatomegaly and tumorigenesis (Dong et al. 2007; Zhou 
et al. 2009; Lu et al. 2010; Zhao et al. 2011). Although YAP 
deletion fails to restore liver mass and the expression of 
connective tissue growth factor (CTGF), there is no clear 
evidence that TAZ plays a redundant role in liver regen-
eration (Konishi et al. 2018; Lu et al. 2018). Recently, it 
was clarified that liver-specific TAZ deletion delayed liver 
regeneration and enhanced cell death after partial hepatec-
tomy (Kim et al. 2019). TAZ is thus believed to stimulate 
liver regeneration through IL-6-mediated hepatocyte pro-
liferation and inhibition of cell death after injury. Further-
more, TAZ is essential for intestinal regeneration follow-
ing gamma-irradiation, and its overexpression is associated 
with intestinal tumor formation (Byun et al. 2017). Intestinal 
TAZ function is highly correlated with important roles in the 
Hippo pathway and with YAP in the control of colonic epi-
thelial regeneration after injury (Hong et al. 2016; Yui et al. 
2018). Therefore, TAZ expression as well as its activation 
are essential factors for tissue regeneration.

TAZ expression is required for the maintenance 
of testicular structure and function

TAZ is indispensable for quantitative regulation and func-
tional maintenance of embryonic and adult stem cells and 

Fig. 2  Control of tissue homeostasis by TAZ. Under normal homeostasis conditions, TAZ functions in the self-renewal of embryonic and mes-
enchymal stem cells through TAZ-TEAD complex formation. Differentiation of mesenchymal stem cells into different lineages is controlled 
by the association of TAZ with several transcription factors. Development of adult tissues and injury-induced tissue regeneration requires TAZ 
expression, which regulates organ size by controlling both cell proliferation and apoptosis. However, uncontrolled homeostatic imbalance may 
lead to irreversible changes in cells and tissues and subsequently to malignant tumor development. Overexpression or hyperactivation of YAP 
and TAZ accelerates tumor growth and metastasis by inducing dysregulation in cell proliferation, migration, and survival of stem cells
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contributes to cellular reprogramming and rejuvenation in 
many types of tissues. However, the functional role of TAZ 
is relatively lacking in reproductive organs and fertility. 
Jeong et al. (2017) first reported that TAZ was expressed in 
testicular cells and its deletion caused structural abnormal-
ity of the testicles and functional defects in fertility. TAZ 
deletion further facilitated testicular aging and apoptotic 
death of spermatogenic stem cells (Jeong et al. 2017). More 
recently, TAZ was found to interact with nuclear receptor 
4A1 in Leydig cells and negatively modulate the expression 
of steroidogenic enzymes, resulting in decreased testoster-
one production by Leydig cells (Shin et al. 2020). In addi-
tion to the TAZ functions in the male reproductive system, 
TAZ has been shown to play crucial roles in oogenesis and 
fertilization in zebrafish and murine ovarian folliculogen-
esis (Dingare et al. 2018; Xia et al. 2019; Yi et al. 2019; 
Bernabe et al. 2020). Consistently, LATS1/2 and YAP in 
the Hippo pathway have been demonstrated to be essential 
for the proliferation of ovarian granulosa cells and maintain-
ing normal follicle development in the female reproductive 
system (Plewes et al. 2019; Tsoi et al. 2019).

TAZ modulates normal tissue homeostasis in several 
tissues

TAZ is expressed in most tissues and affects their specific 
gene expression as a mediator of the Hippo signaling path-
way. TAZ deletion impairs the optic vesicle progenitor cells 
to form retinal pigment epithelial cells, whereas ectopic TAZ 
expression enhances ectopic pigmentation in optic vesicle 
progenitor cells (Miesfeld et al. 2015). TAZ is necessary 
for eye development through determination of retinal pig-
ment epithelial cell fate. Furthermore, TAZ modulates skin 
homeostasis. TAZ is expressed in the nucleus of the basal 
layer cells of the skin and is elevated in response to wound 
healing. TAZ is normally localized to the cytoplasm in the 
dermis, but is distributed in both the nucleus and cytoplasm 
at 1 day after skin damage, and its deficiency markedly 
delays skin wound healing (Lee et al. 2014). Skin-specific 
TAZ deletion slows the growth of basal layer cells, leading 
to hair loss and inhibition of skin regeneration (Elbediwy 
et al. 2016a, 2016b). The association of TAZ with TEAD 
promotes proliferation of skin cells but the inhibition of their 
interaction increases the expression of kruppel-like factor 
4 (KLF4), thereby increasing keratinocyte differentiation. 
TEAD and KLF4 regulate the activity of each other through 
modulation of TAZ interaction with TEAD and other tran-
scription factors during keratinocyte differentiation (Yuan 
et al. 2020). Therefore, TAZ contributes in maintaining 
epidermal and dermal cell populations during development 
and also regulates skin homeostasis during wound healing. 
Moreover, TAZ has been suggested to promote Th17 cell 
differentiation and inhibit Treg cell development in immune 

system (Geng et al. 2017), suggesting a potential role of TAZ 
in autoimmune diseases. Inhibition of dysregulated TAZ 
expression in arthritic patient induces Treg cell-mediated 
anti-inflammatory effect (Du et al. 2020). TAZ also regulates 
lymph node differentiation, in particular, commitment and 
maturation of fibroblastic reticular cells (Choi et al. 2020). 
The fine-tuning of TAZ expression and its activity is essen-
tial for maintaining normal tissue homeostasis and limiting 
cancer incidence.

Small molecules that stimulate TAZ activity are 
promising candidates for disease treatment

TAZ is believed to be a promising anti-cancer target because 
it promotes cancer cell proliferation, survival, and drug 
resistance. Various kinds of small molecules targeting 
TAZ, such as those that block the nuclear localization of 
TAZ, inhibit TAZ-TEAD complex formation, and suppress 
TAZ-TEAD target genes, are being discovered as antican-
cer agents. Since MST1/2 and LATS1/2 are crucial for the 
regulation of TAZ phosphorylation and activation, small 
molecules that regulate their activities in biological func-
tions have been identified. Compound 9E1, XMU-MP-1, and 
neratinib inhibit MST1/2 and thus suppress the activation of 
LATS1/2 and subsequent YAP/TAZ-mediated cellular pro-
liferation and tissue regeneration (Anand et al. 2009; Fan 
et al. 2016; Ardestani et al. 2019a). However, C19 stimu-
lates MST-induced LATS1/2 phosphorylation and YAP/
TAZ inactivation, suggesting an anti-tumor potential (Basu 
et al. 2014). Dobutamine has been identified as an inhibi-
tor of YAP-mediated gene transcription (Bao et al. 2011). 
Dasatinib, statins, and pazopanib are known to inhibit the 
nuclear localization of TAZ and decrease cell prolifera-
tion and chemoresistance of breast cancer cells (Oku et al. 
2015). In addition, digitoxin, verteporfin, and flufenamic 
acid inhibit YAP-TEAD interaction and suppress cancer 
growth (Liu-Chittenden et al. 2012; Sudol et al. 2012; Pob-
bati et al. 2015; Pobbati and Hong 2020). Although YAP 
inhibition is beneficial for treating many cancers, YAP 
activation through the inhibition of Hippo signaling is also 
required for pancreatic β-cell regeneration (Ardestani et al. 
2019a, 2019b). Furthermore, TAZ activators are also help-
ful for treating diseases, including osteoporosis, diabetes, 
and muscular atrophy. A few compounds have been identi-
fied to enhance the nuclear localization of TAZ. Ethacridine 
enhances nuclear retention of TAZ and inhibits adipogenic 
gene expression (Kawano et al. 2015). The TAZ modula-
tor, TM-25659, stimulates TAZ-RUNX2 interaction and the 
subsequent osteogenic differentiation and suppresses adipo-
genic differentiation by potentiating TAZ-PPARγ complex 
formation (Jang et al. 2012; Zhu et al. 2018). TM-25659 pro-
tects against obesity and diabetic hyperglycemia induced by 
high-fat diet in an animal model (Jung et al. 2015). TM-53 
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and TM-54 increased nuclear localization of TAZ and poten-
tiated MyoD-induced myoblast and muscle differentiation 
(Park et al. 2014) (Fig. 3). These findings suggest that TAZ 
activators have beneficial effects in the treatment of meta-
bolic and musculoskeletal disorders.

Conclusions and future perspectives

Since TAZ contributes to the self-renewal and potency of 
stem cells associated with the acquisition of many cancer 
traits, targeting TAZ is considered to be more efficient in 
the control of several types of cancers. It is noteworthy 
that the development of anticancer drugs targeting TAZ is 
promising for treating certain types of cancers, including 
skin, breast, and lung cancer (Pobbati and Hong 2020). 
However, TAZ intrinsically serves as a physiological regu-
lator for organ development, size control, and tissue repair 
and regeneration. TAZ positively or negatively regulates 
gene transcription through interaction with many tran-
scription factors and modulates lineage commitment dur-
ing homeostasis of many types of tissues, including the 
musculoskeletal system, adipose tissue, liver, digestive 

system, reproductive system, and skin. It seems that phar-
macological activation of TAZ is required for restoring 
normal tissue homeostasis by increasing stem cell activ-
ity and cell lineage commitment. Considering the com-
plex function of TAZ in cancer cells and normal tissues, 
including stem cells, while complete inhibition of TAZ 
may be effective in the treatment of cancer, there is a risk 
of disrupting normal tissues homeostasis. Therefore, phar-
macological development of TAZ inhibitors for cancer 
treatment deserves a great deal of attention with respect 
to prediction of toxicity and side effects on tissue homeo-
stasis. It is indispensable to develop selective inhibitors or 
activators that target specific binding sites between TAZ 
and its interacting partner, which may not interfere with 
normal tissue homeostasis and may contribute to desirable 
therapeutic effects (Pobbati and Rubin 2020).
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Fig. 3  Identification of small molecules targeting the Hippo-TAZ/YAP pathway. a The Hippo pathway can be regulated at several target points 
(T1 through T5). The Hippo signaling molecules, MST1/2 (T1) and LATS1/2 (T2), are directly and indirectly affected by compounds such as 
XMU-MP-1, 9E1, and C19, which affect the activation of TAZ and YAP. YAP and TAZ undergo proteasomal degradation (T3), which is pro-
moted by pazopanib. Nuclear localization of TAZ and YAP (T4) is negatively regulated by statins, dasatinib, pazopanib, and dobutamine, but 
positively regulated by TM-25659, TM-53/54, and ethacridine. Then YAP/TAZ-TEAD association (T5) is repressed by verteporfin. Pharma-
cological regulation of the Hippo-TAZ/YAP pathway affects cell proliferation, differentiation, survival, and migration. b Small molecules such 
as TM-25659 and TM-53/54 promote nuclear localization of TAZ and specifically modulate the association of TAZ with RUNX2, PPARγ, or 
MyoD and subsequent cell specific gene transcription for bone, adipose, and muscle, respectively
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