Skip to main content
Log in

Baicalin attenuates TNBS-induced colitis in rats by modulating the Th17/Treg paradigm

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Baicalin, a flavonoid, has a wide range of pharmacological properties, including immunomodulation. The objective of this study was to investigate the effect of baicalin on the balance of T helper 17 (Th17) and regulatory T (Treg) cells in a colitis model. The rat colitis model was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). Baicalin (10 ml/kg, each) or mesalazine (positive control) was then administered orally for 7 days. Inflammatory and immunological responses were evaluated by pathology, enzyme-linked immunosorbent assay, real-time polymerase chain reaction, western blot analysis, and flow cytometry. Our study showed that baicalin not only significantly attenuated TNBS-induced colitis by reducing the disease activity index as well as macroscopic and microscopic scores, but it also improved the weight loss and shortening of the colon. Baicalin treatment also induced a significant decrease in the levels of inflammatory mediators, including the myeloperoxidase activity, the levels of tumor necrosis factor α, IL-1β, and Th1-related cytokines IL-12 and IFN-γ. Furthermore, the beneficial effects of baicalin seem to be associated with regulation of the Th17 and Treg paradigm. We found that administration of baicalin significantly downregulated the number of Th17 cells and the levels of Th17-related cytokines (IL-17 and IL-6) and retinoic acid receptor-related orphan receptor γt. In contrast, there was an increase in Treg cells numbers, Treg-related cytokines transforming growth factor-β and IL-10, and forkhead box P3. Our results suggest that the anti-inflammatory effect of baicalin may be linked to modulation of the balance between Th17 and Treg cells in TNBS-induced ulcerative colitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baert, F., S. Vermeire, M. Noman, G. Van Assche, G. D’Haens, and P. Rutgeerts. 2004. Management of ulcerative colitis and Crohn’s disease. Acta Clinica Belgica 59: 304–314.

    Article  CAS  PubMed  Google Scholar 

  • Bai, A., N. Lu, Y. Guo, Z. Liu, J. Chen, and Z. Peng. 2009. All-trans retinoic acid down-regulates inflammatory responses by shifting the Treg/Th17 profile in human ulcerative and murine colitis. Journal of Leukocyte Biology 86: 959–969.

    Article  CAS  PubMed  Google Scholar 

  • Baumgart, D.C., and W.J. Sandborn. 2007. Inflammatory bowel disease: Clinical aspects and established and evolving therapies. Lancet 369: 1641–1657.

    Article  CAS  PubMed  Google Scholar 

  • Bell, C.J., D.G. Gall, and J.L. Wallace. 1995. Disruption of colonic electrolyte transport in experimental colitis. American Journal of Physiology 268: G622–G630.

    CAS  PubMed  Google Scholar 

  • Bettelli, E., M. Oukka, and V.K. Kuchroo. 2007. T(H)-17 cells in the circle of immunity and autoimmunity. Nature Immunology 8: 345–350.

    Article  CAS  PubMed  Google Scholar 

  • Boirivant, M., A. Amendola, A. Butera, M. Sanchez, L. Xu, M. Marinaro, A. Kitani, C. Di Giacinto, W. Strober, and I.J. Fuss. 2008. A transient breach in the epithelial barrier leads to regulatory T-cell generation and resistance to experimental colitis. Gastroenterology 135(1612–1623): e1615.

    Google Scholar 

  • Bouma, G., and W. Strober. 2003. The immunological and genetic basis of inflammatory bowel disease. Nature Reviews Immunology 3: 521–533.

    Article  CAS  PubMed  Google Scholar 

  • Cao, Z., C. Li, and G. Zhu. 2010. Inhibitory effects of baicalin on IL-1beta- induced MMP-1/TIMP-1 and its stimulated effect on collagen-I production in human periodontal ligament cells. European Journal of Pharmacology 641: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, Y., J. Ping, H.D. Xu, H.J. Fu, and Z.H. Zhou. 2006. Synergistic effect of a novel oxymatrine–baicalin combination against hepatitis B virus replication, alpha smooth muscle actin expression and type I collagen synthesis in vitro. World Journal of Gastroenterology 12: 5153–5159.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clark, M., J.F. Colombel, B.C. Feagan, R.N. Fedorak, S.B. Hanauer, M.A. Kamm, L. Mayer, C. Regueiro, P. Rutgeerts, W.J. Sandborn, B.E. Sands, S. Schreiber, S. Targan, S. Travis, and S. Vermeire. 2007. American gastroenterological association consensus development conference on the use of biologics in the treatment of inflammatory bowel disease, June 21–23, 2006. Gastroenterology 133: 312–339.

    Article  PubMed  Google Scholar 

  • Dai, S.X., Y. Zou, Y.L. Feng, H.B. Liu, and X.B. Zheng. 2012. Baicalin down-regulates the expression of macrophage migration inhibitory factor (MIF) effectively for rats with ulcerative colitis. Phytotherapy Research 26: 498–504.

    Article  CAS  PubMed  Google Scholar 

  • Daniel, C., N.A. Sartory, N. Zahn, H.H. Radeke, and J.M. Stein. 2008. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. Journal of Pharmacology and Experimental Therapeutics 324: 23–33.

    Article  CAS  PubMed  Google Scholar 

  • Dieleman, L.A., M.J. Palmen, H. Akol, E. Bloemena, A.S. Pena, S.G. Meuwissen, and E.P. Van Rees. 1998. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clinical and Experimental Immunology 114: 385–391.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dou, W., S. Mukherjee, H. Li, M. Venkatesh, H. Wang, S. Kortagere, A. Peleg, S.S. Chilimuri, Z.T. Wang, Y. Feng, E.R. Fearon, and S. Mani. 2012. Alleviation of gut inflammation by Cdx2/Pxr pathway in a mouse model of chemical colitis. PLoS ONE 7: e36075.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dubuquoy, L., C. Rousseaux, X. Thuru, L. Peyrin-Biroulet, O. Romano, P. Chavatte, M. Chamaillard, and P. Desreumaux. 2006. PPARγ as a new therapeutic target in inflammatory bowel diseases. Gut 55: 1341–1349.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eastaff-Leung, N., N. Mabarrack, A. Barbour, A. Cummins, and S. Barry. 2010. Foxp3+ regulatory T cells, Th17 effector cells, and cytokine environment in inflammatory bowel disease. Journal of Clinical Immunology 30: 80–89.

    Article  CAS  PubMed  Google Scholar 

  • Fantini, M.C., A. Rizzo, D. Fina, R. Caruso, C. Becker, M.F. Neurath, T.T. Macdonald, F. Pallone, and G. Monteleone. 2007. IL-21 regulates experimental colitis by modulating the balance between Treg and Th17 cells. European Journal of Immunology 37: 3155–3163.

    Article  CAS  PubMed  Google Scholar 

  • Fiocchi, C. 1998. Inflammatory bowel disease: Etiology and pathogenesis. Gastroenterology 115: 182–205.

    Article  CAS  PubMed  Google Scholar 

  • Ganta, V.C., W. Cromer, G.L. Mills, J. Traylor, M. Jennings, S. Daley, B. Clark, J.M. Mathis, M. Bernas, M. Boktor, P. Jordan, M. Witte, and J.S. Alexander. 2010. Angiopoietin-2 in experimental colitis. Inflammatory Bowel Diseases 16: 1029–1039.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gao, Z., K. Huang, and H. Xu. 2001. Protective effects of flavonoids in the roots of Scutellaria baicalensis Georgi against hydrogen peroxide-induced oxidative stress in HS-SY5Y cells. Pharmacological Research 43: 173–178.

    Article  CAS  PubMed  Google Scholar 

  • Gong, S.Q., W. Sun, M. Wang, and Y.Y. Fu. 2011. Role of TLR4 and TCR or BCR against baicalin-induced responses in T and B cells. International Immunopharmacology 11: 2176–2180.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, Y., K. Aoyagi, I. Morita, C. Yamamoto, and S. Sakisaka. 2009. Oral administration of mesalazine protects against mucosal injury and permeation in dextran sulfate sodium-induced colitis in rats. Scandinavian Journal of Gastroenterology 44: 1323–1331.

    Article  CAS  PubMed  Google Scholar 

  • He, J., J. Liang, S. Zhu, J. Li, Y. Zhang, and W. Sun. 2011. Anti-inflammatory effects of Pulvis Fellis Suis extract in mice with ulcerative colitis. Journal of Ethnopharmacology 138: 53–59.

    Article  PubMed  Google Scholar 

  • Hibi, T., and H. Ogata. 2006. Novel pathophysiological concepts of inflammatory bowel disease. Journal of Gastroenterology 41: 10–16.

    Article  PubMed  Google Scholar 

  • Holtmann, M.H., A.L. Gerts, A. Weinman, P.R. Galle, and M.F. Neurath. 2008. Treatment of Crohn’s disease with leflunomide as second-line immunosuppression: A phase 1 open-label trial on efficacy, tolerability and safety. Digestive Diseases and Sciences 53: 1025–1032.

    Article  CAS  PubMed  Google Scholar 

  • Hori, S., T. Nomura, and S. Sakaguchi. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057–1061.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., C. Tu, L. Zhang, J. Dai, and Y. Jin. 1986. Huang Qin. Immunopharmacology. Shanghai: Shanghai Science and Technology Press, 159–160.

  • Iacucci, M., S. de Silva, and S. Ghosh. 2010. Mesalazine in inflammatory bowel disease: A trendy topic once again? Canadian Journal of Gastroenterology 24: 127–133.

    PubMed Central  PubMed  Google Scholar 

  • Ikemoto, S., K. Sugimura, N. Yoshida, R. Yasumoto, S. Wada, K. Yamamoto, and T. Kishimoto. 2000. Antitumor effects of Scutellariae radix and its components baicalein, baicalin, and wogonin on bladder cancer cell lines. Urology 55: 951–955.

    Article  CAS  PubMed  Google Scholar 

  • Kaiser, G.C., F. Yan, and D.B. Polk. 1999. Mesalamine blocks tumor necrosis factor growth inhibition and nuclear factor kappaB activation in mouse colonocytes. Gastroenterology 116: 602–609.

    Article  CAS  PubMed  Google Scholar 

  • Kitamura, K., M. Honda, H. Yoshizaki, S. Yamamoto, H. Nakane, M. Fukushima, K. Ono, and T. Tokunaga. 1998. Baicalin, an inhibitor of HIV-1 production in vitro. Antiviral Research 37: 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Krawisz, J.E., P. Sharon, and W.F. Stenson. 1984. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology 87: 1344–1350.

    CAS  PubMed  Google Scholar 

  • Lim, H.A., E.K. Lee, J.M. Kim, M.H. Park, D.H. Kim, Y.J. Choi, Y.M. Ha, J.H. Yoon, J.S. Choi, B.P. Yu, and H.Y. Chung. 2012. PPARgamma activation by baicalin suppresses NF-kappaB-mediated inflammation in aged rat kidney. Biogerontology 13: 133–145.

    Article  CAS  PubMed  Google Scholar 

  • Lohr, J., B. Knoechel, J.J. Wang, A.V. Villarino, and A.K. Abbas. 2006. Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease. Journal of Experimental Medicine 203: 2785–2791.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mantovani, A., M. Muzio, C. Garlanda, S. Sozzani, and P. 2000. Allavena Macrophage control of inflammation: negative pathways of regulation of inflammatory cytokines. Chronic obstructive pulmonary disease: Pathogenesis to treatment: Novartis foundation symposium 234. Wiley Online Library, pp. 120–135.

  • Marquez, L., C. Shen, I. Cleynen, G. De Hertogh, K. Van Steen, K. Machiels, C. Perrier, V. Ballet, S. Organe, M. Ferrante, L. Henckaerts, G. Galicia, P. Rutgeerts, J.L. Ceuppens, and S. Vermeire. 2012. Effects of haptoglobin polymorphisms and deficiency on susceptibility to inflammatory bowel disease and on severity of murine colitis. Gut 61: 528–534.

    Article  CAS  PubMed  Google Scholar 

  • Morris, G.P., P.L. Beck, M.S. Herridge, W.T. Depew, M.R. Szewczuk, and J.L. Wallace. 1989. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96: 795–803.

    CAS  PubMed  Google Scholar 

  • Nakamura, N., S. Hayasaka, X.Y. Zhang, Y. Nagaki, M. Matsumoto, Y. Hayasaka, and K. Terasawa. 2003. Effects of baicalin, baicalein, and wogonin on interleukin-6 and interleukin-8 expression, and nuclear factor-kappab binding activities induced by interleukin-1beta in human retinal pigment epithelial cell line. Experimental Eye Research 77: 195–202.

    Article  CAS  PubMed  Google Scholar 

  • Nanda, K., and A.C. Moss. 2012. Update on the management of ulcerative colitis: treatment and maintenance approaches focused on MMX((R)) mesalamine. Clinical Pharmacology 4: 41–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Okazawa, A., T. Kanai, M. Watanabe, M. Yamazaki, N. Inoue, M. Ikeda, M. Kurimoto, H. Ishii, and T. Hibi. 2002. Th1-mediated intestinal inflammation in Crohn’s disease may be induced by activation of lamina propria lymphocytes through synergistic stimulation of interleukin-12 and interleukin-18 without T cell receptor engagement. The American journal of gastroenterology 97: 3108–3117.

    Article  CAS  PubMed  Google Scholar 

  • Papadakis, K.A., and S.R. Targan. 2000. Role of cytokines in the pathogenesis of inflammatory bowel disease. Annual Review of Medicine 51: 289–298.

    Article  CAS  PubMed  Google Scholar 

  • Podolsky, D.K. 2002. Inflammatory bowel disease. New England Journal of Medicine 347: 417–429.

    Article  CAS  PubMed  Google Scholar 

  • Shen, Y.C., W.F. Chiou, Y.C. Chou, and C.F. Chen. 2003. Mechanisms in mediating the anti-inflammatory effects of baicalin and baicalein in human leukocytes. European Journal of Pharmacology 465: 171–181.

    Article  CAS  PubMed  Google Scholar 

  • Strober, W., I. Fuss, and P. Mannon. 2007. The fundamental basis of inflammatory bowel disease. The Journal of Clinical Investigation 117: 514–521.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strober, W., I.J. Fuss, and R.S. Blumberg. 2002. The immunology of mucosal models of inflammation. Annual Review of Immunology 20: 495–549.

    Article  CAS  PubMed  Google Scholar 

  • Williams, C., R. Panaccione, S. Ghosh, and K. Rioux. 2011. Optimizing clinical use of mesalazine (5-aminosalicylic acid) in inflammatory bowel disease. Therapeutic advances in gastroenterology 4: 237–248.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu, H., Z. Liu, J. Peng, L. Li, N. Li, J. Li, and H. Pan. 2011. Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery. International Journal of Pharmaceutics 410: 31–40.

    Article  CAS  PubMed  Google Scholar 

  • Xue, D., W. Zhang, Y. Zhang, H. Wang, B. Zheng, and X. Shi. 2006. Adjusting effects of baicalin for nuclear factor-kappaB and tumor necrosis factor-alpha on rats with caerulein-induced acute pancreatitis. Mediators of Inflammation 2006: 26295.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang, J., X. Yang, Y. Chu, and M. Li. 2011. Identification of Baicalin as an immunoregulatory compound by controlling TH17 cell differentiation. PLoS ONE 6: e17164.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang, J., X. Yang, and M. Li. 2012. Baicalin, a natural compound, promotes regulatory T cell differentiation. BMC Complementary and Alternative Medicine 12: 64.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zenewicz, L.A., A. Antov, and R.A. Flavell. 2009. CD4 T-cell differentiation and inflammatory bowel disease. Trends in Molecular Medicine 15: 199–207.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X.P., L. Zhang, P. Yang, R.P. Zhang, and Q.H. Cheng. 2008. Protective effects of baicalin and octreotide on multiple organ injury in severe acute pancreatitis. Digestive Diseases and Sciences 53: 581–591.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., M. Zheng, J. Bindas, P. Schwarzenberger, and J.K. Kolls. 2006. Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflammatory Bowel Diseases 12: 382–388.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This investigation was funded by the National Natural Science Foundation of China (NSFC, No. 81173240) and the PhD Start-up Fund of Guangdong Medical College (No. B2013005, B2013006).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Bao Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Dai, SX., Chi, HG. et al. Baicalin attenuates TNBS-induced colitis in rats by modulating the Th17/Treg paradigm. Arch. Pharm. Res. 38, 1873–1887 (2015). https://doi.org/10.1007/s12272-014-0486-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-014-0486-2

Keywords

Navigation