Skip to main content

Advertisement

Log in

A Review of the Functional and Anatomical Default Mode Network in Schizophrenia

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Schizophrenia is a severe mental disorder characterized by impaired perception, delusions, thought disorder, abnormal emotion regulation, altered motor function, and impaired drive. The default mode network (DMN), since it was first proposed in 2001, has become a central research theme in neuropsychiatric disorders, including schizophrenia. In this review, first we define the DMN and describe its functional activity, functional and anatomical connectivity, heritability, and inverse correlation with the task positive network. Second, we review empirical studies of the anatomical and functional DMN, and anti-correlation between DMN and the task positive network in schizophrenia. Finally, we review preliminary evidence about the relationship between antipsychotic medications and regulation of the DMN, review the role of DMN as a treatment biomarker for this disease, and consider the DMN effects of individualized therapies for schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001, 98: 676–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhou Y, Fan L, Qiu C, Jiang T. Prefrontal cortex and the dysconnectivity hypothesis of schizophrenia. Neurosci Bull 2015, 31: 207–219.

    Article  CAS  PubMed  Google Scholar 

  3. Li H, Tang J, Chen L, Liao Y, Zhou B, He Y, et al. Reduced middle cingulate gyrus volume in late-onset schizophrenia in a Chinese Han population: a voxel-based structural MRI study. Neurosci Bull 2015, 31: 626–627.

    Article  PubMed  Google Scholar 

  4. Nagano-Saito A, Liu J, Doyon J, Dagher A. Dopamine modulates default mode network deactivation in elderly individuals during the Tower of London task. Neurosci Lett 2009, 458: 1–5.

    Article  CAS  PubMed  Google Scholar 

  5. Kelly C, de Zubicaray G, Di Martino A, Copland DA, Reiss PT, Klein DF, et al. L-dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study. J Neurosci 2009, 29: 7364–7378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Minzenberg MJ, Yoon JH, Carter CS. Modafinil modulation of the default mode network. Psychopharmacology (Berl) 2011, 215: 23–31.

    Article  CAS  Google Scholar 

  7. Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. Neuroimage 2007, 37: 1083–1090; discussion 1097–1089.

  8. Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 2009, 19: 72–78.

    Article  PubMed  Google Scholar 

  9. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 2009, 33: 279–296.

    Article  PubMed  Google Scholar 

  10. Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houde O, et al. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 2001, 54: 287–298.

    Article  CAS  PubMed  Google Scholar 

  11. Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, et al. Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex. J Cogn Neurosci 1997, 9: 648–663.

    Article  CAS  PubMed  Google Scholar 

  12. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007, 8: 700–711.

    Article  CAS  PubMed  Google Scholar 

  13. Singh KD, Fawcett IP. Transient and linearly graded deactivation of the human default-mode network by a visual detection task. Neuroimage 2008, 41: 100–112.

    Article  CAS  PubMed  Google Scholar 

  14. McKiernan KA, D’Angelo BR, Kaufman JN, Binder JR. Interrupting the “stream of consciousness”: an fMRI investigation. Neuroimage 2006, 29: 1185–1191.

    Article  PubMed  Google Scholar 

  15. Thomason ME, Chang CE, Glover GH, Gabrieli JD, Greicius MD, Gotlib IH. Default-mode function and task-induced deactivation have overlapping brain substrates in children. Neuroimage 2008, 41: 1493–1503.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, et al. Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci U S A 2009, 106: 2035–2040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL. Functional-anatomic fractionation of the brain’s default network. Neuron 2010, 65: 550–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 2001, 14: 140–151.

    Article  CAS  PubMed  Google Scholar 

  19. Liao W, Zhang Z, Pan Z, Mantini D, Ding J, Duan X, et al. Default mode network abnormalities in mesial temporal lobe epilepsy: a study combining fMRI and DTI. Hum Brain Mapp 2011, 32: 883–895.

    Article  PubMed  Google Scholar 

  20. Kobayashi Y, Amaral DG. Macaque monkey retrosplenial cortex: II. Cortical afferents. J Comp Neurol 2003, 466: 48–79.

    Article  PubMed  Google Scholar 

  21. Parvizi J, Van Hoesen GW, Buckwalter J, Damasio A. Neural connections of the posteromedial cortex in the macaque. Proc Natl Acad Sci U S A 2006, 103: 1563–1568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Teipel SJ, Bokde AL, Meindl T, Amaro E, Jr., Soldner J, Reiser MF, et al. White matter microstructure underlying default mode network connectivity in the human brain. Neuroimage 2010, 49: 2021–2032.

    Article  PubMed  Google Scholar 

  23. Liu S, Cai W, Liu S, Zhang F, Fulham M, Feng D, et al. Multimodal neuroimaging computing: a review of the applications in neuropsychiatric disorders. Brain Inform 2015, 2: 167–180.

    Article  PubMed Central  Google Scholar 

  24. Glahn DC, Winkler AM, Kochunov P, Almasy L, Duggirala R, Carless MA, et al. Genetic control over the resting brain. Proc Natl Acad Sci U S A 2010, 107: 1223–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heck A, Fastenrath M, Ackermann S, Auschra B, Bickel H, Coynel D, et al. Converging genetic and functional brain imaging evidence links neuronal excitability to working memory, psychiatric disease, and brain activity. Neuron 2014, 81: 1203–1213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Richiardi J, Altmann A, Milazzo AC, Chang C, Chakravarty MM, Banaschewski T, et al. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks. Science 2015, 348: 1241–1244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003, 60: 1187–1192.

    Article  PubMed  Google Scholar 

  28. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005, 102: 9673–9678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu H, Kaneko Y, Ouyang X, Li L, Hao Y, Chen EY, et al. Schizophrenic patients and their unaffected siblings share increased resting-state connectivity in the task-negative network but not its anticorrelated task-positive network. Schizophr Bull 2012, 38: 285–294.

    Article  PubMed  Google Scholar 

  30. Williamson P. Are anticorrelated networks in the brain relevant to schizophrenia? Schizophr Bull 2007, 33: 994–1003.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 2005, 26: 15–29.

    Article  PubMed  Google Scholar 

  32. Castellanos FX, Margulies DS, Kelly C, Uddin LQ, Ghaffari M, Kirsch A, et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 2008, 63: 332–337.

    Article  PubMed  Google Scholar 

  33. Kennedy DP, Courchesne E. The intrinsic functional organization of the brain is altered in autism. Neuroimage 2008, 39: 1877–1885.

    Article  PubMed  Google Scholar 

  34. Zhou Y, Liang M, Tian L, Wang K, Hao Y, Liu H, et al. Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res 2007, 97: 194–205.

    Article  PubMed  Google Scholar 

  35. Uddin LQ, Kelly AM, Biswal BB, Castellanos FX, Milham MP. Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum Brain Mapp 2009, 30: 625–637.

    Article  PubMed  Google Scholar 

  36. Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD. Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry 2007, 164: 450–457.

    Article  PubMed  Google Scholar 

  37. Calhoun VD, Kiehl KA, Pearlson GD. Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum Brain Mapp 2008, 29: 828–838.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kim DI, Mathalon DH, Ford JM, Mannell M, Turner JA, Brown GG, et al. Auditory oddball deficits in schizophrenia: an independent component analysis of the fMRI multisite function BIRN study. Schizophr Bull 2009, 35: 67–81.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Harrison BJ, Yucel M, Pujol J, Pantelis C. Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophr Res 2007, 91: 82–86.

    Article  PubMed  Google Scholar 

  40. Pomarol-Clotet E, Salvador R, Sarro S, Gomar J, Vila F, Martinez A, et al. Failure to deactivate in the prefrontal cortex in schizophrenia: dysfunction of the default mode network? Psychol Med 2008, 38: 1185–1193.

    Article  CAS  PubMed  Google Scholar 

  41. Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW, et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A 2009, 106: 1279–1284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim DI, Manoach DS, Mathalon DH, Turner JA, Mannell M, Brown GG, et al. Dysregulation of working memory and default-mode networks in schizophrenia using independent component analysis, an fBIRN and MCIC study. Hum Brain Mapp 2009, 30: 3795–3811.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mannell MV, Franco AR, Calhoun VD, Canive JM, Thoma RJ, Mayer AR. Resting state and task-induced deactivation: A methodological comparison in patients with schizophrenia and healthy controls. Hum Brain Mapp 2010, 31: 424–437.

    PubMed  PubMed Central  Google Scholar 

  44. Jeong B, Kubicki M. Reduced task-related suppression during semantic repetition priming in schizophrenia. Psychiatry Res 2010, 181: 114–120.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schneider FC, Royer A, Grosselin A, Pellet J, Barral FG, Laurent B, et al. Modulation of the default mode network is task-dependant in chronic schizophrenia patients. Schizophr Res 2011, 125: 110–117.

    Article  PubMed  Google Scholar 

  46. Kapur S, Phillips AG, Insel TR. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry 2012, 17: 1174–1179.

    Article  CAS  PubMed  Google Scholar 

  47. Bluhm RL, Miller J, Lanius RA, Osuch EA, Boksman K, Neufeld RW, et al. Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr Bull 2007, 33: 1004–1012.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shim G, Oh JS, Jung WH, Jang JH, Choi CH, Kim E, et al. Altered resting-state connectivity in subjects at ultra-high risk for psychosis: an fMRI study. Behav Brain Funct 2010, 6: 58.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jafri MJ, Pearlson GD, Stevens M, Calhoun VD. A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage 2008, 39: 1666–1681.

    Article  PubMed  Google Scholar 

  50. Mingoia G, Wagner G, Langbein K, Maitra R, Smesny S, Dietzek M, et al. Default mode network activity in schizophrenia studied at resting state using probabilistic ICA. Schizophr Res 2012, 138: 143–149.

    Article  PubMed  Google Scholar 

  51. Gerretsen P, Menon M, Mamo DC, Fervaha G, Remington G, Pollock BG, et al. Impaired insight into illness and cognitive insight in schizophrenia spectrum disorders: resting state functional connectivity. Schizophr Res 2014, 160: 43–50.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liemburg EJ, van der Meer L, Swart M, Curcic-Blake B, Bruggeman R, Knegtering H, et al. Reduced connectivity in the self-processing network of schizophrenia patients with poor insight. PLoS One 2012, 7: e42707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Camchong J, MacDonald AW, 3rd, Bell C, Mueller BA, Lim KO. Altered functional and anatomical connectivity in schizophrenia. Schizophr Bull 2011, 37: 640–650.

    Article  PubMed  Google Scholar 

  54. Curcic-Blake B, van der Meer L, Pijnenborg GH, David AS, Aleman A. Insight and psychosis: Functional and anatomical brain connectivity and self-reflection in Schizophrenia. Hum Brain Mapp 2015, 36: 4859–4868.

    Article  PubMed  Google Scholar 

  55. Skudlarski P, Jagannathan K, Anderson K, Stevens MC, Calhoun VD, Skudlarska BA, et al. Brain connectivity is not only lower but different in schizophrenia: a combined anatomical and functional approach. Biol Psychiatry 2010, 68: 61–69.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chai XJ, Whitfield-Gabrieli S, Shinn AK, Gabrieli JD, Nieto Castanon A, McCarthy JM, et al. Abnormal medial prefrontal cortex resting-state connectivity in bipolar disorder and schizophrenia. Neuropsychopharmacology 2011, 36: 2009–2017.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wolf RC, Vasic N, Sambataro F, Hose A, Frasch K, Schmid M, et al. Temporally anticorrelated brain networks during working memory performance reveal aberrant prefrontal and hippocampal connectivity in patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2009, 33: 1464–1473.

    Article  PubMed  Google Scholar 

  58. Sambataro F, Blasi G, Fazio L, Caforio G, Taurisano P, Romano R, et al. Treatment with olanzapine is associated with modulation of the default mode network in patients with Schizophrenia. Neuropsychopharmacology 2010, 35: 904–912.

    Article  CAS  PubMed  Google Scholar 

  59. Surguladze SA, Chu EM, Marshall N, Evans A, Anilkumar AP, Timehin C, et al. Emotion processing in schizophrenia: fMRI study of patients treated with risperidone long-acting injections or conventional depot medication. J Psychopharmacol 2011, 25: 722–733.

    Article  CAS  PubMed  Google Scholar 

  60. Stokes PR, Rhodes RA, Grasby PM, Mehta MA. The effects of the COMT Val108/158Met polymorphism on BOLD activation during working memory, planning, and response inhibition: a role for the posterior cingulate cortex? Neuropsychopharmacology 2011, 36: 763–771.

    Article  CAS  PubMed  Google Scholar 

  61. Sambataro F, Fazio L, Taurisano P, Gelao B, Porcelli A, Mancini M, et al. DRD2 genotype-based variation of default mode network activity and of its relationship with striatal DAT binding. Schizophr Bull 2013, 39: 206–216.

    Article  PubMed  Google Scholar 

  62. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 2009, 35: 549–562.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pantelis C, Yucel M, Wood SJ, Velakoulis D, Sun D, Berger G, et al. Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. Schizophr Bull 2005, 31: 672–696.

    Article  PubMed  Google Scholar 

  64. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 2011, 15: 483–506.

    Article  PubMed  Google Scholar 

  65. Zong X, Hu M, Li Z, Cao H, He Y, Liao Y, et al. N-acetylaspartate reduction in the medial prefrontal cortex following 8 weeks of risperidone treatment in first-episode drug-naive schizophrenia patients. Sci Rep 2015, 5: 9109.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This review was supported by the National Natural Science Foundation of China (81271484, 81471361, 30900486, and 81371480), the National Basic Research Development Program (973 Program) of China (2012CB517904), and the Nation Sponsored Study Abroad Program from China Scholarship Council (201506370095). Dr. Mann receives royalties from the Research Foundation for Mental Hygiene for commercial use of the C-SSRS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Gang Chen or Jin-Song Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, ML., Zong, XF., Mann, J.J. et al. A Review of the Functional and Anatomical Default Mode Network in Schizophrenia. Neurosci. Bull. 33, 73–84 (2017). https://doi.org/10.1007/s12264-016-0090-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-016-0090-1

Keywords

Navigation