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Abstract Circadian rhythm is manifested by the behav-

ioral and physiological changes from day to night, which is

controlled by the pacemaker and its regulator. The former

is located at the suprachiasmatic nuclei (SCN) in the

anterior hypothalamus, while the latter is composed of

clock genes present in all tissues. Circadian desynchro-

nization influences normal patterns of day-night rhythms

such as sleep and alertness cycles, rest and activity cycles.

Parkinson’s disease (PD) exhibits diurnal fluctuations.

Circadian dysfunction has been observed in PD patients

and animal models, which may result in negative conse-

quences to the homeostasis and even exacerbate the disease

progression. Therefore, circadian therapies, including light

stimulation, physical activity, dietary and social schedules,

may be helpful for PD patients. However, the cellular and

molecular mechanisms that underlie the circadian dys-

function in PD remain elusive. Further research on circa-

dian patterns is needed. This article summarizes the

existing research on the circadian rhythms in PD, focusing

on the clinical symptom variations, molecular changes, as

well as the available treatment options.
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Introduction

Parkinson’s disease (PD) is the second most common

neurodegenerative disorder, affecting about 315 per

100,000 people [1]. The patients often suffer from motor

symptoms including rigidity, bradykinesia, tremor, and

impaired balance, and also non-motor symptoms such as

sleep disturbance, pain, cognitive deficits, depression.

Pathologically, it is featured by the loss of dopaminergic

neurons in the substantia nigra and the formation of Lewy

bodies. According to the Braak staging theory, other brain

regions are also affected in PD, which may contribute to

the development of some non-motor symptoms [2, 3].

Recently, increasing attention has been paid to non-motor

symptoms, which pose much stress on the life quality of

patients and their caregivers. Particularly, several studies

have found that motor activity and responsiveness to anti-

PD drugs vary through out the day. Likewise, sleep-wake

cycles, visual performance and autonomic dysfunction

show diurnal fluctuations. Moreover, the secretion pattern

of endocrine hormone is also affected. All these imply that

the circadian rhythm is disrupted in PD.

Increasing evidence has shown that there are reciprocal

interactions between DA system and circadian rhythm. On

the one hand, circadian genes can modulate the dopamine

synthesis. First, tyrosine hydroxylase, the rate-limiting

enzyme for dopamine synthesis, is regulated by the circa-

dian locomotor cycle kaput (Clock) gene [4]. It can mod-

ulate the transcription of tyrosine hydroxylase, dopamine

activity transporter and D1 receptor via targeting the

E-Box element, which is located in the promoter regions of

these DA-related genes [5]. Second, the circadian genes

may also affect the dopaminergic activity in the ventral

tegmental area at the posttranscriptional level [6]. On the

other hand, dopamine is thought to regulate some Clock
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genes in a receptor-dependent manner, though the D1

receptor may play a different role from the D2 subtype [7].

To be specific, dopamine can upregulate the transcriptional

activity of Clock/Bmal complex through enhancing the

recruitment and phosphorylation of the transcriptional

coactivator cAMP-responsive element-binding proteins [8].

In the dorsal striatum, Hood et al. reported that the rhythm

of Per2 expression could be modified by D2 receptor

activation, while the Per2 rhythm in the suprachiasmatic

nuclei (SCN) remained unaffected [9]. Consistently, Imbesi

et al. found that D2 receptor agonists inhibited the

expression of Clock and Per1 genes, while D1 receptor

agonists enhanced the expression of Per1, Clock, NPAS2

and Bmal1 [7]. Besides, Yujnovsky et al. found a drastic

decrease of Per1 gene transcription in the retinas of D2R

(dopamin D2 receptor)-null mice [8]. Dopamine also resets

the rhythm during the prenatal stage in the circadian

pacemaker SCN [10, 11]. Moreover, the melatonin, which

is secreted from the pineal gland, acts as a stimulator of the

fetal SCN [12] and is also controlled by dopamine receptor

signaling [13].

Consequently, it is reasonable to link the symptoms

fluctuation in PD patients with the dysregulation of circa-

dian rhythm (Fig. 1). Therefore, to better understand the

biorhythm dysfunction in PD, we will review literatures on

the circadian rhythm of PD, and explore its possible

mechanisms.

Sleep Disorders

The sleep-wake cycle is controlled by the circadian clock

[14]. In a large survey on non-motor symptoms of PD,

about 64% patients have sleep problems, only next to the

psychiatric disorders [15]. The sleep disorder can be cat-

egorized into insomnia (difficulty in falling or staying

asleep), excessive daytime somnolence (EDS), rapid eye

movement sleep behavioral disorder (RBD), etc. Sleep

fragmentation and reduced sleep efficiency have a bad

impact on the life quality of patients, and may accelerate

the development of PD dementia.

Insomnia is one of the most common sleep disorders in

patients with PD. Several investigations have shown that

about 50% of PD patients have insomnia complaints

[16, 17]. Both motor and non-motor symptoms may be

responsible for the insomnia. For instance, the overnight

emergence of motor symptoms like tremor, rigidity and

dyskinesia may result in awakenings and being unable to

fall back to sleep again [18]. Pain, nocturia and mood

disorders are important factors influencing insomnia in

general population. The nocturia inevitably affects the

sleep maintenance and is associated with PD severity and

duration. Kurtis et al. reported that depression is also

correlated with nocturnal sleep scores [19]. The depression

severity may affect sleep initiation and maintenance diffi-

culties [20]. Taking dopaminergic drugs, especially L-dopa

in the late day, may influence sleep at night owing to the

relatively higher levels of dopamine in the plasma [21].

EDS is more frequent in the PD patients compared to the

age-matched controls. In a multicenter, cross-sectional

study, researchers found 87% of PD patients had com-

plaints about EDS, while other reports showed that the

prevalence ranged from 20% to 50%. Although these

studies are not similar, they all suggest that EDS is quite

common among sleep disorders [19]. Elevated Epworth

Sleep Scale (ESS) scores, male gender, long duration and

severity of the disease are the major risks for EDS [22].

Several studies indicated that dopaminergic load acts as a

correlative factor for a higher ESS score and increased

daytime sleepiness in PD [23, 24]. In addition, Yi PL et al.

proved that IL-1b in the hypothalamus mediates the EDS

in the rotenone rat model and that the TNF–NF-jB sig-

naling is involved in another hemiparkinsonian rat model

[25, 26]. These results suggest that the accumulation of

inflammatory cytokines may play an important role in

regulating sleep cycles.

RBD is characterized by the absence of muscle atonia

during REM sleep as well as dreaming enacting. The

prevalence of RBD in PD is about 15%–60% [27]. A

longitudinal study by Claassen et al. indicated that RBD

often precedes the clinical manifestation of PD by

Fig. 1 A simplified scheme of the disturbed circadian system in PD.

Reduced time cues are obtained from external zeitgebers in PD patients,

due to the impaired visual acuity and disabledmotor ability. Meanwhile,

the internal circadian clock outputs are damaged in SCN, where the a-
synuclein is accumulated. As a result, disrupted rhythm of clock genes in

SCN impairs its modulation of other central and peripheral clocks, which

might have negative consequences on behavioral and physiological

functions. SCN, suprachiasmatic nuclei; SN, substantia nigra.
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15–50 years [28]. Moreover, the presence of RBD not only

correlates with the high incidence of neurodegenerative

disorders [29] such as PD, but also stands for a worse

prognosis with reduced sympathetic activity and increased

cognitive impairment [30–32]. But the pathophysiology of

RBD in PD is not fully understood. RBD is possibly due to

the specific degeneration of descending REM-on excitatory

glutamatergic neurons localized in the pontine sublateral-

dorsal nucleus and the REM-on inhibitory GABA or

glycinergic neurons in the ventral medullary reticular for-

mation [33]. Besides, a-synuclein aggregates are found in

the submandibular gland in the majority of patients with

idiopathic RBD, which imply that RBD may be also

associated with the ongoing synucleinopathy [34].

In MPTP-induced monkey model of PD, the disturbance

of REM sleep and the appearance of EDS precede the

emergence of typical motor signs. And the sleep–wake

architecture is dramatically disrupted with increased

number of arousals and reduced sleep efficacy [35]. In line

with this, chin muscle disturbance is also found in REM

sleep in MPTP marmoset model, which mimics RBD in the

premotor phase of PD [36].

Motor fluctuation

Rest-activity rhythm is recorded by an actigraphy in

patients with PD. As Van Hilten et al. reported, normal

motor activity reached the lowest level at night, and

gradually increased during the daytime. But the rhythm is

modified in PD patients. In the mild and moderate stage

patients, the pattern of motor activity remains unaltered,

despite that the mean level of motor activity is lower than

that in healthy elderly subjects. Meanwhile, in the

advanced stage patients, the indices show the absence of

diurnal changes [37, 38]. Some studies have also reported

that PD patients show lower activity levels and higher rest

levels, which are in strong correlation with the disease

severity [39, 40]. Furthermore, some patients often com-

plain that L-dopa seems to have little improvement effect

on motor symptoms later in the day than in the morning,

whereas some even have no responses in the evening at all.

However, the underlying mechanisms are still unclear. The

motor response to repeated L-dopa administration was

evaluated in PD patients by Bonuccelli et al. The results

showed that there were progressive daytime worsening

motor scores both in stable and wearing-off patients, but

not in de novo patients. It is possible that the phenomenon

was caused by the tolerance to the repeated doses of

L-dopa, because the plasma 3-O-methyldopa level

increased after repeated L-dopa administration [41].

Another study using continuous L-dopa infusions also

reported diurnal worsening of motor fluctuations in PD.

The concentration of plasma large neutral amino acids was

higher in the evening than in the morning, which suggested

the contribution of peripheral pharmacokinetic mecha-

nisms to the weaker response to repeated doses of L-dopa

[42]. Piccini et al. evaluated the motor performance hourly

in patients receiving different drugs. Only the L-dopa-

treated group showed a progressive daytime worsening,

accompanied by an increase in plasma 3-O-methyldopa

level, however, this phenomenon was not found in the

bromocriptine and de novo groups [43].

In an unilaterally 6-OHDA-lesioned rat model, the total

amount of locomotor activity was reduced but the phase

remained unchanged [44]. In a study examining the cir-

cadian rhythm in wild-type a-synuclein transgenic mice,

the wheel-running test demonstrated an impaired locomo-

tor activity with a lower nighttime activity [45]. Monville

et al. injected L-dopa into PD rat models three times a day

but found no significant influence on the formation of

dyskinesia at night [46]. However, there is no direct evi-

dence to clarify whether the worsening movement symp-

tom in the late day is dependent on the pharmacokinetics of

the drugs or not.

In light of these studies, although the results of these

studies are not consistent, they still prove that the decre-

mental response in the evening does not occur in the de

novo patients. This indicates that the disease stage may be a

major contributor while the pharmacokinetic factors also

affect the motor fluctuation.

Temperature Imbalance

The circadian rhythm of core body temperature is mainly

under the control of SCN [47]. It has been reported that the

mesor of body temperature is significantly lower in PD than

in the healthy controls, and the gap between the mesor and

nadir temperature is reduced, which may be related with the

severity of PD [48]. Another study confirmed the impaired

thermoregulation of endogenous opioid system in PD by

evaluating the effect of naloxone on the body temperature in

the postmenopausal women. Meanwhile, this study also

provided evidence that the core body temperature with PD

is lower than that of controls [49]. Suzuki et al. revealed that

PD patients with depression had lower amplitudes of core

body temperature and higher minimum rectal temperature,

indicating that the characteristics of core body temperature

may serve as a biomarker for PD depression [50]. Chronic

rotenone-treated rats also showed lower amplitudes and

instability phase of body temperature, as compared to the

controls. The magnitude of the alterations was positively

correlated with the degree of movement disorders [51].

Interestingly, Rango et al. using proton magnetic reso-

nance spectroscopy found that PD patients exhibit a
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slightly increased temperature in the visual cortex and the

centrum semiovale at rest [52]. Sumida et al. also exam-

ined the temperature of the intraventricular cerebrospinal

fluid in PD patients by diffusion-weighted imaging ther-

mometry. They found that male PD patients had signifi-

cantly higher cerebrospinal fluid temperature values than

the male controls, but this was not observed in the women

[53]. Most importantly, the increased brain temperature

may further impair the mitochondrial energetics, forming a

vicious cycle during PD progression.

Autonomic System Dysfunctions

The changes of heart rate and blood pressure have a 24-h

period, depending on the endogenous circadian rhythms

and sleep-activity rhythm. The cardiovascular autonomic

regulation has been reported impaired in PD.

A study by Ejaz et al. confirmed the presence of reversal

of circadian rhythm in 93% PD patients using the method of

24 h ambulatory blood pressure monitoring (ABPM) [54].

They also found that all of the PD patients had postprandial

hypotension and nocturnal hypertension. Schmidt et al.

observed a similar pathological nocturnal blood pressure

regulation [55]. Usually, the mean arterial pressure

decreases by 10%–20% during sleep, compared to the

waking time. But in most PD patients, this nocturnal fall of

blood pressure is lost independent of the orthostatic

hypotension. In an ABPM study using a large sample size of

111 PD patients, Berganzo et al. found abnormal ambula-

tory blood pressure rhythm in PD. Moreover, the impaired

blood pressure pattern was correlated with the dose of

dopaminergic drugs and the prevalence of autonomic dis-

orders [56]. In other words, PD patients are also at a high

risk of cardiovascular diseases if they lack recognition of

the hypertension component of orthostatic hypotension. As

a result, ABPM should be taken into account for the diag-

nosis of nocturnal hypertension, and appropriate manage-

ment of antihypertensive and dopaminergic treatments in

PD patients should be considered.

The heart rate variability (HRV) analysis is a widely

accepted method for indirect evaluation of activity vari-

ability of the autonomic nervous system. Kallio et al.

investigated 50 untreated PD patients with different initial

symptoms. Hypokinesia or rigidity onset PD patients had an

obvious absence of HRV than those with tremor onset and

suffered higher risk of autonomic nervous system distur-

bances [57]. Devos et al. recorded HRV of 30 patients in

different PD stages through Holter electrocardiographic

monitoring. They found no sympathovagal balance dys-

function in mild untreated PD patients, but a loss of HRV

and distinct sympathetic morning peak with decreased

nocturnal vagal parameters in moderate and severe L-dopa-

treated patients. They speculated that the evolutive HRV

decrease is correlated with the disease severity [58]. How-

ever, Harnod et al. reported that the impaired HRV is more

likely to be associated with the motor symptom duration of

PD, but not with the disease severity or patient age.

Meanwhile, PD patients are more likely to have a worse

cardiac parasympathetic dysregulation than sympathetic

dysregulation [59]. Recently, an investigation was con-

ducted to evaluate whether the other non-symptoms such as

RBD contribute to the cardiovascular dysautonomia. The

results showed that both sympathetic and parasympathetic

values are higher at night, implying that RBD might be

susceptible to cardiovascular diseases, and that these two

indices had a specificity of 100% for distinguishing RBD

patients from those all PD individuals [60].

In the 6-OHDA–lesioned rat model, the amplitude of the

heart rate was significantly decreased and the L-dopa

replacement therapy rescued the abolished circadian

rhythms, especially for the heart rate rhythm [61]. A recent

study demonstrated that neurogenic orthostatic hypotension

occurred as a result of the progressive noradrenergic den-

ervation from sympathetic terminals upon standing [62].

In conclusion, the rhythmic loss in cardiovascular

autonomic system is a problem in PD that should no longer

be ignored, because it could increase the risk of cardio-

cerebral vascular incidents, affecting the patients’ life

quality and life spans.

Visual Impairment

The retina is a sensory organ as well as an endogenous

circadian clock. As a circadian clock, the retina can mod-

ulate a plenty of circadian rhythms, such as rod and cone

balance, visual sensitivity and electroretinogram b-wave

amplitude, and dopamine synthesis. In mammals, the reti-

nal clock and its outputs may have an impact on the trophic

situation in eyes [63]. Dysfunction of the retinal clock may

result in a poorer susceptibility of photoreceptor and a

lower survival rate of the retinal neurons. Dopamine, as the

major catecholamine in the retina of vertebrates, plays a

key role in the adaptation to light [64].

Struck et al. tested 43 eyes in the PD patients for the

fluctuation of contrast sensitivity at 2-h intervals. At the

beginning of the morning, contrast sensitivity in PD does

not differ from the normal controls. But it gets worse in the

late phase at 2:30 PM in PD while remaining unaltered

throughout the day in controls [65]. This suggests that the

contrast sensitivity abnormality in PD may be related to

dopamine deficiency.

Dopamine not only has an influence on light adaptation

in the retina, but also modulates the function of the

intrinsically photosensitive retinal ganglion cells by
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regulating the expression of the photopigment melanopsin

[66]. In the retina, dopaminergic amacrine cells express

clock genes, which could adapt the retina to the environ-

ment. Using the PERIOD2::LUCIFERASE fusion protein

knock-in model, researchers reported that the dopamine

regulates the Per proteins and plays a significant role in

resetting the retinal rhythms by D1 receptor [67]. By

activating the D1 receptor, dopamine may modulate the

phase and amplitude of the circadian genes. Thus, loss of

dopaminergic neurons in PD is related with the abnormal

regulations of melanopsin-based photocurrent, which may

further affect the light-adaptive or circadian modulation.

Hormonal Disruption

It has been shown that the melatonin synthesis and the

corticosteroid secretion are directly or indirectly regulated

by SCN. Increasingly, the output of melatonin and cortisol

can be used as well-accepted markers of the central

clockwork to reflect the endogenous rhythmicity. Nowa-

days, these markers have been studied in PD.

Melatonin

The melatonin is a natural hormone mainly produced in the

mammalian pineal gland during the dark phase. SCN

receives information from zeitgebers, transforms it into the

photoperiodic information, and then delivers it to the pineal

gland by neuronal pathways. It is well-known that mela-

tonin is involved in the regulation of the sleep-wake cycle

[68]. However, two-thirds of the PD patients suffer from

sleep disturbance. Therefore, several studies have been

carried out to examine the serum melatonin levels. Fertl

et al. found that the melatonin secretion patterns in PD did

not change, but the phase was advanced compared to the

aged-matched subjects [69]. They further found that the

advanced phase in PD patients was possibly affected by a

central nervous dopaminergic effect caused by L-dopa

treatment, but not the disease itself [70]. Bordet et al.

investigated the circadian melatonin pattern at different

stages of PD. They found that dopaminergic treatments

could render a significant phase advance in plasma mela-

tonin levels. The amount of melatonin secretion during the

daytime is increased in PD with L-dopa-related motor

complications. However, during the nighttime, it decreases

significantly in these patients [71].

The melatonin secretion pattern in PD has not received

much attention until recent years. Bolitho et al. found that

the dopaminergic treatment increases the secretion of

melatonin and induces a delayed sleep onset relative to the

melatonin secretion onset [72]. In other words, dopamine

may result in the uncoupling between melatonin synthesis

and sleep-wake circle, which may account for part of the

sleep disturbances in L-dopa-treated PD patients. Videnovic

et al. found that in L-dopa-treated PD patients, the amplitude

of melatonin rhythm and 24-h circulating melatonin levels

are apparently lower [73]. Similarly, Breen et al. reported

that in early-stage PD, almost half of the newly diagnosed

PD patients have sleep complaints. They showed reduced

melatonin production with arrhythmic expression. In addi-

tion, the cortisol level is elevated and the brain and muscle

arnt-like protein-1 (Bmal1) expression is altered in PD

patients when compared with controls [74]. Further, the

reduced melatonin output in PD patients is significantly

related to the degeneration of hypothalamic gray matter and

the disease severity [75]. Melatonin, with antioxidant and

anti-inflammatory properties, is known to have beneficial

effects against brain mitochondrial dysfunction with age

[76], and may play a neuroprotective role in PD. Therefore,

the impaired rhythm of melatonin secretion may be a result

and also a cause of PD progression.

Cortisol

Cortisol secretion is dominated by the hypothalamic–

pituitary–adrenal (HPA) axis, which receives the circadian

flow from the hypothalamic paraventricular nucleus. So the

secretory rhythm of cortisol could be regarded as a sensi-

tive marker of circadian function, which is also impaired in

PD patients.

Hartmann et al.measured a 24-h pulsatile cortisol release

profile in plasma. They found that PD patients secrete sig-

nificantly more cortisol per burst into plasma and the diurnal

mean cortisol secretion rate is significantly higher but tends

to be flattened than the age-matched controls. Furthermore,

the concomitant L-dopa therapy may not contribute to this

endocrine abnormality, as dopamine does not play a major

role in modulating the HPA system activity [77]. The

hypercortisolism has also been found in patients with early-

stage PD. Breen et al. reported that there was an elevated

total serum cortisol level and half of the patients had

arrhythmic cortisol profiles but with no phase shifting [74].

This phenomenon has also been verified with the saliva

biopsy in PD patients. Moreover, the diurnal cortisol con-

centration is not affected by L-dopa treatment, or the dura-

tion or severity of the disease [78]. Likewise, in an early

study of MPTP-treated dogs, a significant increase in 24 h

plasma cortisol concentration was observed but the expres-

sion rhythm disappeared. This implied that the HPA axis is

modulated by the circadian rhythm and dopamine function

[79]. Aziz et al. examined other neuroendocrine hormones

in the serum, such as growth hormone, thyrotropin and

prolactin, in 8 recently-diagnosed PD patients for 24 h, but

no significant alteration was found in both mean levels or

secretion patterns [80].
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Meanwhile, some evidence could support the disorders

of hormone release rhythm in PD. Langston et al. found the

lewy body formation in every hypothalamus in 30 PD

patients, and the lateral and posterior hypothalamic nuclei

and tuberomamillary nucleus were most frequently

involved in the highest average lewy body counts [81].

Several studies have proved the deficient dopamine trans-

mission and reduced monoamine storage capacity in the

hypothalamus of PD patients [82–84]. Likewise, an in vivo
11C-raclopride PET study indicated a reduction in the

hypothalamic D2 receptor in PD compared with healthy

age-matched controls [85]. In other words, the degenera-

tion in hypothalamic nuclei may lead to the abnormalities

in endocrine system. The above results provide information

that the hypothalamus dysfunction contributes to the indi-

vidual difference of non-motor syndromes among PD

patients.

Clock Gene Difference

The physiological and behavioral rhythms are generated by

an endogenous biological clock-SCN, and regulated by a

series of clock genes [86]. There are several circadian

genes known as key clock genes, such as Clock, Bmal,

Period (Per1, Per2, Per3) and Cryptochrome (Cry1, Cry2).

An increasing body of evidence supports that these clock

genes are not only expressed in central circadian pace-

makers, but also in many peripheral cells and tissues

[87, 88]. Recently, several studies have demonstrated the

desynchronized oscillatory in PD patients at the molecular

level.

A study using peripheral leukocytes in the whole blood

revealed that the mRNA expression of Bmal1 was signifi-

cantly lower in PD patients during the evening, while Per1

expression showed no difference. And the relative Bmal1

level had a correlation with motor severity and sleep

quality [89]. In addition, this group continued to check

other key circadian genes in PD, and the results showed

that the expression pattern of Bmal2, but not Clock or

Dec1, was altered compared to controls [90]. Recently, Cai

and his coworkers also tested genetic polymorphisms in

circadian disruptions and their susceptibility to PD patho-

genesis. They recruited 125 tag single-nucleotide poly-

morphisms of 1,394 PD patients and 1,342 controls for 8

key clock genes. Finally they observed a decrease of Bmal

expression in PD and reported that the Bmal variant had a

suitable association with the risk for the tremor dominant

subtype, while the Per1 variant was with the postural

instability and gait difficulties dominant subtype [91]. This

suggests that disruption of the clock genes may not only

alter the circadian periodicity and exacerbate the disease

progression, but also play an etiological role in PD.

Modifications of these clock genes have also been

confirmed in the 6-OHDA animal models, in which a

reduction of the daily striatal Per2 expression has been

reported [9]. However, expression of Per2 within the SCN

was not altered in an a-synuclein overexpressing transgenic
line [45]. In a rotenone-induced PD model, the daily pulse

of Per2, Cry1, and Bmal1 was decreased in SCN. Mela-

tonin administration restored the phase of Per1 but had no

effect on other clock genes, indicating the differential

sensitivity of clock genes towards melatonin [92].

Lin et al. proposed a mechanism that may account for

the clock gene alterations in PD. As we know, histone

acetylation, DNA methylation, non-coding RNA, and so

on, play an important role in regulating the expression of

clock genes, and ultimately, circadian phenotypes [93].

Abnormal CpG methylation has been observed in neu-

rodegenerative disorders, including PD [94–96]. In PD, the

methylation status in the NPAS2 (the paralog of Clock)

promoter is decreased and the NPAS2 expression is

increased. This, in turn, would activate the expression of

Rora and Rev-erba, which serve as the main regulators of

Bmal1 expression. Above all, the epigenetic alterations in

NPSA2 expression may be the primary cause of changes in

Bmal1 and Bmal2 in the leukocytes of PD patients [96].

Curtis AM et al. identified the importance of Bmal1 in

modulating the inflammatory response, by regulating miR-

155 and some proinflammatory cytokines including TNF-a
[97].

In addition, the regular expression of clock genes is

closely related to other circadian functions. Several studies

show that the molecular regulators of the circadian clock

have different influences on sleep patterns. For example, in

NPAS2-deficient mice, non-REM sleep is reduced and

more sleep time is required following sleep deprivation

[98]. But the absence of Cry1, 2 is characterized by

hypersomnolence [99]. Researchers also demonstrated that

locomotor activity in both constant darkness and light–dark

cycles was impaired and total activity levels were reduced

in Bmal1 knockout mice [100, 101]. Similarly, Per1

mutants displayed significantly shorter circadian period

and were unable to maintain the precision and stability

[102]. Interestingly, deletion of Bmal1 from the vascular

smooth muscle cells impaired vessel contractility and

consequently, decreased mean arterial pressure through

peripheral inputs [103]. In addition, deletion of Bmal1 also

induced the attenuated rhythm of the body temperature

[101]. Some clock genes also modulate the visual infor-

mation processing to light. In the absence of Rev-erba,
mouse retinas modified scotopic threshold responses and

increased pupillary constriction, thus enhancing the sensi-

tivity to the light [104]. As to the relationship between

melatonin and the daily changes of clock genes, Kan-

dalepas PC et al. clarified that melatonin could induce
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phase advance of Per1 and Per2 at dusk through activation

of protein kinase C [105]. In sum, the evidence clearly

implicates that clock genes interact with other systems to

maintain the balance of overall circadian rhythms.

Circadian Therapy

Increasing evidence suggests that circadian oscillation is

disturbed in PD and that circadian regulation may become

a new target for therapeutic intervention. Circadian therapy

is aimed at regulating the biorhythm by changing the

external zeitgebers. And the main external zeitgebers, such

as light, physical activity, dietary and social schedules [86],

could exert a synchronizing effect on internal biological

periodicities.

Light therapy has previously been used as a method of

psychiatric therapy, mainly for seasonal affective disorder.

Many promising initiations have extended light treatment

to a wider disease spectrum [106]. Dopamine is a chemical

messenger for light adaptation [64], and exposure to light

could increase retinal dopamine activity [107]. There is a

sign that, circadian light entrainment is increasingly

applied to PD patients attempting to reset the biologic

clock. Paus et al. conducted a pilot study to evaluate

changes of clinical symptoms in 36 PD patients receiving

half an hour bright light therapy (BLT) in the morning for

15 days with the illuminance of 7500 lx. Different from the

placebo group, BLT resulted in a marked improvement in

Parkinson’s Disease Rating Scale part I, II and IV scores

and depression [108]. In another study, Willis et al. also

arranged 12 PD patients to BLT once daily at an intensity

of 1000 to 1500 lx, before the usual time of sleep onset for

1 h. Two weeks later, amelioration was observed in

bradykinesia and rigidity in most patients, as well as ele-

vated mood, improved sleep and reduced demands for

drugs [109]. Later, this group carried out a retrospective

and open-label study in 129 PD patients to assess the

systematic application of BLT. The results revealed that

BLT facilitated motor performance recovery of PD

patients, and decreased the dosage of dopamine replace-

ment drugs. Meanwhile, improvements in mood and sleep

quality were also observed in patients with other neuro-

logical disorders [110]. These studies have demonstrated

the enabling effect of BLT on motor and non-motor man-

ifestations in PD. Future research should still focus on early

diagnosed or more severe PD patients to delay the progress

or relieve the burden. Moreover, due to the advantages of

non-invasion, low cost and convenient usage, BLT is a

good option worth considering.

On the other hand, physical exercise, as a non-photic

time cue of the circadian clock, could also delay the disease

progression in some way. Yamanaka et al. proposed a

hypothesis that physical exercise could enhance the sleep-

wake cycle, which was independent of the circadian

pacemaker [111]. Another study indicated that morning

and evening exercise differentially regulate the autonomic

nervous system [112]. More evidence was provided in

animal models. For example, voluntary wheel-running

could affect physiological circadian rhythms and delay the

phase of peripheral Per2 expression [113]. Also, a meta-

analysis showed that physical exercises including Argen-

tine Tango and Tai Ji Quan may be appropriate choices for

postural instability therapy in PD [114–116]. However, few

exploratory studies have examined the effect of physical

exercise on circadian systems in PD patients.

Questions to Be Answered

Although many studies are aimed to clarify the relationship

between circadian dysfunction and PD, it is still difficult to

determine whether circadian disruption is a causal factor for

PD pathogenesis or a consequence of PD progression. First,

it is certain that circadian disruption could exacerbate some

pathological events of PD. For example, neuroinflammation

is controlled by the intrinsic circadian clock in the microglia

[117], and Bmal-/- could induce robust neuroinflammation

responses. The amount of autophagy-related proteins in the

brain displayed a 24 h rhythm, which could be blunted by

sleep fragmentation [118]. As we know, a-synuclein
aggregate, the main pathology of PD, is mostly degraded via

autophagy. Mitochondrion is the target of most neurotoxins

of PD and its dysfunction is associated with PD-related

genes, such as PINK1, DJ-1, and PARKIN. One recent

research showed that the function of mitochondrial respi-

ration displayed in a diurnal manner, which was regulated by

the clock proteins [119]. Second, the circadian system may

also be disrupted by PD progression. SCN is found with the

a-synuclein deposit, which may cause injury to the key cells

of SCN. Moreover, the circadian dysfunction may be sec-

ondary to dopamine depletion, which is often observed in

neurotoxin-induced PD models. In addition, several circa-

dian manifestations in PD patients are often more severe in

the late stage than in the early stage, which suggests that they

are a consequence of the disease or the long-term drug

medication. Therefore, in our opinion, the disrupted bior-

hythm and PD interact as both cause and effect.

Conclusion

PD is a multisystem disease and a growing body of evi-

dence suggests the circadian rhythm disturbance. From this

review, we could understand extensively about the fluctu-

ation of sleep-wake cycle, motor disability, autonomic
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nervous system, etc. Besides the dopamine replacement

treatments, strengthening the circadian functions, such as

setting up a good life style, physical activity and melatonin

therapy, may be a potential approach to improving the life

quality of PD patients and slowing the disease progression.
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