Skip to main content

Advertisement

Log in

Hypothalamic-pituitary-adrenal axis function during perinatal depression

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Abnormal function of the hypothalamic-pituitary-adrenal (HPA) axis is an important pathological finding in pregnant women exhibiting major depressive disorder. They show high levels of cortisol pro-inflammatory cytokines, hypothalamic-pituitary peptide hormones and catecholamines, along with low dehydroepiandrosterone levels in plasma. During pregnancy, the TH2 balance together with the immune system and placental factors play crucial roles in the development of the fetal allograft to full term. These factors, when altered, may generate a persistent dysfunction of the HPA axis that may lead to an overt transfer of cortisol and toxicity to the fetus at the expense of reduced activity of placental 11β-hydroxysteroid dehydrogenase type 2. Epigenetic modifications also may contribute to the dysregulation of the HPA axis. Affective disorders in pregnant women should be taken seriously, and therapies focused on preventing the deleterious effects of stressors should be implemented to promote the welfare of both mother and baby.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harvey M, Belleau P, Barden N. Gene interactions in depression: pathways out of darkness. Trends Genet 2007, 23: 547–556.

    CAS  PubMed  Google Scholar 

  2. Leff P, Hernández-Gutiérrez ME, Becerril LE, Martínez C, Téllez-Santillán C, Pérez-Tapia M, et al. The neuroendocrine network in stress-inducing mood disorders. Open Neuroendocrinol J 2010, 3: 180–207.

    CAS  Google Scholar 

  3. McFarlane A, Clark CR, Bryant RA, Williams LM, Niaura R, Paul RH, et al. The impact of early life stress on psychophysiological, personality and behavioral measures in 740 non-clinical subjects. J Integr Neurosci 2005, 4: 27–40.

    PubMed  Google Scholar 

  4. Heim C, Newport DJ, Wagner D, Wilcox MM, Miller AH, Nemeroff CB. The role of early adverse experience and adulthood stress in the prediction of neuroendocrine stress reactivity in women: a multiple regression analysis. Depress Anxiety 2002, 15: 117–125.

    PubMed  Google Scholar 

  5. Meltzer-Brody S. New insights into perinatal depression: pathogenesis and treatment during pregnancy and postpartum. Dialogues Clin Neurosci 2011, 13: 89–100.

    PubMed Central  PubMed  Google Scholar 

  6. Fishell A. Drugs in pregnancy and lactation symposium: depression and anxiety in pregnancy. J Popul Ther Clin Pharmacol 2010, 17: e363–e369.

    PubMed  Google Scholar 

  7. Henry AL, Beach AJ, Stowe ZN, Newport DJ. The fetus and maternal depression: implications for antenatal treatment guidelines. Clin Obstet Gynecol 2004, 4: 535–546.

    Google Scholar 

  8. Dunkel Schetter C, Tanner L. Anxiety, depression and stress in pregnancy: implications for mothers, children, research, and practice. Curr Opin Psychiatry 2012, 25: 141–148.

    PubMed Central  PubMed  Google Scholar 

  9. Dayan J, Creveuil C, Dreyfus M, Herlicoviez M, Baleyte JM, O’Keane V. Developmental model of depression applied to prenatal depression: role of present and past life events, past emotional disorders and pregnancy stress. PLoS One 2010, 5: e12942.

    PubMed Central  PubMed  Google Scholar 

  10. Kammerer M, Taylor A, Glover V. The HPA axis and perinatal depression: a hypothesis. Arch Womens Ment Health 2006, 9: 187–196.

    CAS  PubMed  Google Scholar 

  11. Guerry JD, Hastings PD. In search of HPA axis dysregulation in child and adolescent depression. Clin Child FamPsychol Rev 2011, 14: 135–160.

    Google Scholar 

  12. Feldman S, Weidenfeld. The excitatory effects of the amygdala on hypothalamus-pituitary-adrenocortical responses are mediated by hypothalamic norepinephrine, serotonin, and CRF-41. Brain Res Bull 1998, 45: 389–393.

    CAS  PubMed  Google Scholar 

  13. Nemeroff CB. Understanding the pathophysiology of postpartum depression: implications for the development of novel treatments. Neuron 2008, 59: 185–186.

    CAS  PubMed  Google Scholar 

  14. Ehlert U, Gaab J, Heinrichs M. Psychoneuroendocrinological contributions to the etiology of depression, posttraumatic stress disorder, and stress-related bodily disorders: The role of the hypothalamus-pituitary-adrenal axis. Biol Psychol 2001, 57: 141–152.

    CAS  PubMed  Google Scholar 

  15. Stokes PE, Sikes CR. Hypothalamic-pituitary-adrenal axis in psychiatric disorders. Ann Rev Med 1991, 42: 519–531.

    CAS  PubMed  Google Scholar 

  16. Rubin RT, Poland RE, Lesser IM, Winston RA, Blodgett AL. Neuroendocrine aspects of primary endogenous depression. I. Cortisol secretory dynamics in patients and matched controls. Arch Gen Psychiatry 1987, 44: 328–336.

    CAS  PubMed  Google Scholar 

  17. Young E, Korszun A. Psychoneuroendocrinology of depression: Hypothalamic-pituitary-gonadal axis. Psychiatr Clin North Am 1998, 21: 309–323.

    CAS  PubMed  Google Scholar 

  18. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron 2002, 34 (1): 13–25.

    Google Scholar 

  19. Gurguis GN, Meador-Woodruff JH, Haskett RF, Greden JF. Multiplicity of depressive episodes: Phenomenological and neuroendocrine correlates. Biol Psychiatry 1990, 27: 1156–1164.

    CAS  PubMed  Google Scholar 

  20. Pruessner M, Hellhammer DH, Pruessner JC, Lupien SJ. Self-reported depressive symptoms and stress levels in healthy young men: associations with the cortisol response to awakening. Psychosom Med 2003, 65: 92–99.

    CAS  PubMed  Google Scholar 

  21. Nemeroff CB. The corticotropin-releasing factor (CRF) hypothesis of depression: new findings and new directions. Mol Psychiatry 1996, 1: 336–342.

    CAS  PubMed  Google Scholar 

  22. Southwick SM, Vythilingam M, Charney DS. The psychobiology of depression and resilience to stress: implications for prevention and treatment. Annu Rev Clin Psychol 2005, 1: 255–291.

    PubMed  Google Scholar 

  23. Holsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 2000, 23: 477–501.

    CAS  PubMed  Google Scholar 

  24. van Rossum EF, Binder EB, Majer M, Koper JW, Ising M, Modell S, et al. Polymorphisms of the glucocorticoid receptor gene and major depression. Biol Psychiatry 2006, 59: 681–688.

    PubMed  Google Scholar 

  25. Gotlib IH, Hamilton JP. Neuroimaging and depression: Current status and unresolved issues. Curr Directions Psychol Sci 2008, 17: 159–163.

    Google Scholar 

  26. Seminowicz DA, Mayberg HS, Mcintosh AR, Goldapple K, Kennedy S, Segal Z, et al. Limbic-frontal circuitry in major depression: a path modeling metanalysis. Neuroimage 2004, 22: 409–418.

    CAS  PubMed  Google Scholar 

  27. Bloch M, Daly RC, Rubinow DR. Endocrine factors in the etiology of postpartum depression. Comp Psychiatry 2003, 44: 234–246.

    Google Scholar 

  28. Bloch M, Rubinow DR, Schmidt PJ, Lotsikas A, Chrousos GP, Cizza G. Cortisol response to ovine corticotrophin-releasing hormone in a model of pregnancy and parturition in euthymic women with and without a history of postpartum depression. J Clin Endocrinol Metab 2005, 90: 695–699.

    CAS  PubMed  Google Scholar 

  29. Mastorakos G, Ilias I. Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum. Ann N Y Acad Sci 2003, 997: 136–149.

    CAS  PubMed  Google Scholar 

  30. Nolten WE, Lindheimer MD, Rueckert PA, Oparil S, Ehrlich EN. Diurnal patterns and regulation of cortisol secretion in pregnancy. J Clin Endocrinol Metab 1980, 51: 466–472.

    CAS  PubMed  Google Scholar 

  31. Champagne FA, Meaney MJ. Stress during gestation alters postpartum maternal care and the development of the offspring in a rodent model. Biol Psychiatry 2006, 59: 1227–1235.

    CAS  PubMed  Google Scholar 

  32. Murphy-Eberenz K1, Zandi PP, March D, Crowe RR, Scheftner WA, Alexander M, et al. Is perinatal depression familial? J Affect Disord 2006, 90: 49–55.

    PubMed  Google Scholar 

  33. Jolley SN, Elmore S, Barnard KE, Carr DB. Dysregulation of the hypothalamic-pituitary-adrenal axis in postpartum depression. Biological Res Nurs 2007, 8: 210–222.

    CAS  Google Scholar 

  34. Gold PW, Gabry KE, Yasuda MR, Chrousos GP. Divergent endocrine abnormalities in melancholic and atypical depression: clinical and pathophysiologic implications. Endocrinol Metabol Clin N Am 2002, 31: 37–62.

    CAS  Google Scholar 

  35. Petraglia F, Imperatore A, Challis JR. Neuroendocrine mechanisms in pregnancy and parturition. Endocr Rev 2010, 31(6): 783–816.

    CAS  PubMed  Google Scholar 

  36. Zoumakis E, Kalantaridou SN, Makrigiannakis A. CRH-like peptides in human reproduction. Curr Med Chem 2009, 16: 4230–4235.

    CAS  PubMed  Google Scholar 

  37. Lovejoy DA, Balment RJ. Evolution and physiology of the corticotrophin-releasing factor (CRF) family of neuropeptides in vertebrates. Gen Comp Endocrinol 1999, 115: 1–22.

    CAS  PubMed  Google Scholar 

  38. Watts AG. The impact of physiological stimuli on the expression of corticotrophin-releasing hormone (CRH) and other neuropeptide genes. Front Neuroendocrinol 1996, 17: 281–326.

    CAS  PubMed  Google Scholar 

  39. Arai M, Assil IQ, Abou-Samra AB. Characterization of three corticotrophin-releasing factor receptors in catfish: A novel third receptor is predominantly expressed in pituitary and urophysis. Endocrinology 2001, 142: 446–454

    CAS  PubMed  Google Scholar 

  40. Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotrophin and -endorphin. Science 1981, 213: 1394–1397.

    CAS  PubMed  Google Scholar 

  41. Montecucchi PC, Anastasi A, de Castiglione R, Erspamer V. Isolation and amino acid composition of sauvagine. An active polypeptide from methanol extracts of the skin of the South American frog Phyllomedusa sauvagei. Int J Pept Protein Res 1980, 16: 191–199.

    CAS  PubMed  Google Scholar 

  42. Ichikawa T, McMaster D, Lederis K, Kobayashi H. Isolation and amino acid sequence of urotensin-I, a vasoactive and ACTH-releasing neuropeptide from the carp (Cyprinuscarpio). Peptides 1982, 3: 859–867.

    CAS  PubMed  Google Scholar 

  43. Vaughan J, Donaldson C, Bittencourt J, Perrin MH, Lewis K, Sutton S, et al. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotrophin releasing factor. Nature 1995, 378: 287–292.

    CAS  PubMed  Google Scholar 

  44. Hsu SY, Hsueh AJ. Human stresscopin and stresscopinrelated peptide are selective ligands for the type 2 corticotrophin-releasing hormone receptor. Nat Med 2001, 7: 605–611.

    CAS  PubMed  Google Scholar 

  45. Vitoratos N, Papatheodorou DC, Kalantaridou SN, Mastorakos G. “Reproductive” corticotrophin-releasing hormone. Ann N Y Acad Sci 2006, 1092: 310–318.

    CAS  PubMed  Google Scholar 

  46. Petraglia F, Florio P, Gallo R, Simoncini T, Saviozzi M, Di Blasio AM, et al. Human placenta and fetal membranes express human urocortin mRNA and peptide. J Clin Endocrinol Metab 1996, 81: 3807–3810.

    CAS  PubMed  Google Scholar 

  47. Imperatore A, Florio P, Torres PB, Torricelli M, Galleri L, Toti P, et al. Urocortin 2 and urocortin 3 are expressed by the human placenta, deciduas, and fetal membranes. Am J Obstet Gynecol 2006, 195: 288–295.

    CAS  PubMed  Google Scholar 

  48. Swanson LW, Sawchenko PE, Lind RW, Rho JH. The CRH motoneuron: differential peptide regulation in neuronswith possible synaptic, paracrine, and endocrine outputs. Ann NY Acad Sci 1987, 512: 12–23.

    CAS  PubMed  Google Scholar 

  49. Koshimizu TA, Nasa Y, Tanoue A, Oikawa R, Kawahara Y, Kiyono Y, et al. V1a vasopression receptors maintain normal blood pressure by regulation circulating blood volume and baroreflex sensitivity. Proc Natl Acad Sci U S A 2006, 103: 7807–7812.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Vantyghem MC, Balavoine AS, Wémeau JL, Douillard C. Hyponatremia and antidiuresis syndrome. Ann Endocrinol (Paris) 2011, 72: 500–512.

    CAS  Google Scholar 

  51. Jard S, Barberis C, Audigier S, Tribollet E. Neurohypophyseal hormone receptor systems in brain and periphery. Prog Brain Res 1987, 72: 173–187.

    CAS  PubMed  Google Scholar 

  52. Thibonnier M, Coles P, Thibonnier A, Shoham M. Molecular pharmacology and modeling of vasopressin receptors. Prog Brain Res 2002, 139: 179–196.

    CAS  PubMed  Google Scholar 

  53. Roper J, O’Carroll AM, Young W 3rd, Lolait S. The vasopressin Avpr1b receptor: molecular and pharmacological studies. Stress 2011, 14: 98–115.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Knepper MA. Molecular physiology of urinary concentrating mechanism: regulation of aquaporin water channels by vasopressin. Am J Physiol 1997, 272: F3–12.

    CAS  PubMed  Google Scholar 

  55. Antoni F. Vasopressinergic control of pituitary adrenocorticotrophin secretion comes of age. Front Neuroendocrinol 1993, 14: 76–122.

    CAS  PubMed  Google Scholar 

  56. Whitnall M. Stress selectively activates the vasopressin-containing subset of corticotrophin-releasing hormoneneurons. Neuroendocrinology 1989, 50: 702–707.

    CAS  PubMed  Google Scholar 

  57. Derick S, Pena A, Durroux T, Wagnon J, Serradeil-Le Gal C, Hibert M, et al. Key amino acid located within the transmembrane domains 5 and 7 account for the pharmacological specificity of the human V1b vasopressin receptor. Mol Endocrinol 2004, 18: 2777–2789.

    CAS  PubMed  Google Scholar 

  58. Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci 2008, 31: 464–468.

    CAS  PubMed  Google Scholar 

  59. Gillies GE, Linton EA, Lowry PJ. Corticotrophin releasing activity of the new CRF is potentiated several times by vasopressin. Nature 1982, 299: 355–357.

    CAS  PubMed  Google Scholar 

  60. Livesey JH, Evans MJ, Mulligan R, Donald RA. Interactions of CRH, AVP and cortisol in the secretion of ACTH from perifused equine anterior pituitary cells: “permissive” roles for cortisol and CRH. Endocr Res 2000, 26 (3):445–463.

    Google Scholar 

  61. Gispen-de Wied CC, Westenberg HG, Koppeschaar HP, Thijssen JH, van Ree JM. Stimulation of the pituitary-adrenal axis with a low dose [Arg8]-vasopressin in depressed patients and healthy subjects. Eur Neuropsychopharmacol 1992, 2: 411–419.

    CAS  PubMed  Google Scholar 

  62. Lolait SJ, Stewart LQ, Jessop DS, Young WS 3rd, O’Carroll AM. The hypothalamic-pituitary-adrenal axis response to stress in mice lacking functional vasopressin Avpr1b receptors. Endocrinology 2007, 148: 849–856.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Timpl P, Spanagel R, Sillaber I, Kresse A, Reul JM, Stalla GK, et al. Impaired stress response and reduced anxiety in mice lacking a functional corticotrophin releasing hormone receptor. Nat Genetics 1998, 19: 162–166.

    CAS  Google Scholar 

  64. Smith GW, Aubry JM, Dellu F, Contarino A, Bilezikjian LM, Gold LH, et al. Corticotrophin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 1998, 20: 1093–1102.

    CAS  PubMed  Google Scholar 

  65. Müller MB, Landgraf R, Preil J, Sillaber I, Kresse AE, Keck ME, et al. Selective activation of the hypothalamic vasopressinergic system in mice deficient for the corticotrophin-releasing hormone receptor 1 is dependent on glucocorticoids. Endocrinology 2000, 141: 4262–4269.

    PubMed  Google Scholar 

  66. Tanoue A, Ito S, Honda K, Oshikawa S, Kitagawa Y, Koshimizu TA, et al. The vasopressin Avpr1b receptor critically regulates hypothalamic-pituitary-adrenal axis activity under both stress and resting conditions. J Clin Invest 2004, 113: 302–309.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Legros JJ. Inhibitory effect of oxytocin on corticotroph function in humans: are vasopressin and oxytocin ying-yang neurohormones? Psychoneuroendocrinology 2001, 26: 649–655.

    CAS  PubMed  Google Scholar 

  68. Aguilera G, Rabadan-Diehl C. Vasopressinergic regulation of the hypothalamic-pituitary-adrenal axis: implications for stress adaptation. Regul Pept 2000, 96: 23–29.

    CAS  PubMed  Google Scholar 

  69. Pariante CM. The glucocorticoid receptor: part of the solution or part of the problem? Psychopharmacol 2006, 20: 79–84.

    Google Scholar 

  70. Lim MM, Young LJ. Neuropeptidergic regulation of affiliative behaviorand social boding in animals. Horm Behav 2006, 50: 506–517.

    CAS  PubMed  Google Scholar 

  71. Hodes GE. Sex, stress, and epigenetics: regulation of behavior in animal models of mood disorders. Biol Sex Differ 2013, 21: 1.

    Google Scholar 

  72. Elenkov IJ, Chrousos GP. Stress, cytokine patterns and susceptibility to disease. Baillieres Best Pract Res Clin Endocrinol Metab 1999, 13: 583–595.

    CAS  PubMed  Google Scholar 

  73. Turnbull AV, Rivier CL. Regulation of the hypothalamicpituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol Rev 1999, 79:1–71.

    CAS  PubMed  Google Scholar 

  74. Meaney MJ, Diorio J, Francis D, Widdowson J, LaPlante P, Caldji C, et al. Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress. Dev Neurosci 1996, 18: 49–72.

    CAS  PubMed  Google Scholar 

  75. Harris A, Seckl J. Glucocorticoids, prenatal stress and the programming of disease. Horm Behav 2011, 59: 279–89.

    CAS  PubMed  Google Scholar 

  76. Kalantaridou SN, Zoumakis E, Makrigiannakis A, Lavasidis LG, Vrekoussis T, Chrousos GP. Corticotrophin-releasing hormone, stress and human reproduction: an update. J Reprod Immunol 2010, 85 (1): 33–39.

    Google Scholar 

  77. Seckl JR. 11beta-hydroxysteroid dehydrogenases: changing glucocorticoid action. Curr Opin Pharmacol 2004, 4: 597–602.

    CAS  PubMed  Google Scholar 

  78. Draper N, Stewart PM. 11beta-hydroxysteroid dehydrogenase and the pre-receptor regulation of corticosteroid hormone action. J Endocrinol 2005, 186(2): 251–271.

    CAS  PubMed  Google Scholar 

  79. Kotelevtsev YV, Holmes MC, Burchell A, Houston PM, Scholl D, Jamieson PM, et al. 11beta-hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid inducible responses and resist hyperglycaemia on obesity and stress. Proc Natl Acad Sci U S A 1997, 94: 14924–14929.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Seckl JR, Walker BR. 11beta-hydroxysteroid dehydrogenase type 1-a tissue-specific amplifier of glucocorticoid action. Endocrinology 2001; 142: 1371–1376.

    CAS  PubMed  Google Scholar 

  81. Moisan M-P, Seckl JR, Edwards CRW. 11b-Hydroxysteroid dehydrogenase bioactivity and messenger RNA expression in rat forebrain: localization in hypothalamus, hippocampus and cortex. Endocrinology 1990, 127: 1450–1455.

    CAS  PubMed  Google Scholar 

  82. Anacker C, Zunszain PA, Carvalho LA, Pariante CM. The glucocorticoid receptor: pivot of depression and of antidepressant treatment? Psychoneuroendocrinology 2011, 36: 415–425.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Krishnan V, Nestler EJ. Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry 2010, 167: 1305–1320.

    PubMed Central  PubMed  Google Scholar 

  84. Tasker JG, Di S, Malcher-Lopes R. Minireview: rapid glucocorticoid signaling via membrane-associated receptors. Endocrinology 2006, 147: 5549–5556.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Wyrwoll CS, Holmes MC, Seckl JR. 11β-hydroxysteroid dehydrogenases and the brain: from zero to hero, a decade of progress. Front Neuroendocrinol 2011, 32: 265–286

    PubMed Central  CAS  PubMed  Google Scholar 

  86. de Kloet ER, Karst H, Joëls M. Corticosteroid hormones in the central stress response: quick-and-slow. Front Neuroendocrinol 2008, 29: 268–272.

    PubMed  Google Scholar 

  87. Geerling JC, Loewy AD. Aldosterone in the brain. Am J Physiol Renal Physiol 2009, 297: F559–F576.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Funder JW. Mineralocorticoid receptors in the central nervous system. J Steroid Biochem Mol Biol 1996, 56: 179–183.

    CAS  PubMed  Google Scholar 

  89. Hinz B, Hirschelmann R. Rapid non-genomic feedback effects of glucocorticoids on CRF-induced ACTH secretion in rats. Pharm Res 2000, 17: 1273–1277.

    CAS  PubMed  Google Scholar 

  90. Keller-Wood ME, Dallman MF. Corticosteroid inhibition of ACTH secretion. Endocr Rev 1984, 5: 1–24.

    CAS  PubMed  Google Scholar 

  91. Chrousos GP, Torpy DJ, Gold PW. Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med 1998, 129: 229–240.

    CAS  PubMed  Google Scholar 

  92. Aguilera G, Rabadan-Diehl C. Regulation of vasopressin Avpr1b receptors in the anterior pituitary gland of the rat. Exp Physiol 2000, 85Spec No: 19S–26S.

    CAS  PubMed  Google Scholar 

  93. Wu Z, Ji H, Hassan A, Aguilera G, Sandberg K. Regulation of pituitary corticotrophin releasing factor type-1 receptor mRNA binding proteins by modulation of the hypothalamic-pituitaryadrenal axis. J Neuroendocrinol 2004, 16: 214–220.

    CAS  PubMed  Google Scholar 

  94. Makino S, Schulkin J, Smith MA, Pacák K, Palkovits M, Gold PW. Regulation of corticotrophin-releasing hormone receptor messenger ribonucleic acid in the rat brain and pituitary by glucocorticoids and stress. Endocrinology 1995, 136: 4517–4525.

    CAS  PubMed  Google Scholar 

  95. Rabadan-Diehl C, Makara G, Kiss A, Lolait S, Zelena D, Ochedalski T, et al. Regulation of pituitary Avpr1b vasopressin receptor messenger ribonucleic acid by adrenalectomy and glucocorticoid administration. Endocrinology 1997, 138: 5189–5194.

    CAS  PubMed  Google Scholar 

  96. Verkuyl JM, Hemby SE, Joëls M. Chronic stress attenuates GABAergic inhibition and alters gene expression of parvocellular neurons in rat hypothalamus. Eur J Neurosci 2004, 20: 1665–1673.

    PubMed  Google Scholar 

  97. Verkuyl JM, Karst H, Joëls M. GABAergic transmission in the rat paraventricular nucleus of the hypothalamus is suppressed by corticosterone and stress. Eur J Neurosci 2005, 21: 113–121.

    PubMed  Google Scholar 

  98. Miklós IH, Kovács KJ. GABAergic innervation of corticotrophin-releasing hormone (CRH)-secreting parvocellular neurons and its plasticity as demonstrated by quantitative immunoelectron microscopy. Neuroscience 2002, 113: 581–592.

    PubMed  Google Scholar 

  99. Zhu CB, Carneiro AM, Dostmann WR, Hewlett WA, Blakely RD. p38 MAPK activation elevates serotonin transport activity via a trafficking-independent, protein phosphatase 2A-dependent process. J Biol Chem 2005, 280: 15649–15658.

    CAS  PubMed  Google Scholar 

  100. Falkenstein E, Tillmann HC, Christ M, Feuring M, Wehling M. Multiple actions of steroid hormones-a focus on rapid, nongenomic effects. Pharmacol Rev 2000, 52: 513–556.

    CAS  PubMed  Google Scholar 

  101. Newton R. Molecular mechanisms of glucocorticoid action: what is important? Thorax 2000, 55: 603–613.

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Seckl JR. Prenatal glucocorticoids and long-term programming. Eur J Endocrinol 2004, 151Suppl 3: U49–U62.

    CAS  PubMed  Google Scholar 

  103. Ward RM. Pharmacologic enhancement of fetal lung maturation. Clin Perinatol 1994, 21: 523–542.

    CAS  PubMed  Google Scholar 

  104. Cole TJ. Cloning of the mouse 11beta-hydroxysteroid dehydrogenase type 2 gene: tissue specific expression and localization in distal convoluted tubules and collecting ducts of the kidney. Endocrinology 1995, 136: 4693–4696.

    CAS  PubMed  Google Scholar 

  105. Speirs H, Seckl J, Brown R. Ontogeny of glucocorticoid receptor and 11b-hydroxysteroid dehydrogenase type 1 gene expression identifies potential critical periods of glucocorticoid susceptibility during development. J Endocrinol 2004, 181: 105–116.

    CAS  PubMed  Google Scholar 

  106. Sun K, Yang K, Challis JRG. Differential expression of 11betahydroxysteroid dehydrogenase types 1 and 2 in human placenta and fetal membranes. J Clin Endocrinol Metab 1997, 82: 300–305.

    CAS  PubMed  Google Scholar 

  107. Stewart PM, Rogerson FM, Mason JI. Type 2 11b-hydroxysteroid dehydrogenase messenger RNA and activity in human placenta and fetal membranes: its relationship to birth weight and putative role in fetal steroidogenesis. J Clin Endocrinol Metab 1995, 80: 885–890.

    CAS  PubMed  Google Scholar 

  108. McTernan CL, Draper N, Nicholson H, Chalder SM, Driver P, Hewison M, et al. Reduced placental 11beta-hydroxysteroid dehydrogenase type 2 mRNA levels in human pregnancies complicated by intrauterine growth restriction: an analysis of possible mechanisms. J Clin Endocrinol Metab 2001, 86: 4979–4983.

    CAS  PubMed  Google Scholar 

  109. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci U S A 1996, 93: 3908–3913.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Fernandez-Guasti A, Fiedler JL, Herrera L, Handa RJ. Sex, stress and mood disorders: at the intersection of adrenal and gonadal hormones. Horm Metab Res 2012, 44: 607–618.

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Forbes K, Westwood M. Maternal growth factor regulation of human placental development and fetal growth. J Endocrinol 2010, 207: 1–16.

    CAS  PubMed  Google Scholar 

  112. Mastorakos G, Scopa CD, Kao LC, Vryonidou A, Friedman TC, Kattis D, et al. Presence of immunoreactive corticotrophin-releasing hormone in human endometrium. J Clin Endocrinol Metab 1996, 81: 1046–1050.

    CAS  PubMed  Google Scholar 

  113. Makrigiannakis A1, Zoumakis E, Margioris AN, Theodoropoulos P, Stournaras C, Gravanis A. The corticotrophin-releasing hormone (CRH) in normal and tumoral epithelial cells of human endometrium. J Clin Endocrinol Metab 1995, 80: 185–189.

    CAS  PubMed  Google Scholar 

  114. Di Blasio AM, Pecori Giraldi F, Viganò P, Petraglia F, Vignali M, Cavagnini F. Expression of corticotrophin-releasing hormone and its R1 receptor in human endometrial stromal cells. J Clin Endocrinol Metab 1997, 82: 1594–1597.

    PubMed  Google Scholar 

  115. Gravanis A, Makrigiannakis A, Zoumakis E, Margioris AN. Endometrial and myometrial corticotrophin-releasing hormone (CRH): its regulation and possible roles. Peptides 2001, 22: 785–793.

    CAS  PubMed  Google Scholar 

  116. Makrigiannakis A, Zoumakis E, Kalantaridou S, Coutifaris C, Margioris AN, Coukos G,. et al. Corticotrophin-releasing hormone promotes blastocyst implantation and early maternal tolerance. Nat Immunol 2001, 2: 1018–1024.

    CAS  PubMed  Google Scholar 

  117. Linton EA, Perkins AV, Woods RJ, Eben F, Wolfe CD, Behan DP, et al. Corticotrophin releasing hormone-binding protein (CRH-BP): plasma levels decrease during the third trimester of normal human pregnancy. J Clin Endocrinol Metab 1993, 76: 260–262.

    CAS  PubMed  Google Scholar 

  118. Chrousos GP, Torpy DJ, Gold PW. Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med 1998, 129: 229–240.

    CAS  PubMed  Google Scholar 

  119. Goland RS, Tropper PJ, Warren WB, Stark RI, Jozak SM, Conwell IM. Concentrations of corticotrophin-releasing hormone in the umbilical-cord blood of pregnancies complicated by pre-eclampsia. Reprod Fertil Dev 1995, 7: 1227–1230.

    CAS  PubMed  Google Scholar 

  120. McLean M, Bisits A, Davies J, Woods R, Lowry P, Smith R. A placental clock controlling the length of human pregnancy. Nat Med 1995, 1: 460–463.

    CAS  PubMed  Google Scholar 

  121. Wyrwoll CS, Holmes MC. Prenatal excess glucocorticoid exposure and adult affective disorders: a role for serotonergic and catecholamine pathways. Neuroendocrinol 2012, 95: 47–55.

    CAS  Google Scholar 

  122. Pavón L, Sandoval-López G, Eugenia Hernández M, Loría F, Estrada I, Pérez M, et al. Th2 cytokine response in Major Depressive Disorder patients before treatment. J Neuroimmunol 2006, 172: 156–165.

    PubMed  Google Scholar 

  123. O’Donnell KJ, Bugge Jensen A, Freeman L, Khalife N, O’Connor TG, Glover V. Maternal prenatal anxiety and downregulation of placental 11β-HSD2. Psychoneuroendocrinology 2012, 37: 818–826.

    PubMed  Google Scholar 

  124. Sun H, Kennedy PJ, Nestler EJ. Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology 2013, 38: 124–137.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Feng J, Fan G. The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int Rev Neurobiol 2009, 89: 67–84.

    CAS  PubMed  Google Scholar 

  126. Mastorakos G, Ilias I. Maternal and fetal hypothalamicpituitary-adrenal axes during pregnancy and postpartum. Ann NY Acad Sci 2003, 997: 136–149.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillipe Leff Gelman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelman, P.L., Flores-Ramos, M., López-Martínez, M. et al. Hypothalamic-pituitary-adrenal axis function during perinatal depression. Neurosci. Bull. 31, 338–350 (2015). https://doi.org/10.1007/s12264-014-1508-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-014-1508-2

Keywords

Navigation