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Abstract There is little evidence about genetic risk score

(GRS)–diet interactions in order to provide personalized

nutrition based on the genotype. The aim of the study was

to assess the value of a GRS on obesity prediction and to

further evaluate the interactions between the GRS and

dietary intake on obesity. A total of 711 seekers of a Nu-

trigenetic Service were examined for anthropometric and

body composition measurements and also for dietary habits

and physical activity. Oral epithelial cells were collected

for the identification of 16 SNPs (related with obesity or

lipid metabolism) using DNA zip-coded beads. Genotypes

were coded as 0, 1 or 2 according to the number of risk

alleles, and the GRS was calculated by adding risk alleles

with such a criterion. After being adjusted for gender, age,

physical activity and energy intake, the GRS demonstrated

that individuals carrying [7 risk alleles had in average

0.93 kg/m2 of BMI, 1.69 % of body fat mass, 1.94 cm of

waist circumference and 0.01 waist-to-height ratio more

than the individuals with B7 risk alleles. Significant

interactions for GRS and the consumption of energy, total

protein, animal protein, vegetable protein, total fat, satu-

rated fatty acids, polyunsaturated fatty acids, total carbo-

hydrates, complex carbohydrates and fiber intake on

adiposity traits were found after adjusted for confounders

variables. The GRS confirmed that the high genetic risk

group showed greater values of adiposity than the low risk

group and demonstrated that macronutrient intake modifies

the GRS association with adiposity traits.

Keywords Genetic risk score � Obesity � Adiposity �
Gene–macronutrient interaction

Introduction

The prevalence of obesity is rising steadily not only in

high-income countries but also in low-income countries.

Indeed, it has been estimated that 1.12 billion adults will be

obese by 2030 (Kelly et al. 2008). Consequently, the

prevalence of obesity-associated metabolic diseases, such

as type 2 diabetes, cardiovascular disease or certain can-

cers, will also increase (Wang et al. 2011).

Although obesity is generally attributed to an imbalance

between the energy intake and the energy expenditure,

heritability studies indicate that genetic factors also play an

important role in energy metabolism and the susceptibility

to obesity (Abete et al. 2010; Min et al. 2013). Indeed,

genome-wide association studies (GWAS) have identified a

large number of single nucleotide polymorphisms (SNPs)

associated with obesity and metabolic-related traits, which

later have been widely replicated in different populations

(Fall and Ingelsson 2014; Lind and Chiu 2013; Qi and Hu

2012; Global Lipids Genetics Consortium et al. 2013).

Previous simulation studies have shown that the predictive

value of a genetic variant could be improved by combining
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multiple loci simultaneously in a genetic risk score (GRS)

model (Moonesinghe et al. 2010). In fact, (Belsky et al.

2013) concluded that a 32 obesity locus GRS is a good

predictor of body mass index (BMI) and obesity among

Caucasians. Although it has been reported the discrimina-

tive and predictive power of GRSs of obesity SNPs, to the

best of our knowledge, no study so far has specifically

evaluated a multi-trait GRS of both, obesity and lipid

metabolism SNPs (San-Cristobal et al. 2013).

Genetic factors could account for 25–70 % of the body

weight inter-individual variability (Razquin et al. 2011).

Thus, genetic variants alone seem to be insufficient to

explain the obesity heritability. In this context, a large

number of investigations have suggested several interac-

tions between certain genetic polymorphisms and modifi-

able environmental factors such as dietary intake or

physical activity (Qi 2014; Roth et al. 2012). Nevertheless,

there is scarce information regarding interactions between

obesity GRSs and lifestyle factors. Interactions with

physical activity (Li et al. 2010a; Ahmad et al. 2013),

television watching (Qi et al. 2012a), meal frequencies

(Jaaskelainen et al. 2013), omega-3 polyunsaturated fatty

acids (PUFA) (Lemas et al. 2013), sugar-sweetened bev-

erages (Qi et al. 2012b) and fried food (Qi et al. 2014) have

been described, although other report could not observe

any strong interactions with macronutrients (Rukh et al.

2013).

Thus, the two main aims of this study were to test the

associations between a multi-trait GRS and body compo-

sition measurements and to further evaluate dietary intake

and obesity interactions depending on the genotype.

Materials and methods

Subjects

The study population included men and women of Cau-

casian ancestry who voluntarily attended a Nutrigenetic

Service located in community pharmacies in seven regions

of Spain (Barcelona, Zaragoza, La Coruña, Pontevedra,

Madrid, Granada and Málaga). Genotype information of

718 individuals was available. Of these, seven subjects

were excluded with missing values for dietary intake,

physical activity and/or anthropometric measurements. In

total, 711 individuals were included in the analysis.

Seekers of the Nutrigenetic Service were specifically

asked if they would be willing to take part anonymously in

the research study. After ensuring that participants had

understood the information, only those who provided

written informed consent for participation were enrolled.

The survey was in accordance with the principles of the

Declaration of Helsinki and patient data were codified to

guarantee anonymity accuracy (World Medical Association

2013). The Research Ethics Committee of the University of

Navarra gave confirmation of fulfillment of the ethical

standards and deontological criteria affecting this research

(ref. 2710/2014).

Data collection

Anthropometric measurements were collected by trained

nutritionists using a standardized protocol. Individuals

were weighed with a digital scale (TANITA BF522W),

wearing light clothes and no shoes. Height was measured

using a portable stadiometer (Leicester TANITA) with

subjects in barefoot. BMI was calculated dividing weight

(kg) by the square of height (m). Body fat mass (BFM) was

determined by bioelectrical impedance using the TANITA

BF522W. Body fat distribution was evaluated by the

measurement of waist and hip circumferences using a

flexible and inextensible tape measure. Waist circumfer-

ence was measured at the midway between the lower

margin of the least rib and the top of iliac crest or

according to the circumference at the level of the umbilicus

if it was not possible to identify the least rib or the iliac

crest; and hip circumference as the widest circumference

over the greater buttocks. Waist-to-hip ratio (waist/hip) and

waist-to-height ratio (waist/height) were then calculated.

Physical activity was determined using a short 24-h

physical activity questionnaire (Panel on Macronutrients

et al. 2005). Subjects were asked about the number of hours

resting and practicing activities at work or at leisure time

during a week day and a weekend day. Activities were

divided in four groups according to intensity of effort:

sedentary, low active, active and very active. Individual

daily physical activity level was calculated multiplying the

average time spent on each group of activities during the

week and the weekend and the multiples of physical

activity levels (Panel on Macronutrients et al. 2005).

Diet information was collected by a food frequency

questionnaire in which basic foods were classified into 19

food groups: whole dairy products, half-fat dairy products

and fat-free dairy products, eggs, fat meat and sausages,

lean meat, white fish and shellfish, blue fish, vegetables,

fruits, nuts, legumes, olive oil, other fats and oils, refined

grains, whole grains, pastries and confectionary industry,

sugars, water and alcohol drinks. Each food group com-

prised several foods based on a food exchange list system

(de la Iglesia et al. 2014). In other words, the foods on each

group have about the same amount of calories, carbohy-

drate, protein and fat. For example, the group of whole

dairy products (in average 67.6 kcal, 3.9 g carbohydrate,

4.2 g protein and 4.0 g fat) comprised 125 ml of milk, 50 g

of milk powder, 125 g of different types of yogurt and 50 g

of fresh cheese. Subjects were asked to report how often
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(daily, weekly, monthly or never) they had consumed a

choice of each food group during the previous year. Total

energy intake and macronutrient composition were calcu-

lated using Spanish food composition tables (Mataix et al.

2009; Moreiras et al. 2012).

Genetic risk score (GRS)

This research was based on a genetic tool developed by a

pharmaceutical company (CINFA) which comprised 23

polymorphisms related with nutrition. Of the 23 SNPs, a

total of 16 SNPs previously associated with obesity and

lipid metabolism on the basis of published reports were

selected. Of these, rs9939609 and rs17782313, which

represent the obesity susceptibility loci in the FTO and

MC4R genes, respectively, have been identified by GWAS

(Frayling et al. 2007; Willer et al. 2009; Loos et al. 2008).

A recent meta-analysis has confirmed the association

between the genetic variant rs1801282 (PPARG) and BMI

(Galbete et al. 2013a). The polymorphisms rs1801133

(MTHFR) and rs894160 (PLIN1) have been related with

obesity phenotype in some association studies (Lewis et al.

2008; Soenen et al. 2009). Seven polymorphisms,

rs1260326 (GCKR), rs662799 (APOA5), rs4939833

(LIPG), rs1800588 (LIPC), rs328 (LPL), rs12740374

(CELSR2) and rs7412 (APOE), have been reported to be

associated with some lipid metabolism disturbances

(hypertriglyceridemia, hypercholesterolemia, high low-

density lipoprotein-LDL-levels or low high-density lipo-

protein-HDL-levels) by GWAS (Willer et al. 2008; Ka-

thiresan et al. 2008; Sandhu et al. 2008; Kettunen et al.

2012). The SNP rs429358 (APOE) has been associated

with some lipid metabolism disorders by a meta-analysis of

association studies (Bennet et al. 2007); and three SNPs,

rs1799983 (NOS3), rs1800777 (CETP) and rs1800206

(PPARA), by association studies (Ferguson et al. 2010;

Chrysohoou et al. 2004; Lu et al. 2008; Tai et al. 2002).

The GRS was calculated assuming that each SNP acts

independently and contributes equally to the risk of obesity

in an additive manner, as has been previously reported (He

et al. 2010; Peterson et al. 2011). Genotypes were coded as

0, 1 or 2 according to the number of risk alleles for each

variant. The GRS was computed by summing the risk

alleles across the 16 SNPs for each individual.

Genotyping

Genomic DNA from oral epithelial cells (collected in

ORAcollect DNA�, DNAGenotek) was extracted by

QIAcube using QiAmp DNA Mini QIAcube Kit (Qiagen),

following the manufacturer procedures. The polymerase

chain reactions were carried out using the GeneAmp� PCR

System 9700 thermal cycler according to standardized

laboratory protocols. PCR products were analyzed using

Luminex� 100/200TM System, which is based on the

principles of xMAP� Technology. Briefly, this method

uncompressed polystyrene microspheres internally dyed

with various ratios of spectrally distinct fluorophores,

which are detected by a flow cytometry-based instrument

(Dunbar 2006).

Statistical analysis

Deviation from Hardy–Weinberg equilibrium was tested by

v2 test. Linear regression analyses (adjusted for age, sex,

physical activity and total energy intake) were used to

evaluate the association between the GRS or individual

SNPs and body composition measurements (BMI, per-

centage of BFM, waist circumference, hip circumference,

waist/hip and waist/height). Logistic regression analyses

were applied to examine odds ratios of GRS for obesity

(BMI C30 kg/m2; percentage of BFM [25 % for males

and [33 % for females), and for risk of cardiovascular

disease (waist circumference [94 cm for males and

[80 cm for females; waist/hip C0.90 for males and C0.85

for females; waist/height C0.53 for males and C0.51 for

females), after they were adjusted for age, sex, physical

activity and total energy intake as confounder variables

(Rubio et al. 2007; Sociedad Española para el Estudio de la

Obesidad—SEEDO 2000; World Health Organization

2008). The discriminative power of the GRS was tested by

the area under the receiver operating characteristic curves

(ROC AUCs) (Dorfman and Alf 1969; Cleves 1999).

Interactions between the GRS or SNPs and diet intake on

percentage of BFM and obesity risk (according to the

percentage of BFM) were examined with the likelihood

ratio test (Sánchez-Villegas and Martı́nez-Gonzalez 2006).

Product terms between the GRS or SNPs and diet intake

were calculated with the nutrients dichotomized at the

median and as continuous variables. All statistical analyses

were performed using STATA/SE, version 12.0 (Stata-

Corp, College Station, TX, USA). A p value of p \ 0.05

was considered as statistically significant.

Results

The phenotypical characteristics of the individuals inclu-

ded in the study were categorized by gender (Table 1). As

expected, males showed higher height, weight and waist

circumference than females. In contrast, females had

greater percentage of BFM. Energy intake and physical

activity were higher in males than in females. Of the 711

subjects, 41.6 % were obese, and no statistical differences

were observed depending on gender. About 40.9 % of the

individuals self-declared that they suffered one or more
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metabolic disorders: 22.2 % hypertension, 3.2 % type 2

diabetes, 28.0 % different lipid metabolism impairments

and 3.1 % cardiovascular disease.

The minor allele frequencies (MAF) and Hardy–Wein-

berg Equilibrium for each SNP are listed (Table 2). MAF

ranged from 0.02 to 0.45 in the population. The distribu-

tions of the all polymorphisms alleles were in Hardy–

Weinberg Equilibrium (p [ 0.05), except rs1800777 in

CETP (p = 0.0052). Moreover, risk alleles for each SNP

and alleles frequencies in HapMap CEU population have

been reported (Supplementary Material Table 1).

The association of each SNP of the GRS with obesity-

related traits including BMI, percentage of BFM, waist

circumference, waist/hip and waist/height (after adjusted

for age, gender, physical activity and energy intake) was

analyzed (data not shown). Individuals with the genotype

AA of the rs9939609 genetic variant in the FTO gene had

greater BMI, percentage of BFM, waist circumference and

waist/height. The C allele carriers of the genetic variant

rs429358 (APOE) showed significantly higher BMI, and a

tendency was observed for the percentage of BFM, waist

circumference and hip circumference. None of the other

SNPs showed significant association with any other quan-

titative traits in the case of the total population. After

adjusted for confounder variables, only rs9939609 (FTO)

was significantly associated with obesity risk in the current

study, while rs429358 (APOE) showed a trend toward

significance (Supplementary Material Table 1).

The GRS, calculated as the number of risk alleles car-

ried by each subject, was normally distributed. The average

number of risk alleles per person was 8.09 (SD = 2.02),

which ranged from 2 to 16. The sample was stratified, by

Table 1 Anthropometrical and

nutritional baseline

characteristics stratified and

statistically compared by gender

BMI body mass index, BFM

body fat mass
a Chi-squared p value

Variables All (n = 711) Males (n = 159) Females (n = 552) p value

Age (years) 50.1 ± 13.4 47.9 ± 13.6 50.7 ± 13.2 0.016

Height (cm) 163.0 ± 8.8 173.7 ± 7.5 159.9 ± 6.4 \0.001

Weight (kg) 78.2 ± 16.7 90.0 ± 16.4 74.8 ± 15.2 \0.001

BMI (kg/m2) 29.4 ± 5.8 29.8 ± 5.0 29.3 ± 6.0 0.339

Obesity (BMI C 30 kg/m2) (%) 296 (41.6) 68 (42.8) 228 (41.3) 0.742a

BFM (%) 34.6 ± 10.1 24.4 ± 9.7 37.5 ± 8.2 \0.001

Waist circumference (cm) 96.4 ± 15.2 104.3 ± 13.9 94.2 ± 14.7 \0.001

Waist/hip 0.88 ± 0.09 0.96 ± 0.09 0.85 ± 0.08 \0.001

Waist/height 0.59 ± 0.09 0.60 ± 0.08 0.59 ± 0.10 0.175

Energy intake (kcal) 2,151 ± 431 2,477 ± 464 2,057 ± 372 \0.001

Physical activity 1.23 ± 0.03 1.24 ± 0.03 1.23 ± 0.03 0.003

Table 2 Genotype, minor

allele frequency (MAF) and

Hardy–Weinberg equilibrium

calculations of the 16 SNPs

included in the GRS

SNP single nucleotide

polymorphism, MAF minor

allele frequency, HWE p value

hardy–weinberg equilibrium

p value
a According to Hap-Map CEU

for European population

Gene SNP Major/

minor

allelea

Major allele

homozygote

(%)

Heterozygote

(%)

Minor allele

homozygote

(%)

MAF HWE

p value

FTO rs9939609 T/A 218 (30.6) 351 (49.4) 142 (20.0) 0.45 0.973

MC4R rs17782313 T/C 442 (62.2) 237 (33.3) 32 (4.5) 0.21 0.974

MTHFR rs1801133 C/T 257 (36.2) 340 (47.8) 114 (16.0) 0.40 0.930

PPARA rs1800206 C/G 591 (83.1) 116 (16.3) 3 (0.5) 0.09 0.507

PPARG rs1801282 C/G 594 (82.5) 110 (15.5) 7 (1.0) 0.09 0.453

APOA5 rs662799 T/C 620 (87.2) 88 (12.4) 3 (0.4) 0.07 0.948

APOE rs429358 T/C 574 (80.7) 129 (18.1) 8 (1.1) 0.10 0.804

APOE rs7412 C/T 624 (87.8) 84 (11.8) 3 (0.4) 0.06 0.923

LIPC rs1800588 C/T 406 (57.1) 250 (36.3) 47 (6.6) 0.24 0.489

PLIN1 rs894160 G/A 378 (53.2) 282 (39.7) 51 (7.2) 0.27 0.872

NOS3 rs1799983 G/T 286 (40.2) 326 (45.8) 99 (13.9) 0.37 0.692

GCKR rs1260326 C/T 208 (29.2) 367 (50.9) 141 (19.8) 0.45 0.465

LPL rs328 C/G 510 (71.7) 189 (26.6) 12 (1.7) 0.15 0.244

CELSR2 rs12740374 G/T 440 (61.9) 241 (33.9) 30 (4.2) 0.21 0.676

CETP rs1800777 G/A 681 (95.8) 28 (3.9) 2 (0.3) 0.02 0.005

LIPG rs4939883 C/T 508 (71.4) 179 (25.2) 24 (3.4) 0.16 0.100
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the median, into a ‘‘low genetic risk group,’’ those with a

GRS B 7 risk alleles (n = 289), and into a ‘‘high genetic

risk group,’’ those with a GRS [ 7 risk alleles (n = 422).

Results from linear regression and logistic regression

analyses revealed that the group with a GRS of [7 risk

alleles had a 0.93 kg/m2 greater BMI, a 1.69 greater per-

centage of BFM, a 1.94 cm larger waist circumference and

a greater 0.01 waist/height compared with the group with a

GRS of B7 risk alleles, after they were adjusted for age,

gender, physical activity and energy intake (Table 3). It

should be highlighted that when the GRS was considered

as a continuous variable, the associations between BMI,

waist circumference, waist/hip and waist/height ratios, and

GRS were no longer statistically significant. However, a

significant association was observed with the percentage of

BFM when considered the GRS as a continuous variable (B

coefficient 0.373, 95 %CI 0.10–0.64, p 0.007), after

adjusted for the previously mentioned confounder vari-

ables. Individuals in the high genetic risk group, after

confounder variables adjustment (age, gender, physical

activity and energy intake), were at 42 and 72 % greater

risk of obesity according to BMI and percentage of BFM,

respectively. The risk of cardiovascular disease, taking into

account waist circumference, was 57 % higher in the high

genetic risk group than that in the low genetic risk group.

Moreover, the ROC curves for the prediction of obesity

according to BMI and the percentage of BFM were

calculated. The AUC estimates were low. The GRS pre-

dicted obesity with a maximum discriminating ability when

the percentage of BFM was taken into account (AUC 0.55;

95 % CI 0.51–0.60). The AUC was 0.53 (95 % CI

0.48–0.57) when the BMI was considered.

Significant SNPs’ interactions (FTO, PPARG and

APOE) with some macronutrient intake that modified the

association with BFM were detected (data not shown).

After correction for multiple testing, interactions between

FTO and total fat (p interaction = 0.016) and MUFA

intake (p interaction = 0.012), PPARG and animal protein

(p interaction = 0.011) and diet cholesterol intake,

(p interaction = 0.028) and APOE and complex carbohy-

drates intake (p interaction = 0.027) on BFM remained

significant.

After data were adjusted for gender, age, physical activity

and energy intake, several macronutrients modified the

effect of the GRS on percentage of BFM and risk of obesity

(Table 4, Supplementary Material Fig. 1–4). A higher

energy intake was associated with an increase of 0.39 (SE

0.04) percentage of BFM in the high genetic risk group,

while the effect was much less in the low genetic risk group.

Similar trends for interaction were found for protein

(p interaction = 0.003) and fat intakes (p interac-

tion = 0.029). Interestingly, when stratifying by animal and

vegetable protein, the vegetable intake seemed to improve

the percentage of the BFM (p interaction = 0.003) in the B7

Table 3 Linear regression coefficients and logistic regression coefficients for the association between GRS (dichotomized by the median) and

several anthropometric variables

Linear regression coefficients Logistic regression coefficients

Model 1 Model 2 Model 1 Model 2

B (95 % CI) p value B (95 % CI) p value OR (95 % CI) p value OR (95 % CI) p value

BMI (kg/m2)

B7 risk alleles 0 (ref.) 0 (ref.) 1 (ref.) 1 (ref.)

[7 risk alleles 1.02 (0.17–1.87) 0.019 0.93 (0.17–1.68) 0.016 1.41 (1.04–1.93) 0.031 1.42 (1.02–1.99) 0.038

Percentage of BFM

B7 risk alleles 0 (ref.) 0 (ref.) 1 (ref.) 1 (ref.)

[7 risk alleles 1.81 (0.59–3.03) 0.004 1.69 (0.58–2.80) 0.003 1.72 (1.22–2.42) 0.002 1.72 (1.19–2.48) 0.004

Waist circumference (cm)

B7 risk alleles 0 (ref.) 0 (ref.) 1 (ref.) 1 (ref.)

[7 risk alleles 2.14 (0.08–4.21) 0.042 1.94 (0.12–3.75) 0.036 1.54 (1.04–2.29) 0.032 1.57 (1.02–2.40) 0.039

Waist-to-hip ratio

B7 risk alleles 0 (ref.) 0 (ref.) 1 (ref.) 1 (ref.)

[7 risk alleles 0.00 (-0.01–0.002) 0.445 0.00 (-0.01–0.01) 0.480 1.15 (0.82–1.61) 0.401 1.14 (0.81–1.61) 0.454

Waist-to-height ratio

B7 risk alleles 0 (ref.) 0 (ref.) 1 (ref.) 1 (ref.)

[7 risk alleles 0.01 (0.00–0.03) 0.036 0.01 (0.00–0.02) 0.029 1.39 (0.95–2.02) 0.089 1.41 (0.94–2.10) 0.096

Model 1: Adjusted for gender and age

Model 2: Adjusted for gender, age, physical activity and energy intake

BMI body mass index, BMF body fat mass, 95 % CI 95 % confidence interval, OR odds ratio
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risk alleles group, whereas the animal protein intake was

associated with an increase in the percentage of BFM in the

[7 risk alleles group (p interaction = 0.032). Moreover, the

higher the increase in AGS (p interaction = 0.015), carbo-

hydrates (p interaction = 0.008) and complex carbohydrates

(p interaction = 0.030), the higher the percentage of BFM

in the high genetic risk group. In contrast, the higher the

intake of AGP (p interaction = 0.002) and fiber (p interac-

tion = 0.039), the lower the percentage of BFM in the low

genetic risk group. The same tendency was observed in

Table 4 The dietary intake modifies the GRS association with BFM (%) and the obesity risk (as % of BFM)

b (SE) p value p value for interaction OR (95 % CI) p value p value for interaction

Energy intake (kcal)

B7 risk alleles 0.17 (0.05) \0.001 1.00 (1.00–1.00) 0.041

[7 risk alleles 0.39 (0.04) \0.001 0.002* 1.00 (1.00–1.00) \0.001 \0.001*

Total protein (g)

B7 risk alleles 0.11 (0.06) 0.060 1.01 (0.99–1.02) 0.302

[7 risk alleles 0.20 (0.04) \0.001 0.003* 1.02 (1.00–1.03) 0.037 0.001*

Animal protein (g)

B7 risk alleles 0.09 (0.05) 0.053 1.01 (0.99–1.02) 0.261

[7 risk alleles 0.13 (0.04) 0.002 0.032 1.01 (1.00–1.03) 0.080 0.021*

Vegetable protein (g)

B7 risk alleles -0.06 (0.06) 0.340 0.98 (0.94–1.03) 0.484

[7 risk alleles 0.02 (0.06) 0.730 0.003* 1.01 (0.96–1.06) 0.657 0.001*

Total fat (g)

B7 risk alleles 0.05 (0.05) 0.349 1.01 (0.99–1.02) 0.326

[7 risk alleles 0.07 (0.05) 0.179 0.029 1.01 (0.99–1.02) 0.324 0.017*

SFA (g)

B7 risk alleles -0.00 (0.06) 0.938 1.00 (0.93–1.07) 0.945

[7 risk alleles 0.03 (0.05) 0.537 0.015* 0.99 (0.93–1.05) 0.810 0.017*

MUFA (g)

B7 risk alleles 0.07 (0.05) 0.139 1.02 (0.99–1.05) 0.144

[7 risk alleles 0.07 (0.04) 0.123 0.121 1.02 (0.99–1.04) 0.177 0.082

PUFA (g)

B7 risk alleles -0.05 (0.06) 0.388 0.96 (0.87–1.05) 0.365

[7 risk alleles 0.04 (0.05) 0.396 0.002* 1.06 (0.95–1.18) 0.279 0.004*

Diet cholesterol (mg)

B7 risk alleles 0.09 (0.05) 0.061 1.00 (1.00–1.00) 0.492

[7 risk alleles 0.06 (0.04) 0.163 0.309 1.00 (1.00–1.00) 0.492 0.090

Total carbohydrates (g)

B7 risk alleles -0.03 (0.05) 0.638 1.00 (0.99–1.00) 0.461

[7 risk alleles 0.05 (0.05) 0.318 0.008* 1.00 (1.00–1.01) 0.402 0.001*

Simple carbohydrates (g)

B7 risk alleles -0.17 (0.05) \0.001 0.99 (0.98–1.00) 0.005

[7 risk alleles -0.16 (0.04) \0.001 0.270 0.97 (0.96–0.98) \0.001 0.997

Complex carbohydrates (g)

B7 risk alleles 0.05 (0.05) 0.387 1.00 (0.99–1.01) 0.559

[7 risk alleles 0.08 (0.05) 0.153 0.030 1.01 (1.00–1.01) 0.049 0.001*

Fiber (g)

B7 risk alleles -0.09 (0.05) 0.101 0.97 (0.93–1.01) 0.188

[7 risk alleles -0.06 (0.05) 0.245 0.039 0.96 (0.92–1.00) 0.048 0.059

Adjusted for gender, age, physical activity and energy intake

SFA saturated fatty acids, MUFA monounsaturated fatty acids, PUFA polyunsaturated fatty acids, SE standard error, 95 % CI 95 % confidence

interval

* p value \0.05 Benjamini–Hochberg correction for multiple comparisons
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those analyses taking into account the risk of obesity as the

percentage of BFM (Table 4). Similar results were evi-

denced regarding interactions between dietary intakes and

GRS, by dichotomizing macronutrients according to the

mean population intakes and evaluating their effects on the

percentage of BFM as continuous and categorical variable

(adjusted for age, gender, physical activity and energy

intake) (data not shown).

Discussion

In this cross-sectional study encompassing 711 users of a

Nutrigenetic Service, it was investigated the predictive

value of 16 obesity and lipid metabolism risk polymor-

phisms in the adiposity outcome and the possible modify-

ing effect of the dietary intake. Our study shows that after

combining information of 16 polymorphisms, those people

who were classified as high genetic risk group presented

higher values in obesity-related traits and a higher risk of

obesity than the alternative group. In addition, the con-

sumption of some specific macronutrients modified the

association between the GRS and BFM and obesity risk.

Interestingly, this is apparently the first study analyzing

whether macronutrient intake can modulate the association

between a multi-trait GRS and obesity.

When looking at single SNPs’ results, in agreement with

previous investigations, the current study reported a sig-

nificant association between rs9939609 (FTO) and BMI,

BFM and measures of central obesity (waist circumference

and waist/height ratio) (Fall and Ingelsson 2014). Recently,

it has been published that FTO is functionally connected

with the regulation of IRX3 expression, which is involved

in body composition (Smemo et al. 2014). Although the

relationship between FTO and obesity-related traits has

been confirmed in several populations, in Spanish indi-

viduals, there is a little controversy (Fall and Ingelsson

2014). One study investigated the contribution of FTO,

among other several polymorphisms, to obesity in two

Spanish cohorts (Martinez-Garcia et al. 2013). Whereas

FTO was associated with BMI in the Pizarra cohort, this

result was not found in the Hortega cohort (Martinez-

Garcia et al. 2013). In addition to the well-described

rs9939609 (FTO), the polymorphism rs429358 located in

APOE showed a statistically significant association with

BMI in the present study. APOE gene encodes for a major

structural apolipoprotein of several lipoprotein classes

(chylomicrons, very low-density lipoprotein-VLDL-and

HDL), which plays diverse roles in lipoprotein metabolism.

Polymorphisms in APOE have been previously related with

lipid metabolism disorders, cardiovascular disease, Alz-

heimer’s disease and obesity phenotype (Sima et al. 2007;

Kypreos et al. 2009; Ridge et al. 2013). Although a large

number of studies have observed the association between

APOE genotypes and obesity, up to date, no study has

found any statistically significant association between

rs429358 and obesity phenotype (Clark et al. 2009). A

number of studies in vitro and in vivo have explained the

link between APOE and obesity, due to the contribution of

APOE in adipogenesis (Kypreos et al. 2009).

A weighted GRS, computed by weighting each variant

by their effect size, can be used. However, we selected a

simple count method because weighted models may have

only limited effects, as has been reported by some pre-

vious studies (Belsky et al. 2013; Cheung et al. 2010).

Moreover, the effect sized on obesity for some of the

selected SNPs is not established. The GRS design was

based on the premise that some of the loci reliably

associated with obesity-related traits, such as lipid

metabolism disorders, might increase the power to dis-

criminate between individuals with and without obesity.

Although the polymorphism rs1800777 (CETP) was not

in Hardy–Weinberg Equilibrium, it was included in the

GRS because it was associated with the percentage of

BFM in males and females.

The GRS was positively associated with several

measures of obesity in our study population. In this

regard, it should be noted that from a clinical point of

view, the categorization of a genetic score into a

dichotomous variable could be more useful for clinical

decision making (Horne et al. 2005). The analyses dem-

onstrated that the GRS as a continuous variable predicts

\1 % of the BMI variation (0.16 %) in concordance with

most of previous studies (Li et al. 2010a; Takeuchi et al.

2011; Peterson et al. 2011; Lemas et al. 2013). Never-

theless, our GRS explained 1.59 %. Although BMI has

been widely used as a surrogate measure of adiposity, it

does not distinguish between BFM and lean mass. So, the

accuracy of BMI in assessing the BFI remains debated,

and the measurement of BFM is a more specific measure

of adiposity than BMI, which can explain our findings

(Bergman et al. 2011).

Additionally, ROC curves and the corresponding AUC

estimates indicated statistical discriminative ability to

predict obesity taking into account both, BMI and the

percentage of BFM. The discriminatory ability of our GRS

was similar when compared to other obesity GRS, which

ranged between 0.575 and 0.697 (Renstrom et al. 2009;

Cheung et al. 2010; Li et al. 2010b; Peterson et al. 2011;

Belsky et al. 2013).

Our data show that high energy intake was associated

with higher percentage of BFM in the population overall,

but that in particular individuals of the high genetic risk

group, the effect on adiposity of a high energy intake was

stronger. So, all of the likelihood ratio analyses were

adjusted for energy intake.
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Currently, the beneficial effect of the consumption of

proteins is debated, mainly in relation with the protein

source (Lopez-Legarrea et al. 2014). Higher total protein

and animal protein intake were significantly associated

with higher BFM in both genetic risk groups, but this

association was significantly stronger among individuals of

the high genetic risk group. Meanwhile, vegetable protein

intake appears to have a protective effect among individ-

uals of the low genetic risk group. Previously, (Rukh et al.

2013) found that protein intake modulates the association

between a 13 polymorphisms’ GRS and obesity and fat

mass in Swedish women. Also a gene–diet interaction

between PPARG and total protein and animal protein

intake was observed in BFM. In this sense, other investi-

gations have previously reported the PPARG interaction

with total fat, MUFA and carbohydrate intake in obesity-

related traits (Robitaille et al. 2003; Dedoussis et al. 2011;

Garaulet et al. 2011; Galbete et al. 2013b).

Although the association between total fat and SFA

intake and obesity is well studied, this is the first investi-

gation confirming the combined effect of these nutrients

and GRS on adiposity (Cascio et al. 2012). In this context,

Qi et al. (2014) reported that among individuals with a

higher GRS, the association between fried food consump-

tion and BMI was stronger than that among individuals

with a lower GRS. Our study also suggests that PUFA

intake could modify the genetic association with body

composition. This is in accordance with findings from a

previous study which detected a significant interaction

between a 12 obesity SNPs’ GRS and omega-3 PUFA and

BMI (Lemas et al. 2013). In addition to the interaction with

GRS, several nominal interactions with FTO and dietary fat

were found; thus, FTO interacted with total fat and MUFA

intake to modify its effect on BFM. Earlier studies have

also reported FTO–diet interactions on obesity-related

traits (Sonestedt et al. 2009; Ahmad et al. 2011; Lappa-

lainen et al. 2012; Phillips et al. 2012).

Another novel finding of our study is that total car-

bohydrates and complex carbohydrates interacted with the

GRS to modify the effect on BFM. There are no previous

reports regarding these interactions, but Qi et al. (2012b)

found an interaction between sugar-sweetened beverages

and a GRS of 32 obesity polymorphisms in three US

cohort studies. Finally, an interaction between the poly-

morphism rs7412 (APOE) and complex carbohydrates

was found.

The major strength of the present study is the use of a

population who attended voluntarily a Nutrigenetic Ser-

vice. As far as we know, this is the first study that analyzes

a real population of a nutritional service based on the

genetic makeup. Moreover, we used a bioimpedance

technique to evaluate body composition instead of BMI or

other anthropometric measurements, as many studies do.

Nevertheless, some limitations need to be acknowledged.

The users included in the study were middle aged and of

European ancestry, so it is unknown whether our results

can be generalized to other demographic or ethnic groups.

It is possible that the sample size might be rather relatively

small; however, consistent GRS–environment interactions

were found. Furthermore, the 16 selected SNPs may be

only markers of functional variations and that future

GWAS data will contribute to a better understanding of the

genetic background of this population.

In conclusion, this study provides interesting novel

information on obesity and lipid metabolism-related genes,

their additive effects on the risk of obesity, and the mod-

ulation by dietary habits. The investigation of GRS–diet

interactions may facilitate the selection of more individu-

alized effective nutritional therapy, following personalized

approaches based on the genotype.
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