
Ann. Telecommun. (2018) 73:193–204
DOI 10.1007/s12243-017-0597-0

AutoSAC: automatic scaling and admission control
of forwarding graphs

Victor Millnert1 · Enrico Bini2 · Johan Eker1,3

Received: 6 April 2017 / Accepted: 18 July 2017 / Published online: 3 August 2017
© The Author(s) 2017. This article is an open access publication

Abstract There is a strong industrial drive to use cloud
computing technologies and concepts for providing tim-
ing sensitive services in the networking domain since it
would provide the means to share the physical resources
among multiple users and thus increase the elasticity and
reduce the costs. In this work, we develop a mathematical
model for user-stateless virtual network functions forming
a forwarding graph. The model captures uncertainties of
the performance of these virtual resources as well as the
time-overhead needed to instantiate them. The model is
used to derive a service controller for horizontal scaling
of the virtual resources as well as an admission controller
that guarantees that packets exiting the forwarding graph
meet their end-to-end deadline. The Automatic Service and
Admission Controller (AutoSAC) developed in this work
uses feedback and feedforward making it robust against
uncertainties of the underlying infrastructure. Also, it has a
fast reaction time to changes in the input.

Keywords Cloud computing · Network function
virtualisation · End-to-end deadline · Real-time · Feedback
control · Feedforward control

� Victor Millnert
victor.millnert@control.lth.se

1 Lund University, Ole Römers väg 1, SE 223 63 Lund, Sweden

2 Università degli Studi di Torino, Corso Svizzera 185,
10149 Torino, Italy

3 Ericsson Research, Lund, Sweden

1 Introduction

Over the last years, cloud computing has swiftly trans-
formed the IT infrastructure landscape, leading to large cost-
savings for deployment of a wide range of IT applications.
Physical resources such as compute nodes, storage nodes,
and network fabrics are shared among tenants through the
use of virtual resources. This makes it possible to dynami-
cally change the amount of resources allocated to a tenant,
for example as a function of workload or cost. Initially, the
cloud technology was mostly used for IT applications, e.g.,
web servers, databases, etc., but has now found its way into
new domains. One of these domains is packets processed by
a chain of network functions.

In this work, we are considering a chain of network func-
tions through which packets are flowing. Every packet must
be processed by each function in the chain within some spe-
cific end-to-end deadline. The goal is to ensure that as many
packets as possible meet their deadline, while at the same
time using as few resources as possible.

The goal is thus to derive a method for controlling the
amount of resources allocated to each network function in
the chain. Previously, this was usually done by statically
allocating some amount of resources to each network func-
tion. Since the input is time-varying (see Fig. 1 for a trace
of traffic flowing through a switch in the Swedish university
network, SUNET), such a strategy usually lead to over-
allocation of resources for long periods of time (yielding
high costs and environmental footprint) as well as overload
for shorter periods, when the input is large. To ensure that at
least some packets meet their deadlines when the network
function is overloaded, one has to use admission control,
i.e., reject some packets.

Recently, a new option became available through the ad-
vances of virtualization technology for networking services.

http://crossmark.crossref.org/dialog/?doi=10.1007/s12243-017-0597-0&domain=pdf
http://orcid.org/0000-0003-2279-2056
mailto:victor.millnert@control.lth.se


194 Ann. Telecommun. (2018) 73:193–204

Fig. 1 Traffic flowing through a switch over 120 h. The traffic is
normalized to have a peak of 10 million packets per second (pps)

The standardization body ETSI (European Telecommuni-
cations Standards Institute) addresses the standardization
of these virtual network services under the name Network
Functions Virtualization (NFV) [1]. These Virtual Network
Functions (VNFs) consist of virtual resources, such as vir-
tual machines (VMs), containers, or even processes running
in the OS. Using such VNFs, it is possible to change the
resources allocated to a network function by either vertical
scaling (i.e., changing the capacity of the allocated VMs)
or horizontal scaling (i.e., changing the number of allo-
cated VMs). Horizontal scaling is considered in this work.
These VNFs are connected in a graph topology (commonly
called a Forwarding Graph), as illustrated in Fig. 2. In this
figure, there are two forwarding graphs (corresponding to
the blue and red arrows). The blue forwarding graph consists
of VNF1, VNF2, VNF3, and VNF5 and the red forwarding
graph consists of VNF1, VNF2, VNF4, and VNF5. Each of
the VNF is given a number mi ∈ Z

+ of VMs, which are
mapped onto the network function virtual infrastructure.

While the benefit of using NFV technologies is scal-
ability and resource sharing, there are two drawbacks as
follows:

a) Starting a new virtual resource takes time, since it has
to be deployed to a physical server and it requires the

execution of several initialization scripts and push/pulls
before it is ready to serve packets,

b) The true performance of the virtual resource differs
from the expected performance, since one does not
know what else is running on the physical machines [2].

In this work, we

– develop a model of a service-chain of network functions
and use it to derive a service-controller and admission-
controller for the network functions,

– derive a service-controller controlling the number of
virtual resources (e.g., VMs or containers) allocated to
each network function by using feedback from the true
performance of the instances as well as feedforward
between the network functions,

– derive an admission-controller that is aware of the
actions of the service-controller which it uses in order
to reject as few packets as possible,

– evaluate the service and admission controller using a
real-world traffic trace from the Swedish University
Network (SUNET).

1.1 Related works

There are a number of works considering the problem of
controlling virtual resources within data centers, and specif-
ically for virtual network functions. However, many of them
focus on orchestration, i.e., how the virtual resources should
be mapped onto the physical hardware. Shen et al. [3]
develop a management framework, vConductor, for realiz-
ing end-to-end virtual network services. In [4], Moens and
De Turk develop a formal model for resource allocation
of virtual network functions. A slightly different approach
is taken by Mehraghdam et al. [5] where they define a
model for formalizing the chaining of forwarding graphs
using a context-free language. They solve the mapping of

1VNF1

VNF4

VNF2

VNF3

VNF5

NFVI

Mapping to
physical 
hardware

Logical 
network
links

m1 m2

m4

m5

m5

Fig. 2 Several virtual networking functions (VNF) are connected
together to provide a set of services. A packet flow is a specific path
through the VNFs. Connected VNFs are referred to as virtual forward-
ing graphs or service chains. The VNFs are mapped onto physical

hardware, i.e., compute nodes and network fabrics and this underlying
hardware infrastructure is referred to as Network Function Virtual-
ization Infrastructure (NFVI), which is the physical servers and the
communication fabric connecting them



Ann. Telecommun. (2018) 73:193–204 195

the forwarding graphs onto the hardware by posing it as a
MIQCP.

Scaling of virtual network functions is however stud-
ied by Mao et al. [6] where they develop a mechanism for
auto-scaling resources in order to meet some user speci-
fied performance goal. Recently, Wang et al. [7] developed
a fast online algorithm for scaling and provisioning VNFs
in a data center. However, they are not considering timing-
sensitive applications with deadlines for the packets moving
through the chain, which is done by Li et al. [8] where they
present a design and implementation of NFV-RT that aims
at controlling NFVs with soft real-time guarantees, allowing
packets to have deadlines.

The enforcement of an end-to-end deadline for a seque-
nce of jobs is however addressed by several works, possi-
bly under different terminologies. Di Natale and Stankovic
[9] propose to split the E2E deadline proportionally to the
local computation time or to divide equally the slack time.
Later, Jiang [10] used time slices to decouple the schedula-
bility analysis of each node, reducing the complexity of the
analysis. Such an approach improves the robustness of the
schedule, and allows to analyze each pipeline in isolation.
Serreli et al. [11, 12] proposed to assign local deadlines to
minimize a linear upper bound of the resulting local demand
bound functions. More recently, Hong et al. [13] formulated
the local deadline assignment problem as a MILP with the
goal of maximizing the slack time.

An alternate analysis was proposed by Jayachandran and
Abdelzaher [14], who developed several transformations to
reduce the analysis of a distributed system to the single pro-
cessor case. Or in [15] where Henriksson et al. proposed
a feedforward/feedback controller to adjust the processing
speed to match a given delay target.

2 Modeling the service-chain

In this section, we present a general model of the for-
warding graph and virtual network functions presented in
Section 1. We consider a service-chain consisting of n func-
tions F1, . . . , Fn, as illustrated in Fig. 3. Packets are flowing
through the service-chain and they must be processed by
each function in the chain within some end-to-end dead-
line. A fluid model is used to approximate the packet flow
and at time t there are ri(t) ∈ R

+ packets per second (pps)
entering the ith function. In a recent benchmarking study,
it was shown that a typical virtual machine can process

Fig. 3 Illustration of the service-chain

around 0.1–2.8 million packets per second, [16]. Hence, in
this work, the number of packets flowing through the func-
tions is assumed to be in the order of millions of packets per
second, supporting the use of a fluid model.

A function consists of several parts, as illustrated in
Fig. 4: an admission controller, a service controller, mi(t)

instances, a buffer, and a load balancer. It is assumed that
all the parts of a function are located at the same loca-
tion, e.g., the same data center or rack. In [17], Google
showed that less than 1 μs of the latency in a data center
was due to the propagation in the network fabric. Hence,
communication delay within a function is neglected.

2.1 Admission controller

Every packet that enters the service-chain must be processed
by all of the functions in the chain within a certain end-
to-end (E2E) deadline, denoted Dmax. This deadline can be
split into local deadlines Di(t), one for each function in
the chain, such that the packet should not spend more than
Di(t) time-units in the ith function. Should a packet miss
its E2E deadline, it is considered useless. It is thus favor-
able to use admission control to drop packets that have a
high probability of missing their deadline in order to make
room for following packets. The goal of the admission con-
troller is to guarantee that the packets that make it through
the service-chain do meet their E2E deadline. It is assumed
to be possible to do admission control at the entry of every
function in the chain.

Packets are admitted into the buffer of function Fi based
on the admittance flag αi(t) ∈ {0, 1}. If αi(t) = 1 incoming
packets are admitted into the buffer, and if αi(t) = 0 they
are rejected. We define the residual rate ρi(t) to be the rate
by which packets are admitted into the buffer:

ρi(t) = ri(t) × αi(t). (1)

2.2 Service controller

At any time instance, function Fi has mi(t) ∈ Z
+ instances

up and running. Each instance is capable of processing

Fig. 4 Illustration of the structure and different entities of the function



196 Ann. Telecommun. (2018) 73:193–204

packets and corresponds to a virtual machine, a container,
or a process running in the OS. It is possible to control
the number of running instances by sending a reference
signal mref

i (t) ∈ Z
+ to the service controller. However,

as explained in Section 1, it takes some time to start/stop
instances since an instantiation of the service is always
needed. We denote this as the time overhead �i . Hence, the
number of instances running in the i’th function at time t is

mi(t) = mref
i (t − �i). (2)

The time-overhead is assumed to be symmetric here, but in
the real-world it is usually faster to start an instance than
it is to stop one. However, for increased readability they
are considered equal in this work. It should be noted that
it is straight forward to extend the theory to account for an
asymmetric time-overhead.

An instance is expected to be able to process packets at
an expected service rate of s̄i pps. However, as described in
Section 1, the true capacity of the instance will differ from
the expected one since there might be other loads running
on the infrastructure (i.e., the physical machine). Hence, the
true capacity of the j th instance in the ith function is given
by

s
cap
i,j (t) = s̄i + ξi,j (t),

where ξi,j (t) is the machine uncertainty for the j th instance
in the ith function. It is given by

ξi,j (t) ∈ [ξ lb
i , ξub

i ] pps, −s̄i < ξ lb
i ≤ ξub

i < ∞,

where ξ lb
i and ξub

i are lower and upper bounds of this
machine uncertainty, assumed to be known. The machine
uncertainty is also assumed to be fairly constant during the
lifetime of the instance. Using this, one can express the true
capacity of the ith function in the service-chain as

s
cap
i (t) =

mi(t)∑

j=1

s̄i + ξi,j (t), (3)

which together with the average machine uncertainty

ξ̂i (t) = 1

mi(t)

mi(t)∑

j=1

ξi,j (t), (4)

can be written as s
cap
i (t) = mi(t) × (s̄i + ξ̂i (t)). Note that

it would be natural to allow the time-overhead �i to also
have some uncertainty. However, such uncertainty can be
translated into a machine uncertainty.

2.3 Processing of packets

The packets in the buffer are stored and processed in a FIFO
manner. Once a packet reaches the head of the queue the

load balancer will distribute it to one of the instances in
the function. Note that this is done continuously due to the
fluid approximation. The rate by which the load balancer
is distributing packets, and thus by which the function is
processing packets, is defined as the service rate

si(t) =
{

ρi(t) if qi(t) = 0 and ρi(t) ≤ s
cap
i (t)

s
cap
i (t) else

(5)

where ρi(t) is residual rate given by Eq. 1 and qi(t) is the
number of packets in the buffer:

qi(t) = Pi(t) − Si(t), qi(t) ∈ R
+, (6)

where Pi(t) = ∫ t

0 ρi(x)dx is the total amount of packets that
has been admitted into function Fi , and Si(t) = ∫ t

0 si(x)dx

is the total amount of packets that has been served by func-
tion Fi . Furthermore, the total amount of packets that has
reached the ith function is given by Ri(t) = ∫ t

0 ri(x)dx.

2.4 Function delay

The time that a packet that exits function Fi at time t has
spent inside that function is denoted the function delay di(t):

di(t) = inf{τ ≥ 0 : Pi(t − τ) ≤ Si(t)}. (7)

The expected time that a packet entering the ith function at
time t will spend in the function before exiting is defined as
the expected function-delay d̄i (t)

d̄i(t) = inf
{
+ ξ̂i (x))dxτ ≥ 0 : Pi(t) ≤ Si(t)

+
∫ t+τ

t

mi(x) × (s̄i + ξ̂i (x))dx

}
. (8)

Equation 8 can be interpreted as finding the minimum time
τ ≥ 0 such that Si(t + τ) = Pi(t), or in other words such
that at time t + τ the function will have processed all the
packets that have entered the function at time t .

Computing the expected function-delay d̄i (t) requires
information about mi(t) and ξ̂i (t) for the future, whereas
computing the expected function delay dub

i (t) requires
information about mi(t) for the future. Information about
mi(t) up until time t + �i is always known since mi(t +
�i) = m

ref
i (t) and m

ref
i (x) is known for x ∈ [0, t].

It is therefore possible to compute the expected function
delay d̄i (t) whenever it is shorter than the time-overhead
�i (which will be used later in Section 3 when deriving the
admission controller and the service controller).

Note that the (expected) function delay does not dis-
tinguish between queueing delay and processing delay. In
[17], Google profiled where the latency in a data center
occurred and showed that 99% of the latency (≈85 μs)
occurred somewhere in the kernel, the switches, the mem-
ory, or the application. It is very difficult to say exactly



Ann. Telecommun. (2018) 73:193–204 197

which of this 99% is due to processing or queueing, hence
they are considered together as the function delay.

2.5 Concatenation of functions

The n functions in the service-chain are concatenated with
the assumption of no loss of packets in the communication
channel between them. Therefore, the input of function Fi

is exactly the output of function Fi−1:

ri(t) = si−1(t), ∀i = 2, 3, . . . , n.

Finally, no communication latency between the functions is
assumed. However, it is possible to account for it, and would
be necessary should the different functions reside in differ-
ent locations, i.e. different data centers. However, adding
a communication latency is straightforward, and if such a
communication latency (say C) were to be constant between
the functions one could easily account for it by properly
decrementing the end-to-end deadline: D̃max = Dmax − C,
and then use the framework developed in this paper.

2.6 Problem formulation

The goal of this paper is to derive a service-controller and an
admission-controller that guarantees that packets that pass
through the service-chain meet their E2E deadline. This
should be done using as few resources as possible while
still achieving as high throughput as possible. This is cap-
tured in a simple, yet intuitive utility function ui(t). Later in
Section 3, the utility function is used to derive an automatic
service- and admission controller, denoted AutoSAC.

Utility function The utility function measures the avail-
ability ai(t) and the efficiency ei(t) of each function in
the service chain. The availability is defined as the ratio
between the service-rate and the input-rate of the func-
tion, and the efficiency is defined as the ratio between
service-rate and the capacity of the function:

ai(t) = service

demand
= si(t)

ri(t − di(t))
∈ [0, 1 + ε], (9)

ei(t) = service

capacity
= si(t)

s
cap
i (t)

∈ [0, 1]. (10)

The reason why ai(t) can grow greater than 1 is due to the
buffer—it is possible to store packets for a short interval and
then process them at a rate greater than what they arrived
with. However, it is not possible to have ai(t) > 1 for an
infinite amount of time. In practice, ε is very small, and it is
not possible to achieve a ai(t) > 1 for any significant period
of time.

A low availability corresponds to a large percentage
of the incoming load being rejected by the admission

controller, since there is not enough capacity to serve them.
A low efficiency, on the other hand, corresponds to over-
provisioning of resources. It is therefore difficult to achieve
both high availability and high efficiency. The availability
and efficiency is combined into a utility function ui(t):

ui(t) = ai(t) × ei(t) = s2
i (t)

s
cap
i (t) × ri(t − di(t))

. (11)

Note that the utility function as well as the availability
and efficiency function have the good property of being
normalized making it easy to compare the performance
of service-chains having different input load. To evaluate
the performance between service-chains of different lengths
and over different time-horizons the average utility U(t) is
defined:

u(t) = 1

n

n∑

i=1

ui(t), U(t) = 1

t

∫ t

0
u(x)dx. (12)

While the utility function (11) uses the product of the
availability and efficiency one might argue that they should
not have equal weight when computing the utility. A nat-
ural choice to achieve that would be to have a convex
combination of them:

ũi (t) = λiai(t) + (1 − λi)ei(t), λi ∈ [0, 1], (13)

where λi corresponding to the relative importance of achiev-
ing a high availability or a high efficiency. The method used
in Section 3 to derive a control-strategy using utility func-
tion (11) will also apply to the alternative utility function
(13).

3 Controller design

In this section, an automatic service- and admission-
controller (AutoSAC) is derived. Figure 5 illustrates an
overview of the different parts of AutoSAC and the infor-
mation flow it uses. It measures the incoming load, current
queue size, and the true performance in order to estimate
how much service rate it will need as well as to estimate
how long it will take an incoming packet to pass through
the function. It also uses feedforward to functions down the
chain in order to make them react faster to changes in the
input load. For instance, when the ith function increases its
service rate, it sends a signal to the i +1th function letting it
know that in �i time-units, it will get an increase in incom-
ing traffic rate. Finally, due to the time overhead needed to
start new instances there will be a need to do admission con-
trol, however, in order to not discard unnecessarily many
packets it uses feedback from the queue size and the true
performance of the functions to estimate how much time it
will take a new packet to pass through the function, then it
does the admission control based on this estimate.



198 Ann. Telecommun. (2018) 73:193–204

Fig. 5 Overview of the automatic service- and admission-controller
(AutoSAC) highlighting that it uses feedback from the true perfor-
mance of the functions to estimate the time it will take incoming

packets to pass through the function. It also utilizes feedforward bet-
ween the functions to ensure faster reactions to changes in the incom-
ing traffic load

The difficulty when deriving AutoSAC lies in the dif-
ferent time-scales for starting/stopping instances, the E2E
deadlines, and the rate-of-change of the input. They are
all assumed to be of different orders of magnitudes, given
by Table 1. However, these timing assumptions will be
exploited when deriving AutoSAC later.

The admission controller is derived in Section 3.1 and
the service controller in Section 3.3. In Section 3.4, a short
discussion of the properties of AutoSAC is presented.

3.1 Admission controller

Every request that enters the service chain has an end-to-
end deadline Dmax. It has to pass through every function in
the chain within this time. Furthermore, each function can
impose a local deadline Di(t) for the packet entering the
ith function at time t . One can therefore use either the local
deadline to do a decentralized admission control at the entry
of each of the functions in the chain, or the global deadline
for a centralized admission control. In this work, we will use
a decentralized approach, shown below, but will also derive
a policy for a centralized admission control in Section 3.2.1;
however, only the decentralized policy will be evaluated in
Section 4.

Table 1 Timing assumptions for the end-to-end deadline, the change-
of-rate of the input, and the overhead for changing the service-rate.
These timing assumptions are used when deriving the automatic
service- and admission-controller

Parameter Timing assumption

Long-term trend change of the input 1 min–1 h

Service-rate change overhead �i 1 s–1 min

Request end-to-end deadline Dmax 1 μs–100 ms

3.2 Decentralized admission control

For the decentralized admission control, each function can
compare the local deadline with the upper bound of the
expected delay dub

i (t) it will take a new packet to pass
through the function. If the worst-case expected delay
is larger than the local deadline the admission controller
should drop the packet. This results in the following policy
for the admittance-flag αi(t):

αi(t) =
{

1 if Di(t) ≥ dub
i (t)

0 if Di(t) < dub
i (t)

(14)

where the upper bound on the expected function delay
dub
i (t) is given by

dub
i (t) = inf

{
+ ξ lb

i )dxτ ≥ 0 : Pi(t) ≤ Si(t)

+
∫ t+τ

t

mi(x) × (s̄i + ξ lb
i )dx

}
. (15)

This is the worst case of the expected delay given by Eq. 8,
i.e., when every instance is processing packets at the lower
bound of its possible service-rate, hence leading to the
upper bound on the expected delay. One should note here
that in order to compute the upper bound (15) one need
information about mi(x) for x ∈ [t, t + τ ]. However, as
mentioned earlier, as long as τ ≤ �i this information is
available since the number of instances running at time t is
decided by the control signal computed �i time units ago,
i.e. mi(t) = m

ref
i (t − �i), implying that mi(x) is known

for x ∈ [0, t + �i]. This is illustrated in Fig. 6 where Pi(t)

shows the cumulative amount of packets that has been let
into the function, and Si(t) the cumulative amount of served
packets up until time t . From time t until t + �i , it shows
a shaded blue region, highlighting that the exact service is
uncertain in this area. However, it is possible to compute an



Ann. Telecommun. (2018) 73:193–204 199

Fig. 6 Illustration of how the upper bound of the expected function
delay is found. Pi(t) is the cumulative amount of packets that has been
admitted into the function, Si(t) is the cumulative amount of served
packets. The shaded blue region illustrates the reachable space of Si(t)

for the time up till t + �i . It is upper bounded by Subi (t) and lower
bounded by S lbi (t). The lower bound is then used to compute the upper
bound on the expected function delay dub

i (t).

upper bound Sub
i (t) = Si(t)+

∫ t+τ

t
mi(x)×(s̄i+ξub

i )dx and

a lower bound S lb
i (t) = Si(t) + ∫ t+τ

t
mi(x) × (s̄i + ξ lb

i )dx

of this uncertainty region and hence a lower bound and an
upper bound on the expected delay.

3.2.1 Centralized admission control

In contrast to the decentralized admission control, it might
be advantageous to drop packets as soon as possible (in
order to not waste any resources on packets that are dropped
later) in the service chain if there is a possibility that they
will miss their global deadline. To do so, one has to com-
pare the expected worst-case end-to-end delay Dub(t) for a
packet entering the chain at time t with the global deadline
Dmax(t), leading to the following policy:

α1(t) =
{

1 if Dmax ≥ Dub(t)

0 if Dmax < Dub(t)
. (16)

Computing Dub(t) in Eq. 16 is straightforward, but
before doing so, one has to compute the worst-case service
rates for all the functions down the chain. At any time x ≥ t

(with t being the current time) the worst-case predicted
service-rate for functions i = 1, 2, . . . , n is:

slb
i (x) =

{
slb
i−1(x) if qi(x) = 0 and slb

i−1(x) ≤ mi(x) × (s̄i + ξ lb
i ),

mi(x) × (s̄i + ξ lb
i ) else.

(17)

where slb
0 (x) = 0, since we cannot predict the future input-

rate of the first function. With t being the current time,
the worst-case predicted cumulative-service of function i at
time x ≥ t is then given by:

Slb
i (t, x) = Si(t) +

∫ x+t

t

slb
i (z)dz, i = 1, 2, . . . , n

(18)

Using this, the expected worst-case end-to-end delay Dub(t)

is given by

Dub(t) = inf{τ ≥ 0 : P1(t) ≤ Slb
n (t + τ)}, (19)

where P1(t) = ∫ t

0 ρ1(x)dx is the cumulative amount of
requests that has been admitted into the first function. One
should note that S lb

n (x) in Eq. 19 could be expressed in a
very neat way using Network Calculus [18, 19], but due
to lack of space we decided to not introduce the theory of
Network Calculus in this paper.

3.3 Service controller

The goal for the service-controller is to find m
ref
i (t) such

that the utility function is maximized once the reference sig-
nal is realized in �i time-units, i.e., such that ui(t + �i)

is maximized. In this section, it will be assumed that the
utility function used is the one defined in Eq. 11; later in

Section 3.3.1, it will be derived for the alternative utility
function (13). Recall that the utility function (11) is given by

ui(t) = ai(t) × ei(t) = s2
i (t)

s
cap
i (t) × ri(t − di(t))

.

As explained in the introduction of this section, the input
load is assumed to change relatively slowly over a time
interval of a few milliseconds. Hence, one can approximate

ri(t − di(t)) ≈ ri(t), (20)

since the goal of both the admission controller and the ser-
vice controller is to keep di(t) in the order of milliseconds
or less. Therefore, it is possible to approximate the utility
function with

ui(t) ≈ s2
i (t)

s
cap
i (t) × ri(t)

.

Furthermore, the service rate si(t) can be approximated to
be either at the capacity of the function, s

cap
i (t), or at the

input rate ri(t)

si(t) ≈ min{scap
i (t), ri(t)}. (21)

where the min is used since the function cannot process
packets at a faster rate than what they are entering the func-
tion for a prolonged period of time. Likewise, it cannot



200 Ann. Telecommun. (2018) 73:193–204

process packets at a rate higher than the capacity of the func-
tion when the input were to be higher than this. This leads
to the utility function being approximated as

ui(t) ≈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(s
cap
i (t))2

s
cap
i (t) × ri(t)

= s
cap
i (t)

ri(t)
, if s

cap
i (t) ≤ ri(t)

r2
i (t)

s
cap
i (t) × ri(t)

= ri(t)

s
cap
i (t)

, else

With s
cap
i (t) given by Eq. 3 and the average machine uncer-

tainty ξ̂i (t) given by Eq. 4 the utility function can finally be
approximated as

ui(t) ≈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mi(t)(s̄i + ξ̂i (t))

ri(t)
, if mi(t)(s̄i + ξ̂i (t)) ≤ ri(t)

ri(t)

mi(t)(s̄i + ξ̂i (t))
, else

(22)

Since the goal is to find m
ref
i (t) in order to maximize

ui(t+�i), one needs knowledge of ξ̂i (t+�i) and ri(t+�i)

which is not available. However, one can assume that the
machine uncertainty will be fairly constant during �i time-
units such that ξ̂i (t + �i) ≈ ξ̂i (t). Furthermore, one has to
estimate the future input-rate to the function. For the first
function, F1, this can be done by using the derivative of the
(preferably low-pass filtered) input-rate:

r̂1(t) = r1(t) + �1
dr1(t)

dt
.

For the succeeding functions, i = 2, . . . , n, the input-rate
will change in a step-wise fashion and can therefore not
approximate it with the expression above. However, since
ri(t) = si−1(t) and mi−1(x) is known for x ∈ [0, t +�i−1]
(with t being the current time), one could estimate the future
input-rate r̂i (t) with

r̂i (t) ≈ min
(
s

cap
i−1(t + �i−1), r̂i−1(t)

)
, i = 2, . . . , n.

Note that s
cap
i−1(t + �i−1) is used here, instead of s

cap
i−1(t +

�i). The reason is that if �i > �i−1 one does not have
enough information to compute s

cap
i−1(t + �i−1). However,

one can use the assumption that �i ≈ �i−1. Furthermore,
since

s
cap
i−1(t + �i−1) ≈ mref

i−1(t) × (s̄i−1 + ξ̂i−1(t))

one can summarize the predicted input r̂i (t) as

r̂i (t)=
{

ri(t) + �i
dri (t)

dt
, i = 1

min
{
mref

i−1(t)×(s̄i−1 + ξ̂i−1(t)), r̂i−1(t)
}

, else

(23)

With this, one can define κi(t) ∈ R
+ to be the real

number of instances needed to exactly match the predicted
incoming rate:

κi(t) = r̂i (t)

s̄i + ξ̂i (t)
. (24)

The control signal, i.e., the number of instances that
should be started, m

ref
i (t) can then be found by solving

m
ref
i (t) =

⎧
⎪⎨

⎪⎩

arg max
x∈Z+{x/κi(t)}, if x ≤ κi(t)

arg max
x∈Z+{κi(t)/x}, else

where x ∈ Z
+ is the number of instances and κi(t) given

by Eq. 24. Here, one can see that the first case of the above
equation is maximized when x is as large as possible, but
since this case is only valid when x ≤ κi(t) it leads to x =
�κi(t)	. Similarly, the second case is maximized when x is
as small as possible, and since this case is valid for x ≥ κi(t)

it leads to x = 
κi(t)�, leading to the final control-law:

m
ref
i (t) =

⎧
⎨

⎩

�κi(t)	, if �κi(t)	
κi(t)� ≥ κ2
i (t)


κi(t)�, else
(25)

where again κi(t) = r̂i (t)

s̄i+ξ̂i (t)
is the real number of machines

that is necessary to exactly match the predicted incoming
traffic.

3.3.1 Alternative utility function

Using the same method described in Section 3.3, one can
derive a control-law for the alternative utility function (13):

ũi (t) = λiai(t) + (1 − λi)ei(t)

= λi

si(t)

ri(t − di(t))
+ (1 − λi)

si(t)

s
cap
i (t)

.

By using the approximation (20) for the input rate, (21) for
the service rate, (23) for predicting the input rate, and finally
(3) for estimating the maximum capacity along with Eq. 4
for the machine uncertainty, one arrives at the following
control-law:

m
ref
i (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

arg max
x∈Z+

{
λi

x

κi(t)
+ (1 − λi)

}
, if x ≤ κi(t)

arg max
x∈Z+

{
λi + (1 − λi) × κi(t)

x

}
, else

where κi(t) = r̂i (t)

s̄i+ξ̂i (t)
.

One can see that the upper case is maximized when x is
as large as possible within that case, i.e., with x = �κi(t)	,
while the lower case is maximized when x is as small as



Ann. Telecommun. (2018) 73:193–204 201

possible, i.e., with x = 
κi(t)�. The remaining question is
then which of the two cases that yield the largest utility.

Fortunately, this it is easy to evaluate, resulting in the final
control-law for the alternative utility function:

m
ref
i (t) =

⎧
⎨

⎩

�κi(t)	, if λi�κi(t)	
κi(t)� + (1 − 2λi)κi(t)
κi(t)� ≥ (1 − λi)κ
2
i (t)


κi(t)�, else
(26)

where again κi(t) = r̂i (t)

s̄i+ξ̂i (t)
. Comparing the two control-

laws (25) and Eq. 26, one can see that the alternative
control-law (26) is equivalent to the Eq. 25 when the effi-
ciency and availability are considered equally important,
i.e., when λi = 1/2.

3.4 Properties of AutoSAC

There are several interesting properties captured by the
admission controller and service controller presented in this
section. First of all, the admission controller (14) ensures,
by design, that every packet that is admitted into a function,
and thus exits the function, meets its deadline. Therefore, no
packets that exit the service-chain will miss their end-to-end
deadline.

The service-controller given by Eq. 25 captures both the
feedback used from the true performance of the instances
(when computing ξ̂i (t)) as well as feedforward informa-
tion about future input coming from functions earlier in the
service-chain (when computing r̂i (t)). This makes it robust
against machine uncertainties but also ensures that it reacts
fast to sudden changes in the input. For instance, given a
service-chain of six functions, function F5 will know that in
�4 time-units, F4 will have mref

4 (t) instances running and
can thus start as many instances as needed to process this
new load.

4 Evaluation

In this section, the automatic service- and admission-
controller (AutoSAC) developed in Section 3 is evaluated.
First, in Section 4.1, by illustrating how a randomly gen-
erated service chain of three functions performs when it is
given a 5-h traffic trace. Later, in Section 4.2, AutoSAC
is compared with two other “state-of-the-art” methods for
scaling cloud services. The comparison is done using a
Monte Carlo simulation where the parameters of a five
function service chain are randomly generated and then
simulated, again using a real traffic trace as input.

The real-world trace of traffic data used as input was
gathered over 120 hours from a port in the Swedish Univer-
sity NETwork (SUNET) and then normalized to have a peak
of 10,000,000 packets per second as shown in Fig. 1. The

simulation was written in the open-source language Julia
[20]. The code and traffic trace used for this simulation is
provided on GitHub.1

4.1 Example chain

For this example, a service chain with three functions where
the E2E deadline was set to 30 ms, which in turn was split
into local deadlines of 10 ms for each function. The other
parameters (i.e., s̄i , �i , ξ lb

i , and ξub
i ) for every function

in the service-chain are generated randomly. The expected
service-rate s̄i was chosen uniformly at random from the
interval [100,000, 200,000] pps. The time-overhead �i was
drawn uniformly at random from the interval [30, 120] sec-
onds. The machine uncertainty was chosen to be in the range
of ±30% of the expected service-rate s̄i . The lower bound
of the machine uncertainty was drawn from the interval
[−0.3s̄i , 0] pps and likewise, the upper bound was drawn
from [0, 0.3s̄i] pps.

In Fig. 7, one can see how the service chain scales the
number of instances up/down in order to react to the input
load. In Fig. 8, one can see how the average utility changes
over the course of the simulation. One thing to notice is
that the average utility over the service chain remains stable
above 0.95 despite large variations in the input.

4.2 Comparing AutoSAC with state-of-the-art

In this section, we will evaluate AutoSAC through a Monte
Carlo simulation with 15 · 104 runs where it is compared
against two state-of-the-art methods for auto-scaling VMs
in industry; dynamic auto-scaling (DAS) and dynamic over-
provisioning (DOP). However, since these two methods do
not use any admission control, they are also augmented with
the admission controller presented in Section 3.1. The two
augmented methods are denoted by “DAS with AC” and
“DOP with AC.” Hence, in total, the method presented in
Section 3 is compared with four other methods.

Dynamic auto-scaling (DAS) This method is currently
being offered to customers using Amazon Web Services
[21]. It allows the user to monitor different metrics (e.g.,

1https://github.com/vmillnert/ICC17simulation

https://github.com/vmillnert/ICC17simulation


202 Ann. Telecommun. (2018) 73:193–204

Fig. 7 Simulation of a service chain with three functions where the
parameters of each function were randomly generated. One can see
how each function reacts to changes of the input rate and automatically

scales the number of instances of each function up and down. Feedfor-
ward between the functions in the chain ensures a fast reaction since
they can scale up/down before the changes occur in their input

CPU utilization) of their VMs using CloudWatch. One
can then use it together with their auto-scaling solution to
achieve dynamic auto-scaling. This allows the user to scale
the number of VMs as a function of these metrics. One
should note that the CPU utilization can be considered the
same as the efficiency metric ei(t) defined in Eq. 10. For
the Monte Carlo simulation, the following rules were used:

– add a VM if the efficiency is above 99%,
– remove a VM if the efficiency is below 95%,

which might seem as a high and tight interval, but it is
necessary in order to achieve a high utility.

Dynamic over-provisioning (DOP) A downside with DAS
is that it reacts slowly to sudden changes in the input. A nat-
ural alternative would therefore be to instead do dynamic
over-provisioning, where one measures the input to each
function and allocate virtual resources such that there is an
expected over-provision by 10%.

Monte Carlo simulation The five methods are compared
using a Monte Carlo simulation with 15 ·104 runs. For every
run, 1 h of input data was randomly selected from the total
of 120 h shown in Fig. 1. Furthermore, in every run, a new

service-chain with five functions was generated using the
method described in Section 4.1. The end-to-end deadline
was chosen to 50 ms, which in turn was split into local
deadlines of 10 ms for each function.

The evaluation of the Monte Carlo simulation is based
on the average utility U(t) = 1

t

∫ t

0

∑n
i=1 ui(x)dx. Since

a packet that misses its deadline (which is possible when
using DAS or DOP) is considered useless, it is evaluated
as a dropped packet when exiting the function. It therefore
impacts the availability metric and in turn the utility. Should
all packets miss their deadlines in function Fi for a time
interval τ , then ai(t) = 0 ∀t ∈ τ , i.e., the availability
would be evaluated as 0 during this time-interval since the
output of the function is considered useless.

Results The mean of the average utility U(t) for all the
simulation runs is presented in Fig. 9 for each of the five
methods. One can see that AutoSAC achieves a utility that is
30–40% better than that of DAS and DOP. The main reason
for this is that they are lacking admission control leading to
packets missing their deadlines, which eventually results in
a low utility.

When augmenting DAS and DOP with the admis-
sion controller derived in Section 3.1, the performance is

Fig. 8 Average utility for the entire service chain simulated in Section
4. The input is the same as for Fig. 7. One can see that the average
utility remains above 0.95 throughout the simulation with small drops

when there are large changes in the input rate. However, due to the
feedback and feedforward properties, AutoSAC is able to quickly react
to these changes and quickly recover a high utility



Ann. Telecommun. (2018) 73:193–204 203

Fig. 9 Results from the Monte Carlo simulation. AutoSAC performs
30–40% better than DAS and DOP. The main reason is the admis-
sion controller used in AutoSAC. When augmenting DAS and DOP
with this admission controller, their performance is increased by more

than 20%. However, AutoSAC still outperforms the augmented meth-
ods by 5–10% since it uses feedforward, making it faster to react to
input changes, as well as feedback making it more robust to machine
uncertainties

increased by 20–40%, purely as a result of not having these
sudden drops in performance. However, AutoSAC still per-
forms 5–10% better, due to the feedforward property of
AutoSAC which gives it a faster reaction time to changes in
the input as well as the feedback property leading to better
prediction and robustness against the machine uncertainties.

5 Summary

In this work, we have developed a mathematical model for
a NFV Forwarding Graphs residing in a Cloud environ-
ment. The model captures, among other things, the time
needed to start/stop virtual resources (e.g., virtual machines
or containers), and the uncertainty of the performance of the
virtual resources which can deviate from the expected per-
formance due to other tenants running loads on the physical
infrastructure. The packets that flow through the forward-
ing graph must be processed by each of the virtual network
functions (VNFs) within some end-to-end deadline.

A utility function is defined to evaluate performance
between different methods for controlling NFV Forward-
ing Graphs. The utility function is also used to derive an
automatic service- and admission-controller (AutoSAC) in
Section 3. It ensures that packets that exit the forwarding
graph meet their end-to-end deadline. The service-controller
uses feedback from the actual performance of the virtual
resources making it robust against uncertainties and devia-
tions from the expected performance. Furthermore, it uses
feedforward between the VNFs making it fast to react to
changes in the input load.

In Section 4, AutoSAC is evaluated and compared against
four other methods in a Monte Carlo simulation with 15·104

runs. The input load for the simulation is a real-world trace
of traffic data gathered over 120 h. The traffic is normal-
ized to have a peak of 10,000,000 packets per second.
AutoSAC is shown to have better performance than what is
offered in the cloud industry today. We also show that when

augmenting the industry-methods with the admission con-
troller derived in Section 3, they have a significant increase
in performance.

It would be interesting to extend this work by investigat-
ing how to derive a controller when the true performance is
unknown or when the time-overhead needed to start virtual
resources is unknown. Moreover, it would be interesting to
investigate how to control a forwarding graph that has forks
and joins, i.e., a graph structure rather than just a chain.

Acknowledgments The authors would like to thank Karl-Erik Årzén
and Joao Monteiro Soares for the useful comments on early versions
of this paper.

Source code The source code for the simulation in Section 4 can be
found on Github at https://github.com/vmillnert/ICC17simulation.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

1. ETSI (2012) Network Functions Virtualization (NFV), https://
portal.etsi.org/nfv/nfv white paper.pdf

2. Leitner P, Cito J (2016) Patterns in the chaos—a study of per-
formance variation and predictability in public iaas clouds. ACM
Trans Internet Technol 16(3):15

3. Shen W, Yoshida M, Kawabata T, Minato K, Imajuku W (2014)
vconductor: An nfv management solution for realizing end-to-end
virtual network services. In: Network Operations and Manage-
ment Symposium (APNOMS), 2014 16th Asia-Pacific. IEEE,
pp 1–6

4. Moens H, De Turck F (2014) Vnf-p: A model for efficient
placement of virtualized network functions. In: 10th International
Conference on Network and Service Management (CNSM) and
Workshop. IEEE, pp 418–423

https://github.com/vmillnert/ICC17simulation
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://portal.etsi.org/nfv/nfv_white_paper.pdf
https://portal.etsi.org/nfv/nfv_white_paper.pdf


204 Ann. Telecommun. (2018) 73:193–204

5. Mehraghdam S, Keller M, Karl H (2014) Specifying and placing
chains of virtual network functions. In: 2014 IEEE 3rd Interna-
tional Conference on Cloud Networking (CloudNet). IEEE, pp 7–
13

6. Mao M, Li J, Humphrey M (2010) Cloud auto-scaling with
deadline and budget constraints. In: 2010 11th IEEE/ACM Inter-
national Conference on Grid Computing. IEEE, pp 41–48

7. Wang X, Wu C, Le F, Liu A, Li Z, Lau F (2016) Online vnf scaling
in datacenters, arXiv preprint arXiv:1604.01136

8. Li Y, Phan L, Loo BT (2016) Network functions virtualization
with soft real-time guarantees. In: IEEE International Conference
on Computer Communications (INFOCOM)

9. Di Natale M, Stankovic JA (1994) Dynamic end-to-end guarantees
in distributed real time systems. In: Proceedings of the 15-th IEEE
Real-Time Systems Symposium, pp 215–227

10. Jiang S (2006) A decoupled scheduling approach for distributed
real-time embedded automotive systems. In: Proceedings of the
12th IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, pp 191–198

11. Serreli N, Lipari G, Bini E (2009) Deadline assignment for
component-based analysis of real-time transactions. In: 2nd Work-
shop on Compositional Real-Time Systems, Washington, DC,
USA

12. Serreli N, Lipari G, Bini E (2010) The demand bound function
interface of distributed sporadic pipelines of tasks scheduled by
EDF. In: Proceedings of the 22-nd Euromicro Conference on Real-
Time Systems, Bruxelles, Belgium

13. Hong S, Chantem T, Hu XS (2015) Local-deadline assignment for
distributed real-time systems. IEEE Trans Comput 64(7):1983–
1997

14. Jayachandran P, Abdelzaher T (2008) Delay composition alge-
bra: A reduction-based schedulability algebra for distributed
real-timesystems. In: Proceedings of the 29-th IEEE Real-Time
Systems Symposium, Barcelona, Spain, pp 259–269

15. Henriksson D, Lu Y, Abdelzaher T (2004). In: Proceedings of the
16th Euromicro Conference on Real-Time Systems, pp 61–68

16. Bonafiglia R, Cerrato I, Ciaccia F, Nemirovsky M, Risso F (2015)
Assessing the performance of virtualization technologies for nfv:
a preliminary benchmarking. In: 2015 Fourth European Workshop
on Software Defined Networks. IEEE, pp 67–72

17. Kapoor R, Porter G, Tewari M, Voelker GM, Vahdat A (2012)
Chronos: Predictable low latency for data center applications. In:
Proceedings of the Third ACM Symposium on Cloud Computing,
ser. SoCC ’12. New York, NY, USA: ACM, pp 9:1–9:14. [Online].
Available: http://doi.acm.org/10.1145/2391229.2391238

18. Cruz RL (1991) A calculus for network delay, part I: Network
elements in isolation. IEEE Trans Inf Theory 37(1):114–131

19. Le Boudec J-Y, Thiran P Network Calculus: a theory of deter-
ministic queuing systems for the internet, ser. Lecture Notes in
Computer Science. Springer, 2001, vol. 2050

20. Bezanson J, Edelman A, Karpinski S, Shah VB (2014) Julia:
A fresh approach to numerical computing, arXiv preprint
arXiv:1411.1607

21. 2016, 10. [Online]. Available: https://aws.amazon.com/

http://arxiv.org/abs/1604.01136
http://doi.acm.org/10.1145/2391229.2391238
http://arxiv.org/abs/1411.1607
https://aws.amazon.com/

	AutoSAC: automatic scaling and admission control of forwarding graphs
	Abstract
	Introduction
	In this work, we
	Related works

	Modeling the service-chain
	Admission controller
	Service controller
	Processing of packets
	Function delay
	Concatenation of functions
	Problem formulation
	Utility function


	Controller design
	Admission controller
	Decentralized admission control
	Centralized admission control

	Service controller
	Alternative utility function

	Properties of AutoSAC

	Evaluation
	Example chain
	Comparing AutoSAC with state-of-the-art
	Dynamic auto-scaling (DAS)
	Dynamic over-provisioning (DOP)
	Monte Carlo simulation
	Results



	Summary
	Acknowledgments
	Source code
	Open Access
	References


