Skip to main content
Log in

Range Extender Module Transmission Topology Study

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

Range extender modules are one option to compensate for short drive ranges of electric vehicles. The close interaction of combustion engine and generator poses new challenges in development. A key requirement for range extender systems is to be light and virtually imperceptible in operation. High-speed electrical machines aim at increasing power density. However, their introduction in a range extender requires a gearbox. The combustion engine torque fluctuations can lead to rattle in the gearbox. The rattle can be overcome by a dual mass flywheel. An interdisciplinary model is developed and used to analyse three different range extender systems: one with a low speed generator without gearbox, one with a high-speed generator, and one with a high-speed generator and a dual mass flywheel. The efficiency was found to be higher for the system with a low speed generator, whereas the power density and the costs are beneficial for the high-speed concept. A dual mass flywheel eliminates the changes of torque direction in the gearbox. It reduces the speed fluctuations of the gearbox and generator by over 90 % compared to the low speed setup. But it increases rolling moment and subsequently chassis excitation compared to a setup with only a gearbox.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

spring constant, Nm/rad

d :

damping constant, Nm/rad/s

i :

current, A

J :

mass inertia, kg/m2

L :

inductance, H

n :

rotational speed, 1/min

P :

power, W

p :

number of pole pairs, 1

r :

radius, m

R :

resistance, Ω

T :

torque, Nm

u :

voltage, V

v :

velocity, m/s

θ :

phase angle, rad

ρ :

density, kg/m3

σ :

stress, N/m2

τ :

time constant, s

Ψ :

magnetic flux linkage, Vs

ψ :

angle, rad

ω :

angular velocity, rad/s

I, II:

primary/secondary side

a, b, c:

phase quantities in the three phase system

B:

combustion

CD:

combustion duration

CS:

combustion start

d:

direct axis

DMF:

dual mass flywheel

el:

electrical

F:

permanent magnet excitation

GB:

gear box

i:

current control loop

ICE:

Internal combustion engine

max:

maximum value

n:

nominal value

R:

radial

s:

stator domain

ST:

connecting rod

T:

tangential

tot:

total

PMSM:

permanent magnet synchronous machine

q:

quadrature axis

red:

reduced

References

  • Andert, J., Herold, K., Savelsberg, R. and Pischinger, M. (2017). NVH optimization of range extender engines by electric torque profile shaping. IEEE Trans. Control Systems Technology 25, 4, 1465–1472.

    Article  Google Scholar 

  • Andert, J., Köhler, E., Niehues, J. and Schürmann, G. (2012). KSPG range extender–A new pathfinder to electromobility. ATZautotechnology 12, 2, 26–33.

    Article  Google Scholar 

  • Bassett, M., Hall, J., Cains, T. and Warth, M. (2012). Fahrzeugintegration eines range-extender-antriebs. Motortechnische Zeitschrift 73, 11, 852–856.

    Article  Google Scholar 

  • Bianchi, N., Bolognani, S. and Luise, F. (2003). Potentials and limits of high speed PMmotors. Proc. IEEE Conf. 38th IAS Annual Meeting, Industry Applications Conf., Salt Lake City, Utah, USA.

    Google Scholar 

  • Borisavljevic, A., Polinder, H. and Ferreira, J. A. (2010). On the speed limits of permanent-magnet machines. IEEE Trans. Industrial Electronics 57, 1, 220–227.

    Article  Google Scholar 

  • Eberle, U. (2012). Chancen und herausforderungen der elektromobilität. 4th VDI Fachkongress Elektromobilität, Nürtingen, Germany.

    Google Scholar 

  • Finken, T., Hombitzer, M. and Hameyer, K. (2010). Study and comparison of several permanent-magnet excited rotor types regarding their applicability in electric vehicles. Proc. IEEE Emobility - Electrical Power Train, Leipzig, Germany.

    Google Scholar 

  • Fischer, R., Fraidl, G. K., Hubmann, C., Kapus, P. E., Kunzemann, R., Sifferlinger, B. and Beste, F. (2009). Range-extender-modul: Wegbereiter für elektrische mobilität. MTZ - Motortechnische Zeitschrift 70, 10, 752–759.

    Article  Google Scholar 

  • Gebrehiwot, M. and van den Bossche, A. (2015). Starting requirements of a range extender for electric vehicles: Based on a small size 4-stroke engine. Int. J. Automotive Technology 16, 4, 707–713.

    Article  Google Scholar 

  • Grosse, T., Hameyer, K. and Hagedorn, J. (2014). Needle winding technology for symmetric distributed windings. Proc. Conf. 4th Int. Electric Drives Production, Nuremberg, Germany.

    Google Scholar 

  • Heron, A. and Rinderknecht, F. (2013). Comparison of range extender technologies for battery electric vehicles. Proc. IEEE 8th Int. Conf. and Exhibition Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco.

    Google Scholar 

  • Herrmann, M. and Matthé, R. (2014). Wege in die Elektromobilität–Empfehlungen aus Erfahrungen. EMotive: 6. Expertenforum Elektrische Fahrzeugantriebe, Wolfsburg, Germany.

    Google Scholar 

  • Karthaus, J., Steentjes, S., Gröbel, D., Andreas, K., Merklein, M. and Hameyer, K. (2017). Influence of the mechanical fatigue progress on the magnetic properties of electrical steel sheets. Archives of Electrical Engineering 66, 2, 351–360.

    Article  Google Scholar 

  • Köhler, J., Esch, H.-J., Niehues, J., Andert, J., Pischinger, M. and Schürmann, G. (2012). Engine test bench and vehicle testing of KSPG range extender “FEVcom” full engine vibration compensation. 21st Aachen Colloquium Automobile and Engine Technology, Aachen, Germany.

    Google Scholar 

  • Liu, Q. and Hameyer, K. (2016). A deep field weakening control for the PMSM applying a modified overmodulation strategy. Proc. IEEE Conf. 8th IET Int. Conf. Power Electronics, Machines and Drives (PEMD 2016), Glasgow, UK.

    Google Scholar 

  • Pischinger, M. and Andert, J. (2014). Generator Control System for Smooth Operation with Combusion Engine. Patent No. US 2014/0167423 A1.

    Google Scholar 

  • Pischinger, R., Klell, M. and Sams, T. (2009). Thermodynamik der Verbrennungskraftmaschine. Der Fahrzeugantrieb. 3rd edn. Springer. Wien, Austria.

    Google Scholar 

  • Reik, W., Seebacher, R. and Kooy, A. (1998). Dual mass flywheel. 6th Luk Symp., 69–94.

    Google Scholar 

  • Schröder, D. (2015). Elektrische Antriebe–Regelung von Antriebssystemen. 4th edn. Spriger-Verlag Berlin Heidelberg. Heidelberg, Germany.

    Book  Google Scholar 

  • Schröter, J., Hoffmann, M., Jacobs, G. and Straßburger, F. (2015). High speed electrical drives for mobile machinery: An approach for raising the efficiency of agriculture and construction machinery. VDI-Berichte 2251, Düsseldorf, Germany, 71–76.

    Google Scholar 

  • Schröter, J. and Jacobs, G. (2014). High speed electrical drives for mobile machinery–Drive concept and selected components. Proc. Conf. 13th Int. CTI Symp. Automotive Transmissions, HEV and EVDrives, Berlin, Germany.

    Google Scholar 

  • Schröter, J., Jacobs, G., Zhitkova, S., Felden, M. and Hameyer, K. (2014). Development of high speed electrical drives for mobile machinery, challenges and potential solutions, challenges and potential solutions. Proc. Conf. 9th Int. Fluid Power Conf., Aachen, Germany.

    Google Scholar 

  • Stier, C., Geier, M. and Albers, A. (2009). Analyse des drehzahleinflusses auf das dynamische übertragungsverhalten von ZMS. Dynamisches Gesamtsystemverhalten von Fahrzeugantrieben, Munich, Germany.

    Google Scholar 

  • van Basshuysen, R. and Schäfer, F. (2015). Handbuch Verbrennungsmotor: Grundlagen, Komponenten, Systeme, Perspektiven. ATZ/MTZ-Fachbuch. 7th edn. Springer Vieweg. Wiesbaden, Germany.

    Google Scholar 

  • Vibe, I. I. (1970). Brennverlauf und Kreisprozess von Verbrennungsmotoren. VEB Verlag Technik. Berlin, Germany.

    Google Scholar 

  • Walter, A., Kiencke, U., Jones, S. and Winkler, T. (2007). Das zweimassenschwungrad als virtueller sensor: Echtzeitfähige rekonstruktion des direkt indizierten motor- und lastmoments. Motortechnische Zeitschrift 68, 6, 486–493.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Andert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herold, K., Böhmer, M., Savelsberg, R. et al. Range Extender Module Transmission Topology Study. Int.J Automot. Technol. 19, 869–878 (2018). https://doi.org/10.1007/s12239-018-0084-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-018-0084-2

Key words

Navigation