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Abstract Estuarine and coastal ecosystems respond strong-
ly to proximate climate forcing. In this study, we present a
regional, synoptic climatology as an approach to classify
weather patterns that generate interannual variability in
coastal and estuarine ecosystems. Synoptic climatology is a
method that classifies sea level pressure data into distinct
patterns representing common weather features for a
specified region. A synoptic climatology was developed
for the eastern United States and used to quantify surface
conditions affecting Chesapeake Bay during wet and dry
years. In a synthesis analysis, several mechanisms were
identified that explained the link between weather patterns
and ecosystem structure, principal among them is the
delivery of freshwater to the Bay during spring. Wet and
dry years were characterized by shifts in biogeography of
the Chesapeake Bay. The shifts resulted from habitat

changes and trophic interactions and included the timing
and magnitude of the spring phytoplankton bloom, the
distribution/abundance of mesozooplankton and gelatinous
zooplankton, and juvenile indices of fish. Synoptic clima-
tology resolved regional weather variability at a spatial
scale not strongly controlled by larger-scale climate indices
and explained ecosystem responses in Chesapeake Bay.

Keywords Synoptic climatology . Large-scale climate
indices . Estuary . Chesapeake Bay .Multiple trophic levels

Introduction

Climate variability can lead to significant shifts in the
structure of marine ecosystems (Greene and Pershing 2007;
Steele 2004). Notable examples include plankton commu-
nities in the North Atlantic and pelagic fish populations in
the coastal Pacific Ocean (Fromentin and Planque 1996;
Hollowed et al. 2001). Specifying climate forcing of
ecosystem responses requires metrics of climate variability
and data of sufficient spatial and temporal resolution to
resolve the responses (Hollowed et al. 2001; Ottersen et al.
2001; Pearcy and Shoener 1987). Widely applied indices of
ocean–atmosphere processes, such as the North Atlantic
Oscillation (NAO), Pacific Decadal Oscillation (PDO), and
El Niño Southern Oscillation (ENSO) integrate climate
phenomena over large spatial scales (Stenseth et al. 2003).
These indices have proven effective to explain shifts of
species abundances and community composition evident in
long-term data. Results from the Continuous Plankton
Recorder in the North Atlantic, for example, link abundan-
ces and composition of copepods to NAO variability
(Fromentin and Planque 1996). Fisheries landings in Japan
have been related to ENSO (Sugimoto et al. 2001) and
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fisheries landings and recruitments to the NAO (Brunel and
Boucher 2007) and PDO (Beamish and Noakes 2002;
Hollowed et al. 2001). Analyses based on indices of these
large-scale processes have advanced our understanding of
ecosystem responses driven by climate, but they suffer
significant limitations (Stenseth et al. 2003). Specifically,
the link between climate indices and local conditions is
often weak and difficult to quantify for regions not under
the strong influence of large-scale ocean–atmosphere
interactions (Tootle et al. 2005) or for those expressing
variability on different temporal scales than are captured by
these large-scale indices.

An example where large-scale ocean–atmospheric forc-
ing fails to capture ecosystem responses is Chesapeake Bay,
the largest estuary in the United States. As with other
estuaries, including Perdido Bay, Florida, USA (Macauley
et al. 1995), San Francisco Bay, California, USA (Cloern
1996; Cloern et al. 1983), the Neuse–Pamlico estuary,
North Carolina, USA (Paerl et al. 2006a, b), and Apalachi-
cola Bay, Florida, USA (Livingston et al. 1997), the
Chesapeake is strongly influenced by its surrounding
watershed. As such, the estuary is highly susceptible to
climate forcing as the watershed integrates the effects of
climate over land. One of these effects is the annual
timing and magnitude of freshwater flow. The main
source of freshwater flow to Chesapeake Bay, the
Susquehanna River, varied threefold over the last
52 years (Miller et al. 2006). Ecosystem responses to
variability of freshwater flow expressed in phytoplankton
(Harding 1994), zooplankton (Kimmel and Roman 2004),
gelatinous zooplankton (Purcell and Decker 2005), and
fish (Jung and Houde 2003; Wood 2000) are documented
for this and other estuaries (Dippner et al. 2001; Lehman
2004). Indices of large-scale processes such as NAO,
PDO, or ENSO (Tootle et al. 2005) fail to explain this
variability because coastal plain estuaries of the Middle
Atlantic region are more strongly affected by proximal
climate forcing.

To address the role of climate forcing on a regional scale,
we applied a synoptic climatology based on patterns of sea
level pressure (SLP) as an alternative approach to classify
and quantify climate variability in the eastern United States
(Yarnal 1993). Synoptic climatology is an established
approach in physical geography (Yarnal 1993), but its
application to ecological studies has been more recent
(Wood 2000; Dippner et al. 2001). The purpose of this
short paper is to summarize the synoptic climatology
approach and provide an example of its application to
biological data for Chesapeake Bay. In this study, we
synthesize research results from individual publications and
add new biological data from Chesapeake Bay to illustrate
how the entire ecosystem responds to differential climate
forcing.

Materials and Methods

Gridded, daily SLP (mb) data were acquired (0 and 12:00
UTC), 5° latitude by 5° longitude, from the National Center
for Atmospheric Research (http://dss.ucar.edu). These data
(1950–2002) were used to classify common weather patterns
for a study area bounded by 25–50° N, 65–100° W (Yarnal
1993). We identified predominant weather patterns using an
Eigen vector-based, map pattern classification procedure.
The weather patterns that emerged were related to surface
conditions using divisional data from the United States
National Climate Data Center (http://cdo.ncdc.noaa.gov).
Temperature and precipitation data covered the entire
Susquehanna River watershed. Data on freshwater flow for
the Susquehanna River were obtained from the United States
Geological Survey gauging station at Harrisburg, PA, USA
(USGS-01570500; http://waterdata.usgs.gov). Weather pat-
tern anomalies were derived by taking the long-term (1950–
2002) average number of days each pattern occurred during
winter (December–February) and subtracting the average
from the number of days each pattern occurred during a
particular winter. Winter was used to categorize the weather
patterns because a strong correlation exists between winter
precipitation and spring discharge (Najjar 1999). The
arithmetic mean anomaly for five representative wet (see
below) and dry (see below) years is reported. The same
protocol was used to calculate winter precipitation and air
temperature anomalies and spring (March–May) discharge
anomaly. Wet and dry years were selected using the
following criteria. We summarized the Harrisburg freshwater
flow data from 1950 to 2002, calculating the minimum, 25th
percentile, median, 75th percentile, and maximum. Years
that had flow values <25th percentile were considered dry
years and years that had flow values >75th percentile were
considered wet years. Due to data limitations for some
biological variables, we could only choose years from 1985
to 2002 for the analysis. The five wettest (1993, 1994, 1996,
1998, and 2000) and driest years (1985, 1988, 1990, 1995,
and 1999) were chosen during this time frame. Two wet
years (1996 and 2000) were below the 75th percentile, but
well above the median flow.

Data on chlorophyll a (in milligrams per cubic meter),
copepods Eurytemora affinis (number per cubic meter), and
ctenophores Mnemiopsis leidyi (milliliters per sample;
samples are relative abundance and not normalized by
volume filtered) were obtained from the United States
Environmental Protection Agency Chesapeake Bay Pro-
gram (http://www.chesapeakebay.net). Data on medusa
Chrysaora quinquecirrha (surface count) were from Breit-
burg and Fulford (2006). Fish juvenile indices (relative
abundance in relation to other species sampled) were from
the Maryland Department of Natural Resources (DNR)
Fisheries Service (http://www.dnr.state.md.us/fisheries/
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juvindex/index.html). Fish juvenile index values are annual
estimates of young-of-the-year abundances reported by
Maryland DNR Fisheries Service and are the geometric
mean of each species sampled in seine nets at three time
periods (July, August, and September) at 22 fixed stations
in the Maryland portion of Chesapeake Bay. Arithmetic
means for chlorophyll a were calculated for three geo-
graphic regions of Chesapeake Bay, upper (>39.0° N),
middle (>38.0° N), and lower (<38.0° N). Arithmetic
means for E. affinis abundance during spring (March–
May) and M. leidyi abundance and C. quinquecirrha counts
during summer (June–August) were calculated for the
Maryland portion of Chesapeake Bay (>37.75° N latitude)
of the five representative wet and dry years. Statistical
comparisons were made using two-sample t test. Data were
transformed where necessary to ensure normality and
variances were tested for homogeneity using the F test
(Sokal and Rohlf 1995). All variances were homogenous,
with the exception of menhaden and spring discharge.

Welch’s modified two-sample t tests were performed using
unequal variances in those cases.

Results and Discussion

Our analysis identified ten predominant weather patterns
(Miller et al. 2006) with distinct frequencies of occurrence,
seasonality, and surface conditions (i.e., air temperature,
winds, precipitation). Several weather patterns are shown in
Fig. 1. These weather patterns were exemplified by several
commonly recognized patterns in the region, including a
low-pressure storm system known as a Nor’easter (Fig. 1,
weather pattern 4) and a continental high-pressure system
(Fig. 1, weather pattern 2) (Miller et al. 2006). Cumulative
frequencies of the ten weather patterns for winter were used
to model freshwater flow into Chesapeake Bay. Multiple
linear regression related spring (March–May) freshwater
flow from the Susquehanna River to the frequencies of ten

Fig. 1 Winter weather pattern, precipitation, temperature, and spring
discharge anomalies during wet or dry conditions. Weather pattern
maps are SLP (mb) and represent weather patterns that are typical of
each condition (squared box). Weather pattern anomalies are cumu-
lative daily frequencies for each pattern during December–February
subtracted from a long-term average (1950–2002) for the five
representative wet or dry years (see text). Precipitation anomalies are
calculated as cumulative values for December–February over the

Chesapeake Bay watershed and averaged for the five representative
wet or dry years. Winter air temperature anomalies are calculated as
average values for December–February over the Chesapeake Bay
watershed and averaged for the five representative wet or dry years.
Spring discharge anomalies were calculated as cumulative values for
March–April and averaged for the five representative wet or dry years.
Error bars represent the standard deviation
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weather patterns for winter (December–February), explaining
54% of the variance (Miller et al. 2006). Synoptic climatology
was superior to single-variable indicators of climate (e.g.,
precipitation, air temperature) because each synoptic pattern
integrates multiple surface conditions. For example, using
only precipitation and air temperature as predictors explained
17% of the variance of spring freshwater flow. Our
quantitative approach classified weather patterns impacting
the Chesapeake region as either “wet” or “dry” and was
based on the frequency of weather patterns associated with
positive (weather patterns 1, 3, 4, and 8) or negative
(weather patterns 2, 7, and 10) anomalies of precipitation
(Fig. 1; Miller et al. 2006). Winter air temperature anomalies
were not significantly different (two-sample t test, p>0.05)
between “wet” and “dry” years (wet=0.74±1.38°C, dry=
−0.31±2.52°C), though wet years tended to be warmer than
dry years. There was a significant difference in anomalies of
winter precipitation and spring discharge during “dry”

(precipitation=−18.24±36.59 mm, discharge=−4.62±1.02×
109 m3 day−1) and “wet” (precipitation=17.37±58.89 mm;
discharge=4.86±2.14×109 m3 day−1) periods (two-sample t
test, p<0.05 for both precipitation and discharge). Such
contrasting “wet–dry” patterns led to high variability of
freshwater flow evident in contemporary data and also
visible in the paleorecord for the past 500 years (Cronin et
al. 2000).

Years dominated by “dry” winter weather patterns
delivered low precipitation, resulting in low freshwater flow
and nutrient delivery, and supported spring blooms of lower
chlorophyll a biomass and covered a restricted area situated
landward in the estuary (Fig. 2a). Years dominated by “wet”
winter weather patterns delivered high precipitation and
associated freshwater flow and nutrient loads, supported
spring blooms of higher chlorophyll a, and covered a larger
area with peak biomass situated toward the seaward terminus
of the estuary (Fig. 2b). These contrasting conditions were

Fig. 2 Biological response in dry and wet years. Spatial distribution
of surface chlorophyll a (in milligrams per cubic meter) in Chesapeake
Bay during dry years (a) and wet years (b) upper bay abundance of
calanoid copepod E. affinis (number per cubic meter) (c), lobate
ctenophore M. leidyi (milliliters of biovolume per sample) (d),

scyphomedusan C. quinquecirrha (count) (e), striped bass M. saxatilis
(juvenile index) (f), and Atlantic menhaden B. tyrannus (juvenile
index) (g) during wet and dry years. Error bars represent the standard
deviation
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quantified as regional means for the upper (>39.0° N),
middle (>38.0° N), and lower (<38.0° N) bay, showing
significant differences between “dry” and “wet” years (upper=
11.6 vs. 8.3 mg m−3; middle=8.7 vs. 12.8 mg m−3; lower=
5.8 vs. 11.1 mg m−3; two-sample t test, p<0.001 in all
cases). Climate patterns in winter explained the position,
areal extent, and magnitude of the spring phytoplankton
bloom in Chesapeake Bay (Miller and Harding 2007).
Winter weather drove the annual maximum of freshwater
flow in spring and generated spatial gradients of light and
nutrients. These gradients in turn controlled the distribution
and growth of phytoplankton along the north–south axis of
the Bay (Harding 1994).

Crustacean zooplankton in Chesapeake Bay were domi-
nated by two species of calanoid copepods, Acartia tonsa
and E. affinis. Climate patterns associated with “dry” spring
conditions supported significantly lower abundances of E.
affinis in the upper bay (755.35±563.62 number m−3) than
those that led to “wet” spring conditions (5,294.79±
6,940.20 number m−3; Fig. 2c; two-sample t test, p<0.05).
Proposed mechanisms linking climate to E. affinis sug-
gested increased freshwater flow and a concurrent increase
in delivery of detritus, a major food source for E. affinis
(Heinle et al. 1977), and an expansion of low-salinity, low-
temperature habitat for this key component of the estuarine
food web. Climate did not strongly affect A. tonsa whose
distribution and abundance in Chesapeake Bay were largely
controlled by predation (Kimmel et al. 2006b).

Gelatinous zooplankton were dominated by two species
in Chesapeake Bay, the lobate ctenophore, M. leidyi, and
the scyphomedusan, C. quinquecirrha. “Dry” winter–spring
climate patterns were associated with a significantly lower
abundance of M. leidyi during summer compared to “wet”
winter–springs (two-sample t test, p<0.05; Fig. 2d). Higher
abundance of C. quinquecirrha generally occurred during
summers of “dry” years, although missing data for 2000
and high variability led to a nonsignificant difference (two-
sample t test, p=0.22; Fig. 2e). The medusa stage of C.
quinquecirrha was more abundant in above-average salinity
and temperature in spring followed by high temperature in
summer. Hydrologic conditions largely explained the
observed distributions of C. quinquecirrha and M. leidyi
(Purcell and Decker 2005). Low freshwater flow expanded
favorable habitat for C. quinquecirrha polyps and produc-
tion of ephyrae in the early summer (Cargo and King 1990;
Purcell et al. 1999).

Climate also significantly affected the production, i.e.,
recruitment, of juveniles of two important fishes, the striped
bass, Morone saxatilis, and its prey, the Atlantic menhaden,
Brevoortia tyrannus. The mean abundance of striped bass
juveniles collected in late-summer seine samples during
“wet” years was >3 times higher than during “dry” years
(two-sample t test, p<0.05; Fig. 2f). The anadromous M.

saxatilis spawns during spring in tidal freshwater areas of
the bay and its tributaries. Winter weather patterns resulting
in “wet” springs increased the spatial extent and volume of
suitable spawning and nursery habitats (Secor and Houde
1995) and the temporal–spatial overlap in production of
zooplankton eaten by larval striped bass (Martino 2008),
conditions favorable for recruitment. The ocean-spawning
B. tyrannus showed an opposite pattern (Fig. 2g) wherein
the mean abundance of menhaden juveniles in late-summer
seine surveys were higher in “dry” years (two-sample t test,
p=0.07; Fig. 2g). Although the mechanism is not yet
known, it is probable that ingress of menhaden larvae from
the continental shelf is enhanced during “dry” winters
(Wood 2000).

Ecosystem-scale responses to climate are in part an
integrated expression of complex trophic interactions of the
bay’s biota. Responses in phenology, biogeography, and
abundance produce dynamic interactions at each trophic
level. For example, “wet” years result in lower abundances
of the scyphomedusan C. quinquecirrha, a predator on the
ctenophore M. leidyi in the bay (Feigenbaum and Kelly
1984). The increase of M. leidyi in “wet” years is a
combination of response to habitat changes, a release from
predation by C. quinquecirrha, and more zooplankton prey.
In another example, high abundance of E. affinis in “wet”
years supports high growth and survival of striped bass
larvae (North and Houde 2006; Martino 2008). Similar,
complex interactions exist at all trophic levels in the bay,
implicating climate as the factor most responsible for large-
scale ecosystem changes. Synoptic climatology is an
organizing methodology that effectively explains signifi-
cant amounts of the variability of biotic components,
including phytoplankton, zooplankton, and fish, testifying
to its strength as an integrator of both habitat changes and
trophic interactions that are strongly forced by “wet” and
“dry” conditions (Miller et al. 2006).

Prominent indices of ocean–atmosphere phenomena are
increasingly used to describe biotic responses to climate on
large spatial scales (Stenseth et al. 2002; Brander 2007;
Brunel and Boucher 2007; Stenevik and Sundby 2007). On
smaller, regional scales that are less sensitive to responses
in large-scale, ocean–atmosphere processes, it is better to
adopt an approach that classifies climate forcing on more
relevant spatial and temporal scales. Synoptic climatology
can identify, quantify, and evaluate effects of regional
climate variability across trophic levels, particularly for
coastal–estuarine ecosystems that cannot be clearly linked
to large-scale climate patterns. Our results from Chesapeake
Bay support this assertion for years with contrasting winter
weather patterns that are responsible for differences in (1)
location, areal extent, and magnitude of the annual
phytoplankton maximum in spring (Fig. 2a, b; Miller and
Harding 2007); (2) abundance of the copepod E. affinis in
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spring (Fig. 2c; Kimmel et al. 2006a); (3) abundance of
gelatinous zooplankton in summer (Fig. 2d, e); and (4)
juvenile abundance indices of fish in late summer (Fig. 2f, g).
Synoptic climatology may, therefore, be used to facilitate
ecological forecasts of 3–6 months for spring phytoplankton
and zooplankton and summer gelatinous zooplankton, striped
bass, and menhaden recruitment, thus providing another tool
for resource managers and restoration activities.

Implementing synoptic climatology as a predictive tool to
quantify effects of climate forcing on biological communities
is highly relevant to the needs of resource managers that
wish to distinguish natural variability (Sherman et al. 2006)
from human-induced responses (Landres et al. 1999), a
serious challenge in highly variable estuarine and coastal
ecosystems. Though our analysis is static, i.e., it classifies
weather pattern variability over a fixed period (1950–2002);
it has utility for detecting long-term climate change. For
example, we examined the frequency of each weather pattern
over time to determine if there were trends. The presence of
trends in weather pattern frequency would indicate a possible
change in climate over the 50+ years in our analysis. We
found no significant trends, with the exception of one
weather pattern (pattern 5) which had a slight, positive trend
(see Miller et al. 2006). Continued monitoring of these
weather patterns will be useful for the detection of future
climate change and ecosystem responses. We conclude that
synoptic climatology has important applications in estuarine
and coastal systems, both for classification of interannual
weather variability and identification of long-term trends in
climate.
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