Skip to main content
Log in

Spatiotemporal Patterns of Subtidal Benthic Microalgal Biomass and Community Composition in Galveston Bay, Texas, USA

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Many Gulf of Mexico estuaries have low ratios of water volume to bottom surface area, and benthic processes in these systems likely have a major influence on system structure and function. The purpose of this study was to determine the spatiotemporal distribution of biomass and community composition of subtidal benthic microalgal (BMA) communities in Galveston Bay, TX, USA, compare BMA community composition and biomass to phytoplankton in overlying waters, and estimate the potential contribution of BMA to the trophodynamics in this shallow, turbid, subtropical estuary. The estimates of BMA biomass (mean = 4.21 mg Chl a m−2) for Galveston Bay were within the range of the reported values for similar Gulf of Mexico estuaries. BMA biomass in the central part of the bay was essentially homogeneous, whereas biomass at the seaward and upper bay ends of the transect were significantly lower. Peridinin, fucoxanthin, and alloxanthin were the three carotenoids with the highest concentrations, with fucoxanthin having the highest mean concentration (1.82 mg m−2). The seaward and landward ends of the transect differed from the central region of the bay with respect to the relative abundances of chlorophytes, cyanobacteria, and photosynthetic bacteria. Benthic microalgal community composition also showed a gradual shift over time due to changes in the relative abundances of photosynthetic bacteria, cryptophytes, dinoflagellates, and cyanobacteria. Major changes in community composition occurred in the spring months (March to April). On an areal basis, BMA biomass in Galveston Bay occurred at minor concentrations (16.5%) relative to phytoplankton. Furthermore, the concentrations of carotenoid pigments for phytoplankton and BMA (fucoxanthin, alloxanthin, and zeaxanthin) were correlated (r = 0.48 to 0.61), suggesting a close linkage between microalgae in the water column and sediments. The contribution of BMA to the primary productivity of the deeper waters (>2 m) of Galveston Bay is probably very small in comparison to shallower waters along the bay margins. The significant similarities in the community composition of phytoplankton and BMA illustrate the potential importance of deposition and resuspension processes in this turbid, shallow estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Admiraal, W. 1984. The ecology of estuarine sediment-inhabiting diatoms. Progress in Phycological Research 3: 269–322.

    Google Scholar 

  • An, S., and S.B. Joye. 2001. Enhancement of coupled nitrification-denitrification by benthic photosynthesis in shallow estuarine sediments. Limnology and Oceanography 46: 62–74.

    Article  CAS  Google Scholar 

  • Blanchard, G.F., and P.A. Montagna. 1992. Photosynthetic response of natural assemblages of marine benthic microalgae to short- and long-term variations of incident irradiance in Baffin Bay, Texas. Journal of Phycology 28: 7–14.

    Article  Google Scholar 

  • Breton, E., C. Brunet, B. Sautour, and J.-M. Brylinski. 2000. Annual variations of phytoplankton biomass in the eastern English Channel: comparison of pigment signatures and microscopic counts. Journal of Plankton Research 22: 1423–1440.

    Article  CAS  Google Scholar 

  • Cerco, C., and S. Seitzinger. 1997. Measured and modeled effects of benthic algae on eutrophication in Indian River-Rehoboth Bay, Delaware. Estuaries 20: 231–248.

    Article  CAS  Google Scholar 

  • Creach, V., M. Schricke, G. Bertru, and A. Mariotti. 1997. Stable isotopes and gut analyses to determine feeding relationships in saltmarsh macroconsumers. Estuarine, Coastal and Shelf Science 44: 599–611.

    Article  CAS  Google Scholar 

  • Currin, C., S. Newell, and H. Paerl. 1995. The role of benthic microalgae and standing dead Spartina alterniflora in salt marsh food webs: implications based on multiple stable isotope analysis. Marine Ecology Progress Series 121: 99–116.

    Article  Google Scholar 

  • Deegan, L., and R. Garritt. 1997. Evidence for spatial variability in estuarine food webs. Marine Ecology Progress Series 147: 31–47.

    Article  Google Scholar 

  • de Jonge, V.N., and J.E.E. van Beusekom. 1995. Wind- and tide-induced resuspension of sediment and microphytobenthos from tidal flats in the Ems estuary. Limnology and Oceanography 40: 766–778.

    Google Scholar 

  • Dennison, W.C., R.J. Orth, K.A. Moore, J.C. Stevenson, V. Carter, S. Kollar, P.W. Bergstrom, and R.A. Batiuk. 1993. Assessing water quality with submersed aquatic vegetation. Bioscience 43: 86–94.

    Article  Google Scholar 

  • Falkowski, P.G., and J. LaRoche. 1991. Acclimation to spectral irradiance in algae. Journal of Phycology 27: 8–14.

    Article  Google Scholar 

  • Falkowski, P.G., and J.A. Raven. 2007. Aquatic photosynthesis, 2nd edn. 484Princeton, NJ: Princeton University Press, 484.

    Google Scholar 

  • Furlong, E.T., and R. Carpenter. 1988. Pigment preservation and remineralization in oxic coastal marine environments. Geochemica Cosmochimica Acta 52: 87–89.

    Article  CAS  Google Scholar 

  • Garibotti, I.A., M. Vernet, W.A. Kozlowski, and M.E. Ferrario. 2003. Composition and biomass of phytoplankton assemblages in coastal Antarctic waters: a comparison of chemotaxonomic and microscopic analyses. Marine Ecology Progress Series 247: 27–42.

    Article  CAS  Google Scholar 

  • Guo, L., and P.H. Santschi. 1997. Isotopic and elemental characterization of colloidal organic matter from the Chesapeake Bay and Galveston Bay. Marine Chemistry 59: 1–15.

    Article  CAS  Google Scholar 

  • Hammerstrom, K., P. Sheridan, and G. McMahan. 1998. Potential for seagrass restoration in Galveston Bay, Texas. Texas Journal of Science 50: 35–50.

    Google Scholar 

  • Havskum, H., L. Schluter, R. Scharek, E. Berdalet, and S. Jacquet. 2004. Routine quantification of phytoplankton groups – microscopy or pigment analyses. Marine Ecology Progress Series 273: 31–42.

    Article  CAS  Google Scholar 

  • Jahnke, R.A., J.R. Nelson, R.L. Marinelli, and J.E. Eckman. 2000. Benthic flux of biogenic elements on the Southeastern US continental shelf: influence of pore water advective transport and benthic microalgae. Continental Shelf Research 20: 109–127.

    Article  Google Scholar 

  • Jeffrey S., R. Mantoura, S. Wright (eds). 1997. Phytoplankton pigments in oceanography: Guidelines to modern methods. Paris: UNESCO.

  • Jørgensen, B.B., Y. Cohen, and D.J. Des Marais. 1987. Photosynthetic action spectra and adaptation to spectral light distribution in a benthic cyanobacterial mat. Applied and Environmental Microbiology 53: 879–886.

    Google Scholar 

  • Kirk, J.T.O. 1994. Light and photosynthesis in aquatic systems, 2nd edn. 509New York: Cambridge University Press.

    Google Scholar 

  • Krom, M. 1991. Importance of benthic productivity in controlling the flux of dissolved inorganic nitrogen through the sediment-water interface in a hypertrophic marine ecosystem. Marine Ecology Progress Series 78: 163–172.

    Article  Google Scholar 

  • Kühl, M., C. Lassen, and B.B. Jørgensen. 1994. Optical properties of microbial mats: Light measurements with fiber-optic microprobes. In Microbial mats, eds. L.J. Stal and P. Caumette, 149–166. NATO ASI Series, vol. G 35, Berlin: Springer.

  • Kwak, T., and J. Zedler. 1997. Food web analysis of southern California coastal wetlands using multiple stable isotopes. Oecologia 110: 262–277.

    Article  Google Scholar 

  • Leavitt, P.R. 1993. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. Journal of Paleolimnology 9: 109–127.

    Article  Google Scholar 

  • Leavitt, P.R., and D.A. Hodgson. 2001. Sedimentary pigments. In Tracking environmental change using lake sediments, vol 3: Terrestrial, algal, and siliceous indicators, eds. , H.J.B. Birks, and W.M. Last, 1–31. Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Light, B.R., and J. Beardall. 2001. Photosynthetic characteristics of sub-tidal benthic microalgal populations from a temperate, shallow water marine ecosystem. Aquatic Botany 70: 9–27.

    Article  CAS  Google Scholar 

  • Lotze, H.K., H.S. Lenihan, B.J. Bourque, R.H. Bradbury, R.G. Cooke, M.C. Kay, S.M. Kidwell, M.X. Kirby, C.H. Peterson, and J.B.C. Jackson. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312: 1806–1809.

    Article  CAS  Google Scholar 

  • Lucas, C.H., C. Banham, and P.M. Holligan. 2001. Benthic-pelagic exchange of microalgae at a tidal flat. 2. Taxonomic analysis. Marine Ecology Progress Series 212: 39–52.

    Article  Google Scholar 

  • Ludden, E., W. Admiraal, and F. Colijn. 1985. Cycling of carbon and oxygen in layers of microphytes; a simulation model and its eco-physiological implications. Oecologia 66: 50–59.

    Article  Google Scholar 

  • MacIntyre, H.L., and J.J. Cullen. 1996. Primary production of benthic and suspended microalgae in a turbid estuary: Time scales of variability in San Antonio Bay, Texas. Marine Ecology Progress Series 145: 245–268.

    Article  Google Scholar 

  • MacIntyre, H.L., R.J. Geider, and D.C. Miller. 1996. Microphytobenthos: the ecological role of the “secret garden” on unvegetated, shallow-water marine habitats: I. Distribution, abundance, and primary production. Estuaries 19: 186–201.

    Article  Google Scholar 

  • MacIntyre, H.L., W.M. Lomas, J. Cornwell, D.J. Suggett, C.J. Gobler, E.W. Koch, and T.M. Kana. 2003. Mediation of benthic-pelagic coupling by microphytobentos: an energy- and material-based model for initiation of blooms by Aureococcus anophagefferens. Harmful Algae 3: 403–437.

    Article  CAS  Google Scholar 

  • Millie, D.F., H.W. Paerl, and J. Hurley. 1993. Microalgal pigment assessments using high-performance liquid chromatography: a synopsis of organismal and ecological applications. Canadian Journal of Fisheries and Aquatic Sciences 50: 2513–2527.

    Article  CAS  Google Scholar 

  • Montagna, P.A., and W.B. Yoon. 1991. The effect of freshwater inflow on meiofaunal consumption of sediment bacteria and microphytobenthos in San Antonio Bay, Texas, U.S.A. Estuarine, Coastal and Shelf Science 33: 529–547.

    Article  Google Scholar 

  • Oppenheimer, C.H., and E. Wood. 1965. Quantitative aspects of the unicellular algal poplulation of the Texas Bay systems. Bulletin of Marine Science 15: 571–588.

    Google Scholar 

  • Örnólfsdóttir, E.B., J.L. Pinckney, and S.E. Lumsden. 2003. Nutrient pulsing as a regulator of phytoplankton abundance and community composition in Galveston Bay, Texas. Journal of Experimental Marine Biology and Ecology 303: 197–220.

    Article  Google Scholar 

  • Örnólfsdóttir, E.B., S.E. Lumsden, and J.L. Pinckney. 2004. Phytoplankton community growth-rate-response to nitrate pulses in a shallow turbid estuary, Galveston Bay, Texas. Journal of Plankton Research 26: 325–339.

    Article  Google Scholar 

  • Page, H. 1997. Importance of vascular plant and algal production to macro-invertebrate consumers in a southern California salt marsh. Estuarine, Coastal and Shelf Science 45: 823–834.

    Article  Google Scholar 

  • Peterson, B., and R. Howarth. 1987. Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt marsh estuaries of Sapelo Island, Georgia. Limnology and Oceanography 32: 1195–1213.

    Article  CAS  Google Scholar 

  • Pinckney, J.L., and R.G. Zingmark. 1993a. Biomass and production of benthic microalgal communities in estuarine habitats. Estuaries 16: 887–897.

    Article  CAS  Google Scholar 

  • Pinckney, J.L., and R.G. Zingmark. 1993b. Modelling the annual production of intertidal benthic microalgae in estuarine ecosystems. Journal of Phycology 29: 396–407.

    Article  Google Scholar 

  • Pinckney, J.L., D. Millie, K. Howe, H. Paerl, and J. Hurley. 1996. Flow scintillation counting of 14C-labeled microalgal photosynthetic pigments. Journal of Plankton Research 18: 1867–1880.

    Article  CAS  Google Scholar 

  • Pinckney, J., E. Örnólfsdóttir, and S. Lumsden. 2002. Estuarine phytoplankton responses to sublethal concentrations of the agricultural herbicide, atrazine. Marine Pollution Bulletin 44: 1109–1116.

    Article  CAS  Google Scholar 

  • Ploug, H., C. Lassen, and B.B. Jørgensen. 1993. Action spectra of microalgal photosynthesis and depth distribution of spectral scalar irradiance in a coastal marine sediment of Limfjorden, Denmark. FEMS Microbiology Ecology 12: 69–78.

    Article  CAS  Google Scholar 

  • Rizzo, W.M., G.J. Lackey, and R.R. Christian. 1992. Significance of euphotic, subtidal sediments to oxygen and nutrient cycling in a temperate estuary. Marine Ecology Progress Series 86: 51–61.

    Article  Google Scholar 

  • Safi, K.A. 2003. Microalgal populations of three New Zealand coastal locations: forcing functions and benthic-pelagic links. Marine Ecology Progress Series 259: 67–78.

    Article  Google Scholar 

  • Santschi, P.H. 1995. Seasonality in nutrient concentrations in Galveston Bay. Marine Environmental Research 40: 337–362.

    Article  CAS  Google Scholar 

  • Schreiber, R.A., and J.R. Pennock. 1995. The relative contribution of benthic microalgae to total microalgal production in a shallow subtidal estuarine environment. Ophelia 42: 335–352.

    Google Scholar 

  • Sheridan, P.F., R.D. Slack, S.M. Ray, L.W. McKinney, E.F. Klima, and T.R. Calnan. 1989. Biological components of Galveston Bay. In NOAA estuary of the month seminar series no. 13. 23–51. Washington, DC: US Department of Commerce, National Oceanic and Atmospheric Administration, NOAA Estuarine Programs Office, 23–51.

    Google Scholar 

  • Sheridan, P., G. McMahan, K. Hammerstrom, and W. Pulich. 1998. Factors affecting restoration of Halodule wrightii to Galveston Bay, Texas. Restoration Ecology 6: 144–158.

    Article  Google Scholar 

  • Sullivan, M., and C. Moncreiff. 1988. Primary production of edaphic algal communities in a Mississippi salt marsh. Journal of Phycology 24: 49–58.

    Article  Google Scholar 

  • Sullivan, M., and C. Moncreiff. 1990. Edaphic algae are an important component of salt marsh food-webs: evidence from multiple stable isotope analyses. Marine Ecology Progress Series 62: 149–159.

    Article  Google Scholar 

  • Sun, M., R.C. Aller, and C. Lee. 1991. Early diagenesis of chlorophyll-a in Long Island Sound sediments: A measure of carbon flux and particle reworking. Journal of Marine Research 49: 379–401.

    CAS  Google Scholar 

  • Sundbäck, K., and E. Granéli. 1988. Influence of microphytobenthos on the nutrient flux between sediment and water: a laboratory study. Marine Ecology Progress Series 43: 63–69.

    Article  Google Scholar 

  • Warnken, K.W., G.A. Gill, P.H. Santschi, and L.L. Griffin. 2000. Benthic exchange of nutrients in Galveston Bay, Texas. Estuaries 23: 647–661.

    Article  CAS  Google Scholar 

  • Webster, I.T., P.W. Ford, and B. Hodgson. 2002. Microphytobenthos contribution to nutrient-phytoplankton dynamics in a shallow coastal lagoon. Estuaries 25: 540–551.

    CAS  Google Scholar 

  • Wermund, E.G., R.A. Morton, and G. Powell. 1989. Geology, climate and water circulation of the Galveston Bay System. In NOAA estuary of the month seminar series no. 13. 3–22. Washington, DC: US Department of Commerce, National Oceanic and Atmospheric Administration, NOAA Estuarine Programs Office.

    Google Scholar 

  • Zimmerman, A.R., and R. Benner. 1994. Denitrification, nutrient regeneration, and carbon mineralization in sediments of Galveston Bay, Texas, USA. Marine Ecology Progress Series 114: 275–288.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

E. B. Örnólfsdóttir and S. E. Lumsden assisted with the field collection of samples. Financial support was provided by the Texas Institute of Oceanography and Texas A&M University. This is publication no. 1473 from the Belle W. Baruch Institute for Marine Biology and Coastal Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Pinckney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinckney, J.L., Lee, A.R. Spatiotemporal Patterns of Subtidal Benthic Microalgal Biomass and Community Composition in Galveston Bay, Texas, USA. Estuaries and Coasts: J CERF 31, 444–454 (2008). https://doi.org/10.1007/s12237-007-9020-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-007-9020-9

Keywords

Navigation