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Abstract Biological invasions are considered a major
threat to biodiversity on a global scale. In this study, we
examined the effect of landscape structure and socio-
economic variables on the invasion pattern of alien
Solidago species. Field data were collected in a set of
309 sampling plots, regularly placed on the intersecting
lines of a 10x10-km grid, in south-western Poland
(Silesia, Central Europe). Landscape characteristics
and average values of socio-economic variables, such
as human population density and total income per
capita, were calculated. To examine the effect of land-
scape structure across different spatial extents, the land-
scape characteristics were analysed for three different
buffers (radius: 500 m, 2 km and 5 km). A model
explaining the pattern of the invasion was developed
using a univariate, binary classification (decision) tree.
The results show that both landscape structure and den-
sity of human population explain the spatial pattern of
the invasion by alien Solidago species. The pattern was

Electronic supplementary material The online version of this
article (doi:10.1007/s12224-016-9241-4) contains supplementary
material, which is available to authorized users.

M. Szymura (B<) - S. Swierszcz

Department of Agroecosystems and Green Areas Management,
Wroctaw University of Environmental and Life Sciences, P1.
Grunwaldzki 24A, 50-363 Wroctaw, Poland

e-mail: magdalena.szymura@up.wroc.pl

T. H. Szymura

Department of Ecology, Biogeochemistry and Environmental
Protection, University of Wroctaw, Kanonia 6/8, 50-328 Wroctaw,
Poland

mostly shaped by the presence of unsuitable (forests)
and suitable (roadsides) habitats for Solidago. The in-
fluence of percentage forest cover and road length was
the strongest at the small spatial extent (radius = 500 m).
The sum of linear elements length, percentage of urban
areas and human population density calculated at the
large extent (radius = 5 km) significantly improved the
model. However, the predictive ability of these variables
was less accurate. The model can be used by local
authorities and land managers for modelling/predicting
the hazards of invasion and elaborating a landscape-
level system of Solidago control.

Keywords land cover- land use - regional scale -
multiple spatial scales - invasion modelling - biological
invasions

Introduction

Biological invasions alter biodiversity levels, landscape
structure, ecosystem functions and services, local econ-
omy, and human health and well-being (Pejchar and
Mooney 2009; Pysek and Richardson 2010; Vila et al.
2011). They are considered a component of global
changes challenging the conservation of biodiversity
and natural resources (Simberloff et al. 2013). The suc-
cessful management of biological invasions relies on
understanding the mechanism behind the invasion pro-
cess (Gonzalez-Moreno et al. 2014).

Plant invasions are regarded as extremely complex
processes (Santos et al. 2011). They are affected by
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multiple interacting factors including abiotic conditions,
human activity and habitat type, which may operate at
different spatial scales (Kumar et al. 2006; Pauchard and
Shea 2006; Catford et al. 2009; Milbau et al. 2009;
Vicente et al. 2010, 2014; Gonzalez-Moreno et al.
2014). Nevertheless, they can be described and under-
stood using different kinds of simplified models. At a
very broad scale (continental, globe), climate is the most
important single factor determining the risk of invasion
(Thuiller et al. 2005; Milbau et al. 2009). At the regional
scale, however, considerable variation between habitats
in the number of alien species that they harbour has been
observed (Chytry et al. 2005, 2008a,b; Thiele et al.
2009; Chmura et al. 2013; Gonzéalez-Moreno et al.
2014). Such differences are explained by (a) variation
between ecological requirements of alien species and
the available niches in the invaded area and (b) differ-
ences in the inherent susceptibility of habitats to inva-
sion (Lonsdale 1999; Brabec and Pysek 2000; Shea and
Chesson 2002; Chytry et al. 2008a,b; Fukami et al.
2013).

Another factor shaping the number of alien species at
a given site is propagule pressure, which is the rate of
influx of alien propagules into the site (Lonsdale 1999;
Eriksson 2000; Lockwood et al. 2005; Sirbu et al. 2012).
Propagule pressure is difficult to quantify at the regional
scale, particularly for multispecies assemblages; there-
fore, some proxy has been used (Ozinga et al. 2005;
Chytry et al. 2008a,b, 2009). These proxies could be
socio-economic variables (e.g. human population den-
sity, intensity of traffic or trade) as well as indicators of
human wealth or landscape characteristics (Pino et al.
2005; Westphal et al. 2008; Thiele et al. 2009; Hulme
2009; Pysek et al. 2010; Santos et al. 2011). Some
habitats, such as road verges, river corridors and human
settlements, are exposed to stronger propagule pressure
than other habitats (Lonsdale 1999; Wasitowska 1999;
Otto et al. 2014). Thus, they are also used as a proxy of
influx of alien species propagules (Chytry et al. 2008a,b;
Jorgensen and Kollmann 2009). Numerous studies have
shown that the presence of habitat edges enhance plant
invasions. They possibly provide a high amount of light
and nutrients as well as increase plant dispersal
(Pauchard and Alaback 2006; Vila and Ibanez 2011).
It has also been observed that diverse landscapes sup-
port a higher number of alien species than more homo-
geneous ones (Deutschewitz et al. 2003; Pino et al.
2005; Kumar et al. 2006). Therefore, for modelling
purposes, different characteristics of landscape diversity
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and habitat edges have usually been employed (e.g.
Deutschewitz et al. 2003; Ohlemiller et al. 2006;
Bartuszevige et al. 2006; Ibafiez et al. 2009b; Vicente
etal. 2010, 2014; Catford et al. 2011; Gonzalez-Moreno
etal. 2013, 2014).

Land use/land cover (LU/LC) data and other metrics
of landscape structure as well as socio-economic vari-
ables have been successfully used for modelling plant
invasions both at the community (Ibafiez et al. 2009b;
Matthews et al. 2009; Catford et al. 2011; Gonzalez-
Moreno et al. 2013; Basnou et al. 2015) and species
level (Bradley and Mustard 2006; Bartuszevige et al.
2006; Ibafiez et al. 2009a,b; Marcer et al. 2012). How-
ever, the influence of these factors on plant invasions
varies in relation to spatial extent (i.e. buffer area from
the focal sampling unit) in which they were measured
(Bartuszevige et al. 2006; Kumar et al. 2006; Gonzalez-
Moreno et al. 2013; Basnou et al. 2015). Therefore,
different extents have been explored in order to find
the most influential extent (Kumar et al. 2006;
Ohlemiiller et al. 2006; Gonzalez-Moreno et al. 2013;
Basnou et al. 2015), or the extent was selected on the
basis of some pre-existing knowledge about the mech-
anisms underlying the invasion (Bartuszevige et al.
2006; Matthews et al. 2009).

Members of the genus Solidago are exceptionally
successful worldwide invaders from North America
(Pysek 1998; Semple and Cook 2006; Weber and Jacobs
2005). About 120 Solidago species are known from the
native range, among which three are invaders that, so
far, have conquered Europe, large parts of Asia, Austra-
lia and New Zealand. The invasion of Solidago species
in Europe has been observed for many years (Tokarska-
Guzik 2001). Nowadays, they occupy vast areas and are
considered among the most successful invaders of Eu-
rope (Weber 1998, 2001; Pysek et al. 2002; Scharfy
et al. 2009). In Central Europe, three exotic representa-
tives of the Solidago genus are naturalized: smooth
goldenrod, S. gigantea Aiton, Canadian goldenrod,
S. canadensis s.l. L., and grass-leaved goldenrod,
S. graminifolia (L.) Elliott [= Euthamia graminifolia
(L.) Nutt.]. Two introduced taxa, S. gigantea and
S. canadensis s.l., are widely distributed in Europe,
while the range of S. graminifolia is small and limited
to a few locations (Weber 2001; Dajdok and Nowak
2006; Kompata-Baba and Baba 2006). Invasive species
of Solidago are able to better utilize resources for bio-
mass production than co-occurring plant species native
to Central Europe (Szymura and Szymura 2015). The
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increase of the cover of alien Sol/idago species in patches
of vegetation is correlated with a decrease in species
richness (Hejda et al. 2009; Del Fabbro et al. 2013;
Fenesi et al. 2015) and alters spontaneous succession
(Bornkamm 2007; Bartha et al. 2014). Meadows, invad-
ed by goldenrods, have lower bird species richness and
lower numbers of breeding pairs than uninvaded ones
(Skorka et al. 2010). The invasion of Solidago also
caused a decrease in the abundance, species richness
and diversity of pollinators: wild bees, hoverflies and
butterflies (Moron et al. 2009, but see also Fenesi et al.
2015). The increase of the area covered by alien gold-
enrods reduces visitation of native flowers by pollina-
tors (Fenesi et al. 2015). Moreover, their presence alters
the biogeochemical cycles and primary productivity of
invaded habitats (Vanderhoeven et al. 2005, 2006;
Chapuis-Lardy et al. 2006; Scharfy et al. 2010). In the
case of the two most common species, S. canadensis
and S. gigantea, their population number and size have
to be controlled in Europe (Sheppard et al. 2006; Fenesi
et al. 2015).

Due to their high environmental impact, wide range
of distribution and locally high abundance, invasive
Solidago species have been the subjects of numerous
studies focusing on their biology, ecology and environ-
mental impact. Nonetheless, the spatial pattern of the
Solidago invasion has never been examined in the con-
text of the effect of landscape structure and socio-
economic variables. Previous studies on alien goldenrod
distribution were focused on the effect of climate on
their range in Europe. The results reveal that further
extension of their range should be expected (Weber
2001). It is stated that the eradication of invasive species
with a large area of infestation seems to be impossible;
however, their population number and size can still be
effectively controlled (Hulme 2009; Pysek and Richard-
son 2008). Knowledge about the control of invasive
Solidago species pertains to their local eradication from
certain patches of vegetation (Weber 2000; Weber and
Jacobs 2005; Horvath 2012). However, successful strat-
egies for reducing populations of alien species should
also be planned at the landscape level (Vila and Ibafiez
2011; Basnou et al. 2015). For this purpose, knowledge
about the mechanisms of invasion operating at land-
scape scale is required (Vila and Ibafez 2011;
Gonzalez-Moreno et al. 2014). In this study, we exam-
ined the effect of landscape characteristics and socio-
economic variables on the pattern of invasion by alien
Solidago species in the area of south-western Poland

(Silesia, Central Europe). We hypothesized that land-
scape structure, socio-economic variables or both ex-
plain the pattern of invasion by alien Solidago species in
the study region. In our study, we aimed to establish the
relationship between the examined variables and the
distribution of invasive Solidago species as well as to
reveal to the spatial extent at which the impact of each
particular variable is the most pronounced.

Material and Methods
Study Species

Three alien Solidago species (S. canadensis s.l.,
S. gigantea and S. graminifolia), belonging to the
Asteraceae family, were examined. The plants are pe-
rennial herbs with a rhizome. Their stems are single up
to the inflorescence, and non-flowering leaf rosettes are
often present. There are discrepancies in the taxonomic
status of the taxa under study. Solidago graminifolia is
casily distinguishable from the others on the basis of
narrow leaves and flat-topped inflorescences. In Amer-
ica, this species is referred to as Euthamia graminifolia
(L.) Nutt. on the basis of anatomy and DNA studies
(Semple et al. 1981; Semple et al 1984; Abrahamson
et al. 2005). The remaining taxa are morphologically
similar to each other. They are higher and have wider
leaves than S. graminifolia; moreover, their inflores-
cences are a fasciculate, thyrsoid panicle. Solidago
gigantea is distinguished by a glabrous, purplish stem
covered with wax and glabrous leaves (Semple and
Cook 2006; Abrahamson et al. 2005). Taxa with hairy
stems and leaves are more often referred to as
S. canadensis s.1., a complex taxon with two varieties:
canadensis and scabra (Guzikowa and Maycock 1986;
Weber 1997; Weber and Schmid 1998). In some publi-
cations, however, they are treated as separate species:
S. canadensis and S. altissima (e.g. Rutkowski 2013;
Rothmaler 2007). Moreover, plants described as
S. altissima in Europe have more traits similar to the
American taxon S. canadensis var. hargeri Fern. than to
American individuals of S. altissima (John Semple,
personal information). However, the taxa differ in their
rhizome systems (Schmid et al. 1988), as well as in
micro-morphological features of the leaf epidermis
(Szymura and Wolski 2011).

Alien Solidago species occur in soils with a wide
range of fertility and moisture levels. They create single-
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species stands or co-occur with each other (Weber 2001;
Weber and Jacobs 2005). Long-range dispersal is real-
ized by numerous wind-dispersed seeds whereas short-
range spread is realized by vegetative growth of rhi-
zomes (Weber 2001). They can create large stands in
abandoned fields and meadows, riparian habitats, forest
edges and unmowed road verges (Weber 2001; Weber
and Jacobs 2005; Szymura and Szymura 2011, 2013;
Bartha et al. 2014; Fenesi et al. 2015). The alien Soli-
dago species included in this study are similar with
respect to their biology and ecology, and they do not
differ in their habitat preferences and soil conditions in
the study region. Moreover, their ranges within the study
region overlap each other, and the species can co-occur
at single sites (Szymura and Szymura 2011, 2013). We
therefore decided to establish one model for all of the
taxa under study.

Field Data

The study was performed in the Polish part of the Silesia
region (south-western Poland, Central Europe), with an
area of approximately 32,000 km?. The main city of the
region is Wroctaw (Fig. 1). The study region mostly
consists of lowlands and a in rather small part of foothills

and mountains. The elevation of the study plots ranged
from 50 to up to 1,100 m a.s.l., but most of the plots
(75 %) were located at 100—300 m a.s.l. According to the
climatic data of Hijmans et al. (2005), the total annual
precipitation varied between 533 and 858 mm (mostly
550-650 mm), and the average annual temperature var-
ied between 3.5°C and 9.2°C (75 % of plots in the range
7.4°C-8.6°C). The land mostly serves agricultural (ap-
proximately 64 %) and forestry (approximately 28 %)
purposes. The average human population density is about
135 persons per square kilometre and varies from 17 to
2,011 persons per square kilometre. In the study region,
as in other Central European countries where a shift from
a socialistic planning system to market economy oc-
curred, there have been tendencies towards agricultural
intensification in some areas and to land abandonment in
others (Ortowski 2005; Stoate et al. 2009).

The field data were collected in a set of 309 sampling
plots regularly placed in nodes of a 10 x 10 km grid
(Fig. 1). Each sampling plot covered 25 ha (radius 282
m), and all plots were visited and examined for the
presence of alien Solidago species. Subsequently, the
plots were classified as follows: (1) Solidago-uninvaded
— without the presence of any of the four target species
and (2) Solidago-invaded — plots where at least one of

e SRS TR
"000000’”@6’ g2

A,

406 060% 0% 00!
oo#gwoooo»s

50 km
B urbanised -

“, [J agriculture d
- waterbodies Y

I:] forest

- ¥a S0 e N AT < VRS R

QO %4 06008 :,,» Y, VA

Warsaw

Yo Wiroctaw

I

Fig. 1 Locations of study plots invaded (black diamonds) and uninvaded (white dlamonds) by alien Solzdago species. In the background:
land use/land cover (lower panel) and location of the study region (dark grey, upper panel).
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the target species was found, irrespective of its abun-
dance. Field studies were conducted between May and
September in 2010 and 2011. The minimal time spent
on each plot differed depending on the ability to find an
alien Solidago population. As a rule, we spent 45 min
for exploring the plot, until we accepted lack of the
invasive Solidago species. The examined populations
were found on abandoned land (38 %), road verges
(33 %), margins of different kinds of habitats (12 %),
along watercourses (7 %), and in meadows (6 %),
forests (2 %) and shrub communities (2 %).

Landscape Data and Socio-Economic Variables

We selected several landscape characteristics and socio-
economic variables that are commonly associated with
plant invasion and/or seem to be useful considering the
biology and ecology of the examined alien Solidago
species. A detailed list of these explanatory variables
and the rationales for their use is presented in Table 1.

Landscape Data

The land use/land cover data (LU/LC) data were derived
from the Corine 2006 map, which shows 44 classes of LU/
LC as rasters with a 100 x 100 m spatial resolution
(Bossard et al. 2000; Bittner and Maucha 2006). The
original Corine LU/LC classification was simplified into
four classes: urbanized areas (urban), waterbodies, agricul-
tural areas (agriculture) and forests. The following land-
scape metrics were calculated: percentage of given LU/LC,
number of LU/LC classes per plot, number of patches,
Shannon index of landscape diversity (H') and total edge
length (sum of lengths of boundaries between patches).
Information about linear elements: (1) railways, (2)
roads and (3) watercourses was obtained from
OpenStreetMap (Geofabrik GmbH and OpenStreetMap
Contributors 2014). The sum of the lengths of the given
linear elements (length of roads, railways and water-
courses) and the sum of all the lengths of the linear
elements (sum of linear elements length) were calculated.
To examine the effect of landscape structure across
different spatial extents, the landscape characteristics
were calculated for three different buffers (Fig. 2). The
large extent includes characteristics calculated for a
circular buffer placed around the centre of each sam-
pling plot with a 5-km radius (approximately 7,700 ha).
The medium and small extent include the characteristics
calculated for a buffer with a 2-km radius

(approximately 1,200 ha) and 0.5-km radius (approxi-
mately 77 ha), respectively.

Socio-Economic Variables

Data on human population density and total per capita
income were obtained from the Central Statistical Office
of Poland. These socio-economic variables were related
to the basic administrative units of Poland called gmina.
In the study area, there were 297 of these units, with an
average size of approximately 70 km>. The average
human population density was expressed as the number
of inhabitants per square kilometre (N/km?), while in-
come was expressed as Polish ztoty (PLN) per capita.
Due to the fact that the areas of the buffers did not
overlap with the area of a particular gmina, weighted
average values of these socio-economic variables were
calculated, where the weight was proportional to the
area of a given gmina in an analysed buffer.

Statistical Analysis

We used a univariate, binary classification (decision) tree
to determine which landscape characteristics and socio-
economic variables explained the presence of Solidago
species. The classification tree was constructed using the
Classification and Regression Tree (CART) algorithm
(Breiman et al. 1984). The purpose of the analyses was
to determine a set of ‘if-then’ logical conditions (splits)
that enable accurate characterization of ‘Solidago-invad-
ed’ or ‘Solidago-uninvaded’ plots. Splits placed close to
the tree root (i.e. the initial splits) give a higher accuracy
of classification than farther splits. The tree is hierarchi-
cal; that is, the final splits depends on the decisions
undertaken in the previous (placed close to tree root)
splits. There is no implicit assumption that the underlying
relationships between the predictor variables and the
dependent variables are linear, follow some specific
non-linear link function, or are even monotonic in nature.
Moreover, the same variable can be used in a few splits if
it gives the best accuracy of classification. For assessing
node purity (i.e. the accuracy of prediction in a given
node), we used the Gini coefficient. The optimal tree size
was determined using V-fold cross-validation with 1 S.D.
rule (Breiman et al. 1984; Ripley 1996). To summarize
the tree, a misclassification rate was used, that is, the
percentage of wrong classification. The misclassification
rate can be compared with the proportion of absences in
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Table 1 Examined socio-economic variables and landscape characteristics (explanatory variables) used as predictors in the model of alien
Solidago invasion, their ecological rationale and corresponding data sources.

Explanatory variables Rationale

Data source

Socio-economic variables:
Income [PLN]

proxy of propagule pressure and

Central Statistical

Human population density [N/km?] fraction of human-influenced Office of Poland
habitats'
Landscape characteristics:
land use/land cover (LU/LC) types
and its derivatives
% urban proxy of propagule pressure and Corine 2006
fraction of human-influenced LU/LC map
habitats'
% water bodies habitat unsuitable for Solidago species™®
% agriculture Solidago species are fragile to regular
mowing and herbicides >, agriculture
as a barrier for plant invasion 5'°
% forest habitat unsuitable for Solidago species,
since they are considered as light demanding™®
Number of LU/LC class Solidago species often occur on habitat edges®*.
H' Landscape diversity and edges amount are
Number of patches gﬁnerally §ont?lz:1ted “1]1131}3
Total edge length [km] alien species richness
Linear elements in landscape
Length of roads [km] proxy of propagule pressure and human-influenced OpenStreet Map

areas'”, roadsides could serve as suitable habitats

for invasive species
. 2
proxy of propagule pressure and human-influenced areas

Length of railways [km]
Length of watercourses [km]

13-16

riversides are considered as suitable habitats for Solidago>®°,

proxy of propagule pressure® !

Sum of linear elements length [km]

proxy of propagule pressure

2,14

! Westphal et al. 2008; 2 Hulme 2009; 3 Pysek et al. 2010; 4 Santos et al. 2011; > Weber 2000; ¢ Weber and Jacobs 2005; ” Domaradzki and
Badowski 2012; ® Wania et al. 2006; ° Gonzalez-Moreno et al. 2013; '° Basnou et al. 2015; ! Deutschewitz et al. 2003; ' Pino et al. 2005;
13 Kumar et al. 2006; '* Pauchard and Alaback 2004; '> Hansen and Clevenger 2005; 1$0Otto et al. 2014; 7 Pauchard and Shea 2006.

the field data, according to the ‘go with the majority rule’
(De'ath and Fabricius 2000).

To check the collinearity among the predictors, the
pair-wise Spearman correlation test was used. Calcula-
tions of landscape metrics and all operations on maps
were conducted using Quantum GIS (Quantum GIS
Development Team 2014) and SAGA GIS (Conrad
et al. 2013) software. The classification tree was built
using Statistica 10 software (StatSoft, Inc. 2011).

Results

In total, 309 plots were analysed (Fig. 1). In almost two
thirds of them (V = 195, 63 %), specimens of invasive
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Solidago species were found, while the remaining 114
plots (37 %) were uninvaded.

The average values and ranges of landscape charac-
teristics and socio-economic variables at different extents
are shown in Table S1 in the Electronic supplementary
material. Most of the landscape metrics were correlated,
as usually observed in landscape analysis (Uuemaa et al.
2009). In the study region, the percentage of forest cover
was highly negatively correlated with the percentage of
agricultural . The number of patches was correlated with
the number of LC/LU classes, total length of edges and
H' indices. The percentage of urbanized areas was posi-
tively correlated with the length of roads and railways.
Most of the correlations were found among all the buffer
extents studied. The full matrix of correlations is present-
ed in Table S2 in the Electronic Supplementary Material.
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Fig. 2 Spatial extents examined:
large (buffer with a 5 km radius),
medium (2 km radius) and small
(0.5 km radius). The sizes of
analysed buffers and distances
between the plots are proportional
to the original sampling design,
but in all buffers, a landscape is
shown for the same plot in order
to better present the effect of
changing extents on calculated
landscape structure
characteristics.

The results of the CART analysis show that the highest
accuracy of plot classification gives the percentage of
forest calculated for a buffer at the small extent (radius =
500 m). Plots located in pure forest were almost exclusive-
ly uninvaded (Fig. 3, group a). The length of roads at the
small extent was the second predictor producing relatively
pure nodes; most plots with a high-density road network
were invaded by Solidago (Fig. 3, group b). Farther nodes
gave less accurate, but still significant, predictions of inva-
sion. They were created by variables operating at the large
extent (radius = 5 km). A group of plots with a low fraction
of invaded species was separated by a very low percentage
of forest cover (Fig. 3, group c). The terminal nodes were
created by the percentage of urban areas (Fig. 3, groups d
and e) and human population density (Fig. 3, groups f and
g). Finally, the overall model gives a misclassification rate
of 21.7 %, compared to the rate of 36.8 %, assuming the
proportion of uninvaded plots in the field data.

Discussion

Ecological Meaning of Predictors

The obtained results support the premise that both land-
scape structure and socio-economic variables explain

10 km

agriculture
forest
urbanized
waterbodies

1000

linear elements (roads,
watercourses, railways) Y

10 km

A
\/

the spatial pattern of invasion by alien Solidago species.
First, two predictors (percentage of forest cover and
length of roads) that gave the highest accuracy of clas-
sification have the maximum influence at the small
extent. This indicates the importance of the inherent
properties of particular habitat types to the invasion
process (Chytry et al. 2008b). The studied Solidago
species in their native range occur mostly in open areas
(Abrahamson et al. 2005). In Central Europe, alien
Solidago species generally avoid a dense canopy cover
(Weber 2000; Weber and Jacobs 2005; Szymura and
Szymura 2011, 2013) and have only been rarely report-
ed from forests (Weber 2000; Weber and Jacobs 2005;
Priede 2008). Similarly as in these previous studies, in
our study, alien Solidago species were found only spo-
radically in forests. Moreover, the patches of forest
vegetation where the invasive species were found
showed different signs of anthropogenic disturbances
and an open canopy. Because the majority of the forests
studied here were commercial plantations with a dense
canopy cover, we considered the low probability of
invasion in the forest mostly as an effect of overshading
by tree canopies.

Two facts should be considered regarding the inter-
pretation of the positive effect of road length on Solida-
go invasion. Firstly, the length of roads in a given
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143 < density at large extent
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Fig. 3 Results of the classification tree model. The grey bars show the percentage of plots invaded by Solidago, while the white bars

represent the percentage of uninvaded plots.

landscape unit is usually considered a proxy of increas-
ing propagule pressure (Lonsdale 1999; Pauchard and
Alaback 2004; Jergensen and Kollmann 2009). Second-
ly, roadsides are a kind of specific habitat with easily
available resources such as light, water and nutrients
(Coffin 2007). These kinds of habitats with high
amounts of unused resources are especially prone to
invasion according to the fluctuating resources theory
(Davis et al. 2000). Earlier studies have also found that
Solidago species often occur in linear habitats such as
fences and edges of different habitats (Szymura and
Szymura 2011). Such strips of land, especially if not
cultivated or managed, create a niche suitable for their
establishment (Hansen and Clevenger 2005; Otto et al.
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2014). Because Solidago species are not resistant to
frequent mowing (Weber 2000; Weber and Jacobs
2005), systematic maintenance of road verges should
eliminate them. However, a single cut per year does not
significantly reduce shoot density, and infrequent cut-
ting might even have the reverse effect by increasing
population density in the following year (Weber and
Jacobs 2005). Therefore, due to the lack of systematic
management, road verges are a suitable habitat for So/-
idago. Indeed, in the study region, roadsides hosted
about 30 % of examined populations and were the
second, after fallow land, preferable habitat for the in-
vasive species. Therefore, the effect of road length
should be interpreted as both reflecting propagule
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pressure and as a proxy of acreage of habitats suitable
for invasion.

The interpretation of subsequent factors influencing
the probability of invasion, which operate at the large
spatial extent, is more complex. The low number of
Solidago-invaded plots in areas with an exceptionally
low percentage of forest cover at the large extent (buffer
radius 5 km) should not be considered an effect of lack
of forest per se. The percentage of forest cover is strong-
ly negatively correlated with the percentage of agricul-
tural land cover (Table S1 in the Electronic
supplemental material). Thus, we assume that plot group
‘¢’ (Fig. 3) consists of plots situated in areas dominated
by intensive agriculture located in the eastern and south-
eastern parts of the study region (Fig. 1). Our field
observations suggest that these areas, with fertile soils,
were dominated by the large-scale, intensive agriculture
with an increased use of herbicides and with only a
small proportion of abandoned fields. In this situation,
the probability of invasion by Solidago species is low
because intensive agricultural management reduces the
amount of habitats suitable for invasion. Similar find-
ings have been reported from Germany, where land-
scape homogenization caused by large-scale agricultural
land use decreased the number of neophytes compared
to more heterogeneous landscapes (Wania et al. 2006).
Thus, in human-influenced landscapes on densely pop-
ulated regions, agriculture could act as a buffer against
invasion (Gonzalez-Moreno et al. 2013; Basnou et al.
2015).

The differences in the frequency of Solidago-invaded
plots in the farthest nodes of the tree (groups d to g)
reflected the effect of direct human influence (i.e. the
level of urbanization and human population density).
The final nodes, however, significantly improved the
model, giving a rather low accuracy of classification
(so-called purity of the node) compared with nodes
placed closer to the tree root. Generally, urbanized hab-
itats with high population density are affected by strong
propagule pressure and often provide suitable habitats
for alien species (Deutschewitz et al. 2003; Pino et al.
2005; Hulme 2009; Santos et al. 2011; Gonzalez-
Moreno et al. 2014; Basnou et al. 2015). The two most
common species, S. gigantea and S. canadensis, often
occur in human-influenced, nutrient-rich habitats
(Weber 2001; Weber and Jacobs 2005). This results in
the high frequency of invaded plots in more urbanized
areas (group f) and more densely inhabited (group h)
plots. The observed lower frequency of Solidago-

invaded plots in areas with a higher sum of linear
elements length at the large extent seems to be, at first
glance, inconsistent with the effects of linear habitats
discussed previously. However, the classification trees
are hierarchical, which means that the classification in a
given node is dependent on all previous nodes (i.e.
placed closer to the tree root). The group of plots with
a high probability of Solidago invasion related with the
high length of roads at the small extent (group ‘b’) was
already separated (Fig. 3, group b). We therefore asso-
ciated the higher frequency of Solidago-invaded plots in
areas with smaller sums of linear elements length with
less developed areas. In these areas, the percentage of
abandoned land is higher, increasing the probability of
invasion by Solidago. Within these less developed areas,
however, the Solidago invasion was stronger on more
urbanized land.

Effect of Sampling Design on the Model

We considered the presence or absence of the invader
species a measure of invasion probability in a given
landscape unit, represented by a particular plot. We did
not assess the abundance of the invasive species in the
field. Thus, the probability assessed in this way did not
consider both abundance and the number of Solidago
species invading the plot. The calculated landscape
characteristics and socio-economic variables reflect the
overall effect of each given variable on the presence of
invaders in a plot. This approach causes uncertainty in
our model. However, the sampling procedure applied
allows relatively fast collection of data from large areas.
Despite its simplification, it still gives an insight into the
process of shaping invasion of alien species on a rela-
tively large scale. Moreover, the landscape characteris-
tics and socio-economic data came from publicly avail-
able resources and are relatively easy to calculate. This
provides an opportunity for our established model to be
used by local authorities and land managers for model-
ling and predicting the hazards of Solidago invasion in
certain areas of interest.

Other problems are related to spatial autocorrelations.
First, the probability of the presence of Solidago species
at a given plot could be higher if Solidago were also
present in neighbouring plots. Secondly, particular var-
iables influencing the Solidago distribution were corre-
lated across the analysed extents. Unfortunately, there is
a lack of detailed knowledge about spatial relationships
involved in the processes of Solidago invasion,
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especially about the distance of effective long-range
dispersal. Thus, it is unclear whether spatially correla-
tions will operate over the relatively large distance (10
km) separating the plots under study. Moreover, the
landscape structure is also spatially autocorrelated, and
it is hard to distinguish whether the observed pattern
results from spatial correlations in the landscape struc-
ture or the distribution of organisms under study
(Mattsson et al. 2013; Fan and Myint 2014). Similarly,
the effect of dependencies between particular explana-
tory variables calculated at different spatial extents is
unclear and could potentially influence the results.

Practical Implications

In areas where the invasive species are widely distribut-
ed (area of infestation > 1,000 ha), eradication is unlike-
ly due to economic reasons. Populations of this species
should be controlled by long-term management aimed at
reducing them to the lowest feasible levels and
protecting specific, highly valuable sites (PySek and
Richardson 2008). Our results suggest that the manage-
ment of alien Solidago populations at the landscape
scale should focus on frequent and regular mowing of
road verges. This seems to be a possible task to achieve.
Greater effort should be dedicated to managing the
Solidago invasion in less developed areas, which are
not used for large-scale intense agriculture, as well as in
densely populated and urbanized landscapes. In these
cases, the invasion does not seem to be a primary result
of environmental changes, but rather a symptom of
socio-economic changes resulting from the abandon-
ment farmland. Reversing this trend demands
employing specific policies preventing this abandon-
ment (Stoate et al. 2009; Navarro and Pereira 2012).

Conclusions

Landscape characteristics and the density of the human
population explain the spatial pattern of the alien Soli-
dago species invasion operating at different spatial ex-
tents. Landscape characteristics calculated at the small
spatial extent provide a higher accuracy of predicting the
probability of invasion, but landscape metrics and hu-
man population density at the large extent significantly
improve the overall model. At the small extent, the
spatial pattern of the Solidago invasion in Silesia is
mostly shaped by the presence of unsuitable habitats

@ Springer

(such as forests) and suitable habitats (such as roadsides)
coupled with high propagule pressure in the latter hab-
itat type. At the large extent, by contrast, the invasion is
concentrated in less developed landscapes.
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