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Abstract
A vertical falling Newtonian liquid film flow is inherently unstable to surficial long-wave disturbances. Imposing external
oscillation can stabilize the long-wave instability, but also triggers additional parametric instabilities. The effect of oscillation
frequency on the stability is subtle. By using the “viscosity-gravity” scaling, the effect of oscillation frequency on the stability can
be investigated exhaustively by separating it from other control parameters. In this paper, the effects of external perpendicular
oscillation on the stability of a vertical falling liquid film are then investigated by a combination of linear stability analyses based
on Floquet theory and numerical simulations with an unsteady weighted residual model (WRM). The linear analyses show that,
increasing oscillation amplitude always has a stabilizing effect on the long-wave instability. On the other hand, increasing or
decreasing oscillation frequency can suppress the long-wave instability, depending on whether the oscillation amplitude or the
acceleration is fixed. The effect of varying oscillation frequency on the long-wave instability is opposite to that on the parametric
instabilities. The long-wave and parametric instabilities compete with each other as the oscillation amplitude and frequency are
varied with the Reynolds number fixed. A weakness of the long-wave instability always accompanies enhancements of the
parametric instabilities, and vice versa. As a contrast, an increase of Reynolds number always results in more unstable long-wave
and parametric instabilities. The numerical simulations with the WRM show that the wave amplitudes and the minimal local
thickness of film are proportional to the unstable wavenumbers range rather than the growth rate of the instability. For a given
oscillation frequency and Reynolds number, there exist a critical oscillation amplitude above which externally imposed oscilla-
tions perpendicular to the transversal direction of the film can also trigger a chaotic behavior in the film, just like what happens in
the case where the oscillation is parallel to the stream-wise direction of the film.

Keywords Falling liquid film . Instability . Floquet theory . Linear stability analysis . Weighted residual model . Numerical
simulations

Introduction

Thin liquid flow has a wide variety of applications in industry,
such as heat exchangers, evaporative cooling, condensers,
coating (Colinet et al. 2001). When a Newtonian viscous liq-
uid thin film falls down freely along a vertical plane, it is
inherently unstable to surficial long-wave disturbances (Yih
1963; Benjamin 1957; Kapitza and Kapitza 1949). The insta-
bility is welcome or undesirable, depending on the applica-
tions of the film flows. Controlling the long-wave instability is

theoretically and practically important, and has received a lot
of attentions since the pioneering work of Kapitzas (Kapitza
and Kapitza 1949) in 1949.

Applying external oscillation has been used to control flow
stabilities (Hall 1978; Kerczek 1982; Singer et al. 1989;
Woods and Lin 1995). Hall (1978), Kerczek (1982), and
Singer et al. (1989) have investigated separately the stability
of the classical Poiseuille flow by applying a temporally os-
cillating stream-wise pressure gradient to the steady Poiseuille
flow. Their studies showed that the stream-wise temporally
periodic modulation can make the steady flow more stable,
depending on the frequency of the oscillation. The theoretical
analyses of Hall (1978) and Kercszek (1982) showed that
modulation may play a destabilized effects if the frequency
is very high. On the other hand, the simulations carried out by
Singer et al. (1989) showed that harmonic pulse has a
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destabilizing effect on the steady flow if the frequency is very
low. It can be seen that the effect of oscillation frequency on
the stability of flow is subtle.

Woods and Lin (Woods and Lin 1995) investigated the
effect of oscillations perpendicular to the plane on the stability
of a vertical falling thin film and showed that the imposition of
oscillations can suppress, but can’t completely eliminate the
long-wave instability. Meanwhile, oscillation can introduce a
new instability: parametric instability, which is also known as
parametric resonance. The essential mechanism of parametric
resonance is the resonance between the forced oscillation of
the periodic basic flow and the free oscillation of unstable
perturbations of the time-averaged basic flow when the fre-
quency of a free oscillation is half or an integral multiple of the
frequency of the forced oscillation (Drazin and Reid 2004).
Specially, when the frequency of free oscillation is half that of
forced oscillation, the corresponding instability is called as
Faraday instability in honor of Faraday who first noted this
phenomenon. In the text below, the forced oscillation is men-
tioned as oscillation for convenience. Lin at al. (1996) inves-
tigated the effects of stream-wise oscillation on the long-wave
instability. Their analyses showed that the long-wave stability
can be completely eliminated by imposing a stream-wise os-
cillation. Garih et al. (2013) carried out a detailed analysis of
the vibration induced instability of a liquid film flow, and
found mode competition between parametric instabilities,
and a relation between the eigenfunction shape of pressure
perturbation and the parametric instability mode.

Because adopting half thickness of the liquid film (Woods
and Lin 1995; Lin et al. 1996; Garih et al. 2013), and the
oscillation frequency as the units, the dimensionless oscilla-
tion frequency is equal to one at all cases, and its effects on the
stability are reflected by a combination of other dimensionless
parameters. Hence, the effect of oscillation frequency on the
stability is still indefinable in the works of (Woods and Lin
1995; Lin et al. 1996; Garih et al. 2013). Woods and Lin
(1995) discussed the interaction between shear, long-wave
and parametric instabilities, and Garih et al. (2013) discussed
mode competition between parametric instabilities. However,
their discussion are all limited to linear stage of instabilities.
Thus, a numerical investigation of nonlinear interaction of the
long-wave and parametric instabilities is still desirable.

Benney (1966) is the first one who gave a nonlinear evo-
lutionmodel called the Benney equation about the local height
for the film flow. Benney equation is accurate at small
Reynolds numbers, but fails quickly as the Reynolds number
is increased. Based on assuming a self-similar velocity profile,
Shkadov (1967) proposed an “integral boundary layer model”
(IBLM), which comprises two equations about the local film
height and flow rate, respectively. This model describes the
nonlinear dynamics of the film at moderate Reynolds num-
bers, but the critical condition for instability is incorrect unless
the plane is vertical. By combining the gradient expansion

with a “weighted residuals technique” using polynomials as
test functions for the velocity field, Ruyer and Manneville
(1998) proposed a “weighted residual model” (WRM) which
has similar structure with the “integral boundary layer model”
proposed by Shkadov. The WRM predicts the correct critical
condition for instability and describes satisfactory nonlinear
evolution of the film at moderate Reynolds numbers. This is a
reasonable consequence of assuming the semi-parabolic ve-
locity profile within the film in the derivation of the WRM. In
fact, the velocity profile is near semi-parabolic, and the pres-
sure within the film is near a static pressure distribution at a
rather large range of Reynolds numbers, as shown by direct
numerical simulation carried out by Salamon et al (1994) The
WRM has no limitation on the flow parameters besides the
assumption of long-wave disturbance. The perturbation meth-
od is applicable to the WRM if the Reynolds number is small
enough. After some manipulations, the WRM can be deduced
to the Benney equation. Hence, the WRM is applicable to
describe nonlinear evolution of the film flow from small to
moderate Reynolds numbers.

Oron (Oron and Gottlieb 2002) added a temporal modula-
tion term in the Benney equation to investigate the nonlinear
evolution of the film subjects to a stream-wise periodic oscil-
lation. They found that periodic planar boundary excitation
does not alter the fundamental unforced bifurcation structure
and the spatial topological structure of the interfacial waves.
The Benney equation embedded temporal modulation still
fails quickly as the Reynolds number is increased. Oron
et al. (2009) then derived a WRM embedded temporal modu-
lation to investigate the nonlinear dynamics of film evolution
at moderate Reynolds numbers. They found that the combi-
nation of traveling wave and non-stationary wave arising in
the unmodulated system resulted in the emergence of quasi-
periodic and apparently chaotic regimes.

All the works mentioned above focused on the cases of
Newtonian fluids. The Orr-Sommerfeld equation and nonlin-
ear models, i.e., the Benney equation, IBLM and WRM have
been generalized to the cases of non-Newtonian fluids, and the
effects of external oscillation on non-Newtonian fluids have
also been studied. Miladinova et al. (2004) derived a Benney-
type equation, and Mogilevskii and Shkadov (2010) applied
the IBLM to power law fluids. Ruyer-Quil et al. generalized
the WRM to the case of power-law fluid and showed the
capacity of the generalized WRM in both linear and nonlinear
regimes by a convincing agreement in comparison with Orr-
Sommerfeld stability analysis and with direct numerical sim-
ulation. Mogilevskiy (Mogilevskiy and Vakhitova 2019) ap-
plied the IBLM to a power-law fluid subjected to an external
high-frequency oscillation, and found that the external oscil-
lation stabilize the flow. The successes in predicting the insta-
bility growth rates and describing the nonlinear dynamics of
flow for different fluids demonstrate the robustness of these
models.
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In this paper, based the Floquet theory, the influences of
amplitude and frequency of external oscillation as well as the
Reynold number on a vertical falling Newtonian liquid film, are
examined by a combination of linear stability analyses and
nonlinear numerical simulations. An unsteady Orr-
Sommerfeld equation with a temporal modulation term
governing the linear stability of film is derived from “viscosi-
ty-gravity” scaling introduced by Ruyer and Manneville (1998;
Kalliadasis et al. 2012). An unsteady WRM embedded a tem-
poral modulation term to describe the nonlinear evolution of
oscillation film is derived via using a semi-parabolic velocity
profile as the test function in the Galerkin weighted residual
method. The unsteady Orr-Sommerfeld equation which has
been validated by experiments (Garih et al. 2017) is used to
investigate the growth rate of instability. Only the mode com-
petition between long-wave and parametric instabilities from
small to moderate Reynolds numbers are concerned here.
This implies that the Tollmien-Schlichting wave which only
arises at large Reynolds numbers (Burya and Shkadov 2001)
is absent here. The unsteadyWRMwith a temporal modulation
term is then verified by convincing agreement in linear analysis
comparing with the unsteady Orr-Sommerfeld equation. As
pointed out by S. Julius et al. (2019) who made comparison
between experiment and three-dimensional numerical simula-
tions, three-dimensionality is not a necessary component in the
simulation of the onset and growth of the nonlinear higher
modes in film flows. Thus, a two-dimensional unsteady
WRM is adequate to describe the generation of parametric in-
stabilities and their competitions.

The novel contributions of the present study are (i) by
adopting the “viscosity-gravity” scaling proposed by Ruyer-
Quil and Manneville (1998), the control parameters of the
problem were reduced to limited ones depending on flow rate
and external oscillation amplitude and frequency, facilitating
comparison with experiments; (ii) with the “viscosity-gravity”
scaling, the influences of oscillation amplitude and frequency
on liquid film stability were investigated thoroughly by sepa-
rating them from other dimensionless parameters, and it was
found that either increasing or decreasing oscillation frequen-
cy can suppress the long-wave instability; (iii) a weighted
residual model was proposed to account for the influence of
perpendicular external oscillation, and proven to be capable of
predicting the linear stability and nonlinear dynamics of the
vertical falling film flow; and (iv) chaotic behavior in flow
was captured, which was also observed in the cases where
the external oscillation is parallel to the stream-wise direction
(Oron et al. 2009).

Formulation

A viscous incompressible Newtonian fluid falling freely under
gravity g without disturbance down along a vertical plane that

vibrate sinusoidally with ay sin ωt in the horizontal direction
will result in a uniform film flow known as the basic flow, as
shown in Fig. 1. The density and viscosity of the thin film are
denoted as ρ and μ, respectively, and x, y are the vertical and
horizontal direction axis. The coordinate origin is locateed at
the plane. The amplitudes of oscillation of the plane with
frequency ω at the y axis is ay. Heat transfer is ignored here,
i.e. the wall temperature is assumed to equal to the air
temperature.

Governing Equations and Boundary Conditions

The flow satisfies the continuity equation and the Navier-
Stokes equations, the conditions of non-slip, non-penetration
at the wall, and the kinematic and dynamic boundary condi-
tions at the free surface. The governing equations are

∇⋅v ¼ 0

∂tvþ v⋅∇v ¼ −
∇p
ρ

þ ν∇2vþ g−A tð Þ
(

ð1Þ

where∇is the gradient operator, ∇2 ¼ ∂2x þ ∂2y is the Laplace

operator, ∂2x ; ∂
2
y are the second-order partial derivatives with

respect to x, y, ∂tis the first derivative with respect to t, t is
time,v = (u , v)are velocities at the x , y directions,
respectively.pis the pressure, νis the kinematics viscosity,
andA(t) = (0, Ay) = (0, ay)ω

2 sin ωtare the accelerations of os-
cillation at the x, y directions, respectively.

Fig. 1 Sketch of a thin liquid film of mean film thickness d flowing down
a vertical plane that vibrates sinusoidally in the horizontal direction; U(y)
is the semi-parabolic velocity profile corresponding to the fully-
developed viscous film flow in the absence of external disturbance
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The boundary conditions at the wall y = 0are

v x; 0; tð Þ ¼ 0 ð2Þ

The boundary conditions at the free surface y = dare

ht þ v⋅∇h ¼ v
Τ⋅nþ nσ∇⋅n ¼ 0

ð3Þ

where T is the stress tensor, σ is the surface tension, n ¼
−∂xh; 1ð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂xhð Þ2

q
is the unit outward normal vector.

For a Newtonian fluid, the stress tensor is

T ¼ −pIþ μ ∇vþ ∇vð ÞT
h i

ð4Þ

where I is identity matrix, and superscript T denotes
transposition.

Nondimensionalization

Scaling and Dimensionless Numbers

The basic velocity profile of a plat thin film flow without
oscillation is

U y; tð Þ ¼ ρgd2sinθ
2μ

y 2−yð Þ ð5Þ

Noted that ρ, μ and g are dimensional-independent param-
eters, from which we can define more parameters

uν ¼ νgsinθð Þ1=3; lν ¼ ν2=gsinθ
� �1=3

; tν ¼ lν=uν ¼ ν=g2sin2θ
� �1=3

U 0 ¼ gd2sinθ=2ν ¼ d2=2tνlν ; Ua ¼ 2U 0=3 ¼ d2=3tν lν

ð6Þ
where U0 is the velocity of the film at the surface, Ua is the
average velocity over the film. This is the so called “viscosity-
gravity” scales introduced by Kalliadasis and Ruyer-Quil
(Kalliadasis et al. 2012) with which the variables can be
nondimensionalized

x*; y*ð Þ ¼ x; yð Þ=d; h* ¼ h=d;
u*; v*ð Þ ¼ u; vð Þ=2U 0; t* ¼ t2U0=d
p* ¼ pd=2U 0ρuνlν;

ð7Þ

where the variables with stars are dimensionless. When the
dimensionless parameters are derived in this paper, the stars
will be dropped for simplicity in the following.

With the “viscosity-gravity” scaling, several dimensionless
numbers can be introduced

Re ¼ ρUad=μ ¼ gd3sinθ=3ν2;
Ω ¼ ωd=2U 0; dy ¼ ay=d; Ay ¼ 3RedyΩ

2;

Γ ¼ σlν=ρν2; We ¼ σ=ρgd2sinθ ¼ Γ= 3Reð Þ2=3
ð8Þ

where Re is the Reynolds numbers which is equal to the flow
rate defined as Uad/ν; Ω is the dimensionless frequency of
oscillation, (0, dy)are the amplitudes of oscillation, (0, Ay) are
the dimensionless accelerations,Γ is the Kapitza number mea-
suring the ratio of surface tension to inertia, We is the Weber
number which can be obtained by grouping the Kapitza and
Reynolds number.

Adoption of the “viscosity-gravity” scaling has several ad-
vantages: the Kapitza number depends only on the physical
property of liquid and independent of the flow. The variable
parameters are the Reynolds number Re (or equivalently the
flow rate), amplitude dy and frequency of oscillation Ω which
are independent of the physical property. These make it con-
venient to discuss separately the influence of each parameter
on the stability of the falling film flow and compare the results
to the experimental ones.

Dimensionless Governing Equations and Boundary
Conditions

Substituting the variables in Exp. (7) into Eq. (1) and bound-
ary conditions Eqs. (2) ~ (4), and ignoring the star, we obtain
the dimensionless governing equation and boundary condi-
tions

∂xuþ ∂yv ¼ 0 ð9Þ
3Re ∂tuþ u∂xuþ v∂yu

� � ¼ 1−∂xpþ ∂2xuþ ∂2yu
� �

3Re ∂tvþ u∂xvþ v∂yv
� � ¼ −cotθ−∂ypþ ∂2xvþ ∂2yv

� �
þ Aycos Ωtð Þ

ð10Þ

The boundary conditions representing the no-slip and no-
penetration conditions at y = 0 are

u ¼ 0; v ¼ 0; y ¼ 0 ð11Þ

The boundary conditions representing the kinematics and
stress free conditions at y = 1 are

2∂xh ∂yv−∂xu
� �þ 1− ∂xhð Þ2

� �
∂yuþ ∂xv
� � ¼ 0; y

¼ 1 ð12Þ
p ¼ 2

1þ ∂xhð Þ2 ∂xhð Þ2∂xu−∂xh ∂yuþ ∂xv
� �þ ∂yv

h i
−

1

1þ ∂xhð Þ2
h i3=2 We∂2xh; y ¼ 1

ð13Þ

∂thþ v⋅∇h ¼ v; y ¼ 1 ð14Þ

where, ∂x, ∂y represent the first order partial derivatives with
respect tox, y, and ∂nx ; ∂

n
y represent the n-th order partial deriv-

atives with respect tox, y.
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Linear Stability Analysis

In the absence of external oscillation, the basic flow is unsta-
ble to long-wave perturbations if the Reynolds number or flow
rate exceeds a critical value which is determined by the in-
clined angle and other parameters. The stability of the film
under oscillation can be detected by adding small perturba-
tions to the basic flow. The flow is said to be linearly unstable
if at least one of the perturbations grows, or linearly stable if
all the perturbations decay. Otherwise, the flow is neutrally
stable.

Basic Flow

It is easy to verify that an exact solution of the differential
system (9)–(14) is given by:

U y; tð Þ ¼ 1

2
y 2−yð Þ

þ Real dxΩ C1e
α1y þ C2e

−α1y−ið ÞeiΩt� � ð15Þ
P yð Þ ¼ cotθ−AycosΩt

� �
1−yð Þ ð16Þ

whereC1 = ie−α/(eα + e−α), C2 = ieα/(eα + e−α),α = (1 +
i)β,i ¼ ffiffiffiffiffiffi

−1
p

is the imaginary unit,β ¼ d=δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ΩRe=2

p
is

the ratio of liquid thickness to the Stokes boundary layer thick-
nessδ ¼ ffiffiffiffiffiffiffiffiffiffiffi

2ν=ω
p

, and operator Real indicates only the real
part is considered.

Unsteady Orr-Sommerfeld Equation

After perturbation, each function can be written as a sum of
basic state and linear perturbation

u ¼ U y; tð Þ þ u0 x; y; tð Þ; v ¼ v0 x; y; tð Þ; p

¼ P yð Þ þ p0 x; y; tð Þ; h ¼ 1þ h0 ð17Þ

Substituting the perturbed functions into differential sys-
tems (9)–(14), and ignoring the high order terms, one can
obtain the linearized differential system for the perturbations.
In terms of stream functionψ, the perturbation velocities can
be written as

u ¼ ∂yψ; v ¼ −∂xψ ð18Þ

Furthermore, all perturbation functions can be written in
the form of normal mode solution

ψ; p; hð Þ ¼ ϕ y; tð Þ;bp y; tð Þ;bh tð Þ
h i

eikx ð19Þ

where k is the wavenumber, ϕ y; tð Þ;bp y; tð Þ;bh tð Þ are the am-
plitudes of perturbation functions. Substituting each function
in the form of normal mode solution into the linearized
Navier-Stokes equation results in the unsteady Orr-

Sommerfeld equation

3Re ∂t ∂2y−k
2

� �
ϕþ ik U ∂2y−k

2
� �

−∂2yU
h i

ϕ
� �

− ∂2y−k
2

� �2
ϕ

¼ 0

ð20Þ

By replacing ∂t with −ick in (20), the steady Orr-
Sommerfeld equation is obtained.

Similarly, the linearized boundary conditions for the am-
plitudes of the perturbation functions are

∂yϕ ¼ 0; y ¼ 0 ð21Þ
ϕ ¼ 0; y ¼ 0 ð22Þ
∂2y þ k2

� �
ϕþ ∂2yUbh ¼ 0; y ¼ 1 ð23Þ

3Re ∂tyϕþ ik U∂y−∂yU
� �

ϕ
� �

− ∂3y−3k
2∂y

� �
ϕ

þik cotθ−AycosΩt
� �þ k2We
� �bh ¼ 0; y ¼ 1

ð24Þ
∂t þ ikUð Þbhþ ikϕ ¼ 0; y ¼ 1 ð25Þ

The differential system consisting of (20) ~ (25) governs
the linear stability of the film flow under temporally periodic
oscillation.

Chebyshev Collocation Method and Floquet Theory

With the Chebyshev collocation method (Schmid &
Henningson 2001), the differential system consisting of (20)
~ (25) can be written as

3Re q2D2−k2I
� � d ϕ!

dt
þ ik U q2D2−k2I

� �
−∂2yU I

h i
ϕ
!

( )
− q2D2−k2I
� �2

ϕ
!¼ 0

ð26Þ
ϕ0 ¼ 0 ð27Þ
qD 1;1:Nþ1ð Þ ϕ

!¼ 0 ð28Þ

q2D2
1;1:Nþ1ð Þ þ k2

� �
ϕ
!þ ∂2yU 1ð Þbh ¼ 0 ð29Þ

3Re qD Nþ1;1:Nþ1ð Þ
d ϕ
!
dt

þ ik U 1ð ÞqD Nþ1;1:Nþ1ð Þ−∂yU 1ð Þ� �
ϕ
!

( )

− q3D3

Nþ1;1:Nþ1ð Þ
�−3k2qD Nþ1;1:Nþ1ð Þ

0@ 1A ϕ
!þ ik cotθ−AycosΩt

� �þ k2We
� �bh ¼ 0

ð30Þ
d

dt
þ ikU 1ð Þ

	 
bhþ ikϕN ¼ 0; ð31Þ

where q = 2, Dis the first-order derivative matrix, Dn, n = 2, 3,
4 is the n–th-order derivative matrix, and I is identity matrix.
The size of each matrix is (N + 1) × (N + 1) and the subscripts
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(1, 1 :N + 1) and (N + 1, 1 :N + 1) of the matrixes indicates
that only the first and (N + 1)-th rows of the matrixes are used.
ϕ
!¼ ϕ0;ϕ1⋯ϕN½ �T is the solution vector about ϕ evaluated
at N + 1discrete points of computational domain, N is the in-
dex of the last discrete point within the computational domain,
and d

dt is the first order derivative with respect to t. Using the
Lanzo’s method of approximation (Gottlieb and Orszag
1977), Eq. (26) and boundary conditions (27) ~ (30) together
with the kinetic Eq. (31) constitute a dynamic system deter-
mining the stability of the oscillating problem.

The system (26) ~ (31) can be written in a compact form

Bẋ ¼ A tð Þx ð32Þ

where x ¼ ϕ0;ϕ1;…;ϕN ;bh� �
, a “dot” denotes differentia-

tion with respect to t, and B is a constant matrix, A(t) is a
periodic matrix with period T = 2π/Ω. According to the
Floquet theory, there is a constant matrix R satisfies

S t þ Tð Þ ¼ RS tð Þ ð33Þ
where S is the fundamental solutions matrix satisfying:

BṠ ¼ A tð ÞS ð34Þ

Furthermore, if the characteristic roots of R are λj(j = 1,
N + 2), then, the solution of system (39) can be written as

x j tð Þ ¼ eμ jtz j tð Þ;with z j t þ Tð Þ ¼ z j tð Þ ð35Þ

where μjare the so-called characteristic exponents and they are
related to the characteristic roots by

μ j ¼
1

T
lnλ j ð36Þ

Thus,

x j T þ tð Þ ¼ eμ jTx j tð Þ

whereμ j = (μ r + iμ i ) j , with the subscripts r and i
representing the real and imaginary parts of μ, respec-
tively. It is clear that(μr)jdetermines whetherxj(t)grows
or not, and the imaginary partμigives the oscillation fre-
quency of perturbation, which is also called the free
frequency. In particular, the perturbation will decay if
none of the characteristic exponents (μ)j, (j = 1, 2⋯N +
2) have a real part(μr)j > 0, and will grow if at least one
of the characteristic exponents satisfies(μ r) j > 0.
Otherwise, the flow is neutrally stable. Thus, to findμj,
one must obtainRfirst. Based on Eq. (33) S(T) =RS(0).
Letting S(0) be the identity matrix I, yieldsR = S(T).
Hence, Rcan be obtained by integrating (34) over one
period withS(0) = I.

Our codes have been validated by excellent agree-
ments between our growth rates and that of Woods

and Lin (Woods and Lin 1995). Taking the control pa-
r a m e t e r s a s : d y = d y , W / 2 , Ω = Ω W / 2
sin θReWFrW,Ay ¼ dy;WΩ2

W=FrWsinθ,Re ¼ 8sinθFrWRe2W=3,We =WeW/
4 sin θFrW, k = 2kW,μW = μ/Ω(where the parameters with
subscript W are adopted in Woods and Lin’ paper), the
results obtained by Woods and Lin are recovered.
Graphical results are omitted here for brevity. The num-
ber of the Chebyshev collocation points is determined
by the control parameters and can be obtained by suc-
cessively increasing the number until no further im-
provements in accuracy are observed. It is noted that
the oscillation frequency can be expressed by a combi-
nation of Reynolds number and Froude number used by
Woods and Lin, i.e., Ω = 1/2 sin θReWFrW. This implies
that either a change of Reynolds number or Froude
number will result in a change of the oscillation fre-
quency. Thus, the effect of oscillation frequency on
the stability is indefinable because the frequency cannot
vary independently.

Results

A vertical falling liquid film is always unstable to long-wave
disturbances. An imposition of external oscillation on the film
can suppress the long-wave instability, whilst causing para-
metric instabilities. The influence of oscillation on the long-
wave and parametric instabilities under various parameters
will be investigated in detail in the following sections. Only
water is considered. Therefore, in the results to be presented in
the following sections, Γ = 3375.

Influence of Oscillation Amplitude

Parametric instabilities are caused by oscillation, the parame-
ters measuring oscillation are oscillation amplitude and fre-
quency. The influence of oscillation amplitude dy is covered
by acceleration Ay which appears only in equation for the
normal stress boundary condition. The influence of oscillation
is removed by taking dy = 0. The effect of oscillation ampli-
tude on the stability can be investigated separately by holding
other parameters fixed.

Figures 2 and 3 show the dispersion relations for different
oscillation amplitudes. Figure 2 shows an increase of suppres-
sion on the long-wave instability by an increase of oscillation
amplitude. Figure 3 shows that an increase of oscillation am-
plitude results in larger growth rate, wider unstable wavenum-
ber range and more unstable modes. For example, there are
seven crests on the curve labeled dy = 5, corresponding to
seven modes, among which six modes are unstable (here for
convenience, the unstable modes are the first through the sixth
according to their wavenumber ranges). It is seen from Fig. 3a
that the maximum growth rate of the second mode exceeds
that of the first mode as the oscillation amplitude is increased.
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As the oscillation amplitude increases further, the maximum
growth rate of the third mode exceeds that of the secondmode.
The Fig. 3 also shows that the increase of oscillation ampli-
tude has only a little effect on the most dangerous wavenum-
ber. It is seen from Fig. 2 that the most dangerous wavenum-
ber is aboutkm = 0.7in the absence of oscillation, and the most
unstable wavenumber is aboutkm = 0.07in the presence of os-
cillation. This indicates that the parametric instability has a
much shorter wavelength compared with the long-wave
instability.

Figure 4 displays the neutrally stable curves on the(k, d-
y)plane, where these curves separate this plane into stable
and unstable regions which are denoted by S and U, respec-
tively. The solid line represents the neutrally stable curve for
the long-wave instability. An increase of oscillation amplitude
results in a narrower and narrower unstable region for long-

wave instability, and wider and wider unstable regions for
parametric instabilities. This indicates that increase of oscilla-
tion amplitude with other parameters fixed results in suppres-
sion of the long-wave instability and enhancement of the para-
metric instabilities.

Influence of Oscillation Frequency

The oscillation frequency is not only present explicitly in the
equation of normal stress boundary condition, but also acts
implicitly in the time dependent terms of other equations.
The effect of varying oscillation frequency on the stability of
film cannot be covered fully by the oscillation acceleration,
and can be investigated by holding the oscillation acceleration
fixed or holding the oscillation amplitude fixed.

Fig. 2 Effect of varying oscillation amplitude on long-wave instability:
Re = 5, Ω = 5

Fig. 3 Effect of varying oscillation amplitude on parametric instability: Re = 5, Ω = 5

Fig. 4 Neutrally stable curves on the (k, dy) plane. S represents the stable
region, U represents the unstable region, and the solid line represents the
neutrally stable curve for the long-wave instability in the absence of
oscillation with: Re = 5, Ω = 5
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Figure 5 gives the dispersion relations for different fre-
quencies with the acceleration fixed. It is seen from Fig.
5a that increase of oscillation frequency results in de-
crease of suppression of the long-wave instability. This
suppression is close to zero as the frequency is increased.
Figure 5b shows that there is a critical frequency Ωcri

where the growth rate achieves its maximal value when
the acceleration is fixed. Ωcri ≈ 6 for the parameters used
in the caption in Fig. 5. IfΩ >Ωcri, an increase of oscilla-
tion frequency results in a larger most dangerous wave-
number, a narrower range of unstable wavenumbers, less
unstable modes, and a lower maximal growth rate. On the
contrary, ifΩ < Ωcri, a decrease of oscillation frequency
will result in a smaller most dangerous wavenumber, a
wider range of unstable wavenumbers, more unstable
modes lower, but a lower maximal growth rate. Figure 6
gives the neutrally stable curves on the (k,Ω)plane, where
S represents stable region, U unstable region. The unsta-
ble region for parametric instabilities becomes narrower
and narrower, and the unstable region for long-wave in-
stability become wider and wider, as the frequency is
increased. This indicates increasing oscillation frequency
with acceleration fixed tends to stabilize the parametric
instability and weaken its stabilizing effecting on the
long-wave instability.

The influence of varying oscillation frequency with oscil-
lation amplitude fixed is then investigated, as shown in Figs. 7
and 8. It is clear that the effect of increasing oscillation fre-
quency with oscillation amplitude fixed is in favor of suppres-
sion of the long-wave instability and enhancement of the para-
metric instability.

A comparison between Figs. 6 and 8 demonstrates that a
decrease of oscillation frequency with acceleration fixed is in
favor of suppression of the long-wave instability (see Fig. 6),

and an increase of oscillation frequency with oscillation am-
plitude fixed is also in favor of suppression of the long-wave
instability (see Fig. 8). Hence, either decreasing or increasing
oscillation frequency can suppress the long-wave instability.
The difference between them is that the acceleration is fixed in
the formal case, and the oscillation amplitude is fixed in the
latter case. Similar conclusion can be drawn for the parametric
instabilities. That is, either increasing or decreasing oscillation
frequency can suppress the parametric instabilities, depending
either the oscillation acceleration or amplitude is fixed.

The long-wave and parametric instabilities compete with
each other as the oscillation frequency or amplitude is varied.
A suppression of the long-wave instability always accom-
panies enhancements of the parametric instabilities, and vice
versa.

Fig. 5 Influence of varying frequency on the stability:Re = 5, Ay = 500

Fig. 6 Neutrally stable curves on the(k,Ω)plane, where S represents
stable region, U unstable region, and solid line represents neutrally
stable curve for the long-wave stability in the absence of oscillation:
Re = 5, Ay = 500
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Influence of the Reynolds Number

Figure 9 gives dispersion relations for various Reynolds num-
bers. It is seen from Fig. 9a that the long-wave instability is
always suppressed by oscillation for all Reynolds numbers.
An increase of the Reynolds number results in an increase of
the suppression, which is also indicated by Fig. 10 which
gives the neutrally stable curves on the (k, Re) plane. It is seen
from Fig. 9b that the maximal growth rate of the second mode
may exceed that of the first mode as the Reynolds number is
increased. An increase of Reynolds number results in a wider
range of unstable wavenumbers and more unstable modes.
This is also clear in Fig. 10. Both the long-wave and paramet-
ric instabilities become stronger and stronger, and the mode
competition between them is absent, as the Reynolds number
is increased.

Nonlinear Numerical Simulations

Nonlinear numerical simulation is used to describe nonlinear
evolution of thin film flow, which exceeds capacity of linear
stability analysis which is efficient in predicting the most un-
stable wavenumber, growth rate, free oscillation frequency,
and critical condition for instability.

Weighted Residual Model

The ratio of film thickness d to characteristic length l of the
flow is always a small parameter, i.e., ε = d/l ≪ 1, if l is the
cha rac te r i s t i c l eng th of s t r eam-wise d i rec t ion .
Correspondingly, the scale for velocity v is taken asεd2/tυlυ.

Following Kalliadasis et al. (2012), using u = y/h − y2/
2h2as the test function and applying Galerkin weighted resid-
ual method, we obtain a “simplified second-order model” in-
corporated with a temporal modulation term:
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where Ay cos(Ωε
−1t)(h − y)represents the temporal modulation

perpendicular to the plane. When it is removed, the “simpli-
fied-second-order model” proposed by Kalliadasis et al.
(2012) is recovered. The model (37) is called as weighted
residual model (WRM) for simplicity in following sections.

The WRM has two shortcomings. First, it is applicable
only if the Weber number is sufficiently large. Second, it is
applicable only to cases where the velocity profiles in the film
do not depart too much from the semi-parabolic profile. This

Fig. 7 Influence of varying oscillation frequency on the stability with the oscillation amplitude fixed with: Re = 5, dy = 1

Fig. 8 Neutrally stable curves on the(k,Ω)plane where S represents the
stable region, U stable region, and solid line the neutral curve for long-
wave instability in the absence of oscillation: Re = 5, dy = 1
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is limited by the assumption adopted in the derivation of the
WRM. Since the Kapitza number is taken as 3375 in this
paper, the Weber number is always not too small for typical
film flows. Thus, the WRM is still valid if the film is not very
thin, such ash < 10−3. It is noted that the WRM is exact if the
Reynolds number tends to zeros, because it is equivalent to the
Benney equation which is exact in that situation.

The WRM has two advantages over the Navier-Stokes
equation. It is much easier to solve because the transverse
momentum equation has been integrated by applying long-
wave assumption. It even predicts a more accurate evolution
of local film height compared with numerical simulations with
a combination of the Navier-Stokes equations and an interface
tracking method such as VOF (Gao et al. 2003) because the
latter usually suffers from errors introduced in dealing with the
surface tension.

Mathieu Equation

The WRM can be validated by comparison with the unsteady
Orr-Sommerfeld equation in prediction of linear stability. By
linearizing the equations around the temporally periodic un-

disturbed solutionh ¼ hN ¼ 1; q ¼ qN ¼ h3N=3 ¼ 1=3, and
writing the linear perturbationsh', q'in the normal formal

h
0 ¼ eikxφ tð Þ; q

0 ¼ eikxχ tð Þ

We obtain the equation for perturbation amplitudes of h,
derived from the linear version of Eq. (37):

3εRe
d2φ
dt2

þ b tð Þ dφ
dt

þ c tð Þφ ¼ 0 ð38Þ

where d
dt ;

d2

dt2 represent the first and second-order derivatives
respect to t, respectively, and
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Equation (38) is a second-order ordinary differential equa-
tion with periodic coefficients. It is a Mathieu type equation. It
is a simplification of the unsteady system (32), and it deter-
mines the stability of temporally periodic undisturbed solution
of theWRM (37). It can be written in the form of two ordinary
differential equations of first-order and integrated with the
same method used in system (34). The stability of the film is
determined by the Floquet exponentμ, as we have shown
before.

Validation

Figure 11 gives comparisons between the Mathieu equation
and O-S equation in predicting the neutrally stable curves. It is
clear that the Mathieu equation is very accurate in predicting

Fig. 9 Influence of varying Reynolds number on the stability: dy = 1, .Ω = 6.

Fig. 10 Neutrally stable curves on (k, Re) plane where S represents stable
region, U unstable region, and solid line the neutrally stable curve for
long-wave instability in the absence of oscillation: dy = 1, .Ω = 6
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the neutrally stable curves ifdy ≤ 5, 1 ≤ Ω ≤ 10, Re ≤ 10.
Hence, the WRM is valid if the Reynolds number, oscillation
amplitude and frequency are not very large. In the following,
the nonlinear evolutions of film flow will be investigated in
the validity domain of the WRM.

Discussions

In this section, we pose a series of initial-value problems that
probe the nonlinear evolutions of the film flow. Initial-value
problems correspond to the temporal linear stability analyses
as we have adopted. Periodic boundary conditions are applied
in the spatial direction and the Fourier spectral method are
used to approximate the spatial derivatives for temporal nu-
merical simulations. Time advancing is achieved by a Gear
method. The results from linear analysis is used to initialize
and validate the simulation with the WRM.

Figure 12 displays the linear growth rate and oscillation
frequency of perturbation as functions of wavenumbers for
parametersRe = 5,Ω = 6, dy = 0.5. Each parametric instability

mode corresponds to a slow change of oscillation frequency of
perturbation. The linear analysis predicts a most unstable
wavenumberkm = 0.75and the corresponding oscillation fre-
quency of perturbation μi = 0.45Ω. Noted that the normal so-
lution can be rewritten asx(t) = eμtz(t) = e(μ + inΩ)t[e−inΩtz(t)],
n = 0, ± (1, 2⋯). This implies that both μi and μi + nΩ are
frequencies of periodic solutions. Sinceμi = 0.45Ωis the fre-
quency of one periodic solution, then μi = (0.45 ± 1)Ωare the
f requenc ies of ano the r two per iodic so lu t ions .
Similarly,μi = (0.075 ± 1)Ω and so on, are the frequencies of
periodic solutions. Only the absolute values of oscillation fre-
quencies of perturbations are present here, as shown in
Fig. 12b. Substituting μ = iμi = i0.5Ωintoh ¼ bh tð Þeikx ¼ eμtz tð Þeikx,
we have h x; 2T þ tð Þ ¼ bh 2T þ tð Þeikx ¼ bh tð Þeikx ¼ h x; tð Þ. This implies the
unstable wave is a Faraday wave. Similarly, takingμ = iμi =
i0.45Ω , we h x; 2T þ tð Þ ¼ bh t þ 2Tð Þeikx ¼ bh tð Þei kx−0:1ΩTð Þ ¼ bh tð Þei2π x=L−0:1ð Þ.
This implies that h is a traveling Faraday wave with phase
velocity0.05Ω/k, and there is a phase difference of 0.1 times
wavelength between two successive wave shapes. This phase
velocity is due to the falling flow of the film. In fact, if the

Fig. 11 Comparisons between the weighted residual model and O-S equation: (a) Re = 5,Ω = 5,(b) Re = 5, Ay = 500, (c) Re = 5, dy = 1, (d) Ω = 6, dy = 1
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falling flow is ignored, i.e. Ua = 0, then, μi = 0.5Ω and the
phase velocity is zero.

Takingk = km/10 = 0.075as the wavenumber in computa-
tional space, carrying out a simulation with theWRM initiated
withh = 1 + 0.1 cos kx, q = 1/3, we can obtain snapshots for the
evolution of film. Figure 13 gives the wave shapes at two
different time nodes. At the initial time, the computational
box contains one wavelength. After an evolution of sufficient
long time, such as 65 wave period T, the computational box
contains ten shorter wavelengths. This indicates a most unsta-
ble numberk = 0.075 × 10 = km. This is consistent with predic-
tion of the linear stability analysis.

Figure 14 shows snapshots of a set of sequential wave
shapes at different time nodes with time interval T. It should
be noted that only one wavelength is contained in the compu-
tational box, and t = 0is a reference time, not the initial

moment. It is seen from Fig. 14a that the unstable free oscil-
lating wave is a traveling Faraday wave with a constant phase
velocity. Figure 14b shows comparison of the wave shapesh(-
x, t) andh(x/L + 0.1, 2T + t). It is seen that the phase difference
given by the nonlinear numerical simulation is to close to the
one given by linear stability analysis. However, there is still a
little a difference in phase difference which is caused by non-
linearity of the wave and this phase difference increases with
the nonlinearity.

Figure 15 displays the corresponding power spectrum as
function of oscillation frequency of perturbation for time se-
ries of local film height sampled from the simulation consid-
ered in Fig. 12. The power spectrum is defined as

P Ωð Þ ¼ FF=NL. Here, Fis the Fast Fourier Transform

(FFT) of time series of local film height,F is the complex
conjugate of F, and NL is the length of the time series. One

Fig. 12 The growth rate and oscillation frequency of perturbation versus wavenumber with parameters (Re = 5,Ω = 6, dy = 0.5): (a) The growth rate, (b)
the oscillation frequency of perturbation

Fig. 13 The most dangerous mode:Re = 5, Ω = 6, dy = 0.5, k = 0.075, L = 2π/k
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long-wave mode and four modes of parametric instability can
be seen in Fig. 15, and the dominate mode is the Faraday
instability, which frequencies areμi = |0.45 ± 1|Ω. This is con-
sistent with the prediction given by the linear analysis, as
shown in Fig. 12b. Therefore, the WRM is adequate to de-
scribing the generation and competition between different
parametric instability modes predicted by linear stability
analysis.

Figure 16 shows the maximal and minimum film heights as
functions of the acceleration which varies temporally periodic
ascos(Ωε−1t). hmax, hminrepresent the maximal and minimum
film height, respectively. The smallerhminis, the closer the film
is to rupturing. It is seen from Fig. 16 that the maximal film
height during one period increases with the oscillation ampli-
tude. However, when the oscillation amplitude is increased to
dy = 1.75, the evolution curves are close to that of the case
withdy = 2. An increase of dy results in a complex dynamics,
which can be seen from Fig. 16. Asdy is increased further to

2.5, chaotic behavior emerges, and an accurate long-time pre-
diction becomes impossible. This will be demonstrated later.

Figure 17 shows hmax − hmin and hmin as functions of
cos(Ωε−1t).hmax − hmin represents the wave amplitude of the
film and measure the nonlinearity of the film flow, and h-
minmeasures how close the film is to rupture. As the oscillation
amplitude increases, hmax − hminbecomes larger and larger,
and hmin becomes smaller and smaller, which can be seen
from (Fig. 17a and b), respectively. Thus, an increase of os-
cillation amplitude may lead to rupture of the film, and makes
the WRM invalid. Within the validity domain of the WRM,
both the wave amplitude and the minimal local height of the
film are proportional to the oscillation amplitude. This is con-
sistent with the linear analyses which state that both the linear
growth rate and unstable wavenumbers range are proportional
to the oscillation amplitude (see Figs. 3 and 4).

Similar conclusions can also be drawn from investigation
of influences of varying frequency with oscillation amplitude

Fig. 14 Wave shapes at different time nodes: the parameters are given in Fig. 13

Fig. 15 Power spectrum versus oscillation frequency of perturbation for time series of local film height for parameters shown in Fig. 12
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fixed (see Fig. 18) and Reynolds number (see Fig. 19) on the
nonlinear evolutions of the film, i.e., a larger oscillation fre-
quency or Reynolds number yields in a larger hmax − hminand a
smallerhmin. These are consistent with the linear analyses
which state that both the linear growth rate and unstable
wavenumbers range are proportional to the oscillation fre-
quency (see Figs. 8 and 9) and Reynolds number (see
Fig. 10 and 11).

Figure 20 shows the effects of varying oscillation fre-
quency with acceleration fixed on the hmax − hmin andhmin.

Both hmax − hminandhminincrease with decrease of oscilla-
tion frequency. Increase of oscillation frequency with ac-
celeration fixed has a stabilizing effect on the parametric
instability. This is consistent with the prediction from the
neutrally stable condition given by Fig. 7 which shows
that the unstable region becomes narrower and narrower
as the oscillation frequency increases. However, it is not
consistent with the growth rate curves given by Fig. 6
which shows that the growth rate achieves its maximum
at Ω ≈ 6. Hence, it seems reasonable to believe that a

Fig. 16 Influence of varying oscillation amplitude on the evolution of the film height with:Re = 5,Ω = 6, (a)dy = 0.5, km = 0.74, (b) dy = 1, km = 0.75, (c)
dy = 1.25, km = 0.75, (d) dy = 1.5, km = 0.75, (e) dy = 1.75, km = 0.75, (f) dy = 2, km = 0.74.

Fig. 17 Influence of varying oscillation amplitude on the evolution of the film height:Re = 5, Ω = 6, km = 0.75, (a) hmax − hmin, (b) hmin
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wider unstable wavenumber range indicates a stronger
nonlinearity represented by hmax − hminandhmin.

According to the research carried out by Oron et al.
(2009), a forced oscillation parallel to the stream-wise
direction of the film flow can lead to a chaotic behavior
in the film. Our research shows that a forced oscillation
perpendicular to the film can also give rise to a chaotic
behavior in the film.

Figure 21 displays the wave shape and phase
plane(h, ∂xh)at a representative time node. Each point
in Fig. 21a, b is in a one to one correspondence.
Figure 22 displays the phase plane and the Poincaré
map calculated with the parameters given in Fig. 21.
Eighty one time nodes are contained in Fig. 22a, and
the time interval between two sequential time nodes
is2T. Since the flow is periodic with period equal
to2T, the phase planes at different time nodes with time

interval2T are very close except for a phase difference
due to falling flow of the film. Figure 22b displays the

Poincaré map for periodic solution h tð Þ; ∂xh tð Þ; ∂2xh tð Þ� �
on the Poincaré section through the point of solution
at a reference time node. The Poincaré map, named
after Henri Poincaré, is the intersection of a periodic
orbit in the state space of a continuous dynamical sys-
tem with a certain lower-dimensional subspace, called
the Poincaré section, transversal to the flow of the sys-
tem. The discrete points on the Poincaré section forming
a closed curve rather than a fixed point, indicates a
quasi-periodic motion rather than a periodic motion.
This quasi-periodicity behavior is caused by falling flow
of the film.

Figure 23 gives the oscillation frequency of perturba-
tion as function of wavenumber predicted by linear sta-
bility analysis, and the power spectrum of time series of

Fig. 19 Influence of varying Reynolds number on the nonlinear evolution of the film: dy = 1, Ω = 6, (a) hmax − hmin, (b) hmin

Fig. 18 Influence of varying frequency with oscillation amplitude fixed on the nonlinear evolution of the film:Re = 5, dy = 1, (a) hmax − hmin, (b) hmin
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local film height sampled from numerical simulation for
parameters given in Fig. 22. Noted that only the abso-
lute values of frequency is present in Fig. 23a. Four
frequencies are present in Fig. 23a, i.e., μi = (0.45,
0.075, 0.4, 0.12)Ω. This implies that μi = (1.45, 2.45,
0.55, 1.55, 2.551.075, 2.075, 0.925, 1.925, 1.4, 2.4, 1.6,
2.6, 1.12, 2.12, 0.88, 1.88)Ωare also frequencies of the
periodic solutions. It is clear that the WRM predicts
all the parametric instability modes even if the oscilla-
tion amplitude is increased tody = 2.

Figure 24 displays the phase plane and Poincaré map
calculated with the oscillating amplitude being increased
to dy = 2.5and other parameters fixed, i.e.,Re = 5, Ω = 6,
dy = 2.5. The behavior of phase trajectory shown in Fig.
24a is quite different from that in Fig. 22a, and the
points on the Poincaré section are irregular, as shown
in Fig. 24b. This implies that the flow is chaotic. Thus,
it is clear that imposition of an external perpendicular

oscillation can induce chaotic behavior in a vertical fall-
ing liquid film flow, similar to what happens in the case
where the external oscillation is parallel to the stream-
wise direction of the film flow. Figure 25 shows that
the presence of chaos does not change the power spec-
trum structure which shows that the Faraday wave mode
is the dominate one in the nonlinear evolution of the
film flow.

Chaos is a typical nonlinear dynamic phenomenon,
and it arises if the nonlinearity of nonlinear system is
strong enough. For the problem considered here, chaotic
behavior also arises from increase of the Reynolds num-
ber, increase or decrease of oscillation frequency, which
yield larger wave amplitudes of the film flow. For the
parameters given in Fig. 17, i.e., dy = 1, Ω = 6, chaos
arises if the Reynolds number is increased to Re = 12.
However, the WRM is not very accurate in this situa-
tion, as shown in Fig. 11d.

Fig. 20 Influence of varying frequency with acceleration fixed on the nonlinear evolution of the film: Re = 5, Ay = 500, (a) hmax − hmin, (b) hmin

Fig. 21 Waves and phase plane:Re = 5, Ω = 6, dy = 2. (a)Wave shape, (b) Phase plane of(h, ∂xh)
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Conclusions

Falling liquid film flow has a wide range of applications.
There are several instabilities in falling film flow, which
are either welcome or undesirable, depending on their
applications. Imposing external oscillation is an important
method to control the instabilities. Oscillations can sup-
press long-wave instability, but at the same time introduce
parametric instabilities in film flow. By adopting the “vis-
cosity-gravity” scaling, the control parameters of the
problem are reduced to the ones that depend only on the
flow rate, oscillation amplitude and frequency. Then, the
influences of oscillation amplitude and frequency on the
stability can be investigated exhaustively by separating
them from each other.

The influences of external oscillation on a vertical falling
liquid film are then investigated by a combination of linear
stability analyses with the unsteady Orr-Sommerfeld equation
based on Floquet theory and nonlinear numerical simulations
with weighted residual model in this paper. The linear analy-
ses show that increase of oscillation amplitude with other pa-
rameters fixed always results in suppression of the long-wave
instability and enhancements of the parametric instabilities.
On the other hand, either increasing or decreasing oscillation
frequency can suppress the long-wave instability and enhance
the parametric instabilities, depending on either the oscillation
amplitude or the acceleration is fixed. For a given Reynolds
number, the long-wave instability and parametric instabilities
compete with each other as the oscillating amplitude and fre-
quency are varied. A weakness of the long-wave instability

Fig. 22 The phase plane and Poincaré map with time series sampled with
time interval2T: t0, t0 + 2T, t0 + 4T, t0 + 6T⋯t0 + 160T. (a) Phase plane at
81 time nodes, (b) Poincaré map for periodic solution on the Poincaré

section through the point of solution at a reference time pointt0. The
parameters given in the caption of Fig. 21

Fig. 23 Oscillation frequency of perturbation versus wavenumber and power spectrum of time series of local film height for parameters given in Fig. 22
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always accompanies enhancements of the parametric instabil-
ities, vice versa. As a contrast, both the long-wave and para-
metric instability become stronger and stronger when the
Reynolds number increases more and more, all the while
mode competition between them is absent.

A weighted residual model (WRM) embedded a tempo-
ral modulation term is then derived to investigate the non-
linear evolution of the film flow. This model is validated
by excellent agreements with the Orr-Sommerfeld equation
in predicting the neutrally stable curves. And its capacity in
describing the nonlinear dynamics of the falling liquid film
flow is demonstrated by a good agreement with the Orr-
Sommerfeld equation in predicting the generations and

mode competition of parametric instabilities. The numeri-
cal simulations show that both the wave amplitudes and
minimal local heights of the film are proportional to the
unstable wavenumbers ranges rather than the growth rates
predicted by linear analyses, i.e., a larger unstable
wavenumbers range indicates a larger wave amplitude
and a minimal local thickness of the liquid film. The nu-
merical simulations also show that, when the critical con-
ditions are met, imposition of an external oscillation per-
pendicular to the steam-wise direction of the film can trig-
ger a chaotic behavior in the film, similar to what happens
in the case where the oscillation is parallel to the stream-
wise direction of the film.

Fig. 24 The phase plane and Poincaré map with time series sampled with
time interval2T: t0, t0 + 2T, t0 + 4T, t0 + 6T⋯t0 + 160T, and the
parameters are:Re = 5, Ω = 6, dy = 2.5. (a) Phase plane at 81 time nodes,

(b) Poincaré map for periodic solution on the Poincaré section through the
point of solution at a reference time nodet0

Fig. 25 Oscillation frequency of perturbation versus wave number and power spectrum for time series of local film height for parameters given in Fig. 24
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