Skip to main content
Log in

Distribution Regularity of Dynamic Viscosity Blind Region behind the Bubble in Shear-Thinning Fluids under Different Gravity Levels

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The gas-liquid two-phase flow has been widely applied to the field of space technology, such as thermal energy and power generation, long duration life support systems, transportation for propulsion, etc. (Microgravity Sci. Technol. 21, 175-183 (2009); Microgravity Sci. Technol. 22, 87-96 (2010); etc.). Through reviewing previous researches, it can be found that a dynamic viscosity blind region (almost not influenced by the shear-thinning effect) appears behind it when one bubble rises in the shear-thinning fluid (J. Non-Newton Fluid. Mech. 165, 555-567 (2010); Phys. Fluids. 29, 033103 (2017), J. Non-Newton. Fluid. Mech. 239, 53 -61 (2017); etc.). As a matter of fact, the occurrence of the viscosity blind region has the important effect on heat and mass transfer between bubble and liquid phases. Therefore, volume of fluid method is implemented to study the formation and evolution mechanisms of the viscosity blind region in the shear-thinning fluid. The results show that the viscosity blind region can be split into two regions, namely the first and the second viscosity blind region. The stronger the gravity level and the shear-thinning effect are, or the smaller the surface tension is, the more easily the viscosity blind region appears in the bubble wake. The viscosity blind region appears much easily in the wake of a skirt bubble under the same conditions. And in the rising process of the bubble, there is a stagnant flow region in the bubble wake, where the shear rate is very small, so the viscosity blind region appears in that region. In addition, the appearance of double wake vortices can split the stagnant flow region into two parts, which leads to the formation of the second viscosity blind region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amirnia, S., de Bruyn, J.R., Bergougnou, M., Margaritis, A.: Continuous rise velocity of air bubbles in non-Newtonian biopolymer solutions. Chem. Eng. Sci. 94, 60–68 (2013)

    Article  Google Scholar 

  • Araújo J.D.P., Miranda J.M., Campos J.B.L.M.: Taylor bubbles rising through flowing non-Newtonian inelastic fluids. J. Non-Newton Fluid. Mech. 245, 49–66 (2017)

    Article  MathSciNet  Google Scholar 

  • Bhaga, D., Weber, M.E.: Bubbles in viscous liquids: shapes, wakes and velocities. J. Fluid Mech. 105, 61–85 (1981)

    Article  Google Scholar 

  • Brackbill, J.U., Kothe, D.B., Zemach, C.A.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MathSciNet  Google Scholar 

  • Chhabra, R.: Bubbles, drops, and particles in non-Newtonian fluids. CRC Press, Boca Raton, USA (2007)

  • DeKee, D., Carreau, P.J.: Friction factors and bubble dynamics in polymer solutions. Can. J. Chem. Eng. 71(2), 183–188 (1993)

    Article  Google Scholar 

  • Dimakopoulos, Y., Makrigiorgos, G., Gc, G., Tsamopoulos, J.: The pal (penalized augmented Lagrangian) method for computing viscoplastic flows: a new fast converging scheme. J. Non-Newton. Fluid Mech. 256, 23–41 (2018)

    Article  MathSciNet  Google Scholar 

  • Dilleswara, R.K., Vasukiran, M., Gollakota, A.R.K., Kishore, N.: Buoyancy driven bubble rise and deformation in milli/micro channels filled with shear-thinning nanofluids. Colloid. Surface. A. 467, 66–77 (2015)

    Article  Google Scholar 

  • Gummalam, S., Narayan, K.A., Chhabra, R.P.: Rise velocity of a swarm of spherical bubbles through a non-Newtonian fluid: effect of zero shear viscosity. Int. J. Multiphase Flow. 14, 361–373 (1988)

    Article  Google Scholar 

  • Imai, R., Imamura, T., Sugioka, M., Higashino, K.: Research on liquid management technology in water tank and reactor for propulsion system with hydrogen production system utilizing aluminum and water reaction. Microgravity Sci. Technol. 29, 475–484 (2017)

    Article  Google Scholar 

  • Kawase, Y., Moo-Young, M.: Approximate solutions for drag coefficient of bubbles moving in shear-thinning elastic fluids. Rheol. Acta. 24, 202–206 (1985)

    Article  Google Scholar 

  • Li, S.B., Ma, Y.G., Fu, T.T., Zhu, C.Y., Li, H.Z.: The viscosity distribution around a rising bubble in shear-thinning non-newtonian fluids. Braz. J. Chem. Eng. 29, 265–274 (2012)

    Article  Google Scholar 

  • Liu, L., Yan, H.J., Zhao, G.J., Zhuang, J.C.: Experimental studies on the terminal velocity of air bubbles in water and glycerol aqueous solution. Exp. Thermal Fluid Sci. 78, 254–265 (2016)

    Article  Google Scholar 

  • Liu, J.R., Zhu, C.Y., Fu, T.T., Ma, Y.G.: Numerical simulation of the interactions between three equal-interval parallel bubbles rising in non-Newtonian fluids. Chem. Eng. Sci. 93, 55–66 (2013)

    Article  Google Scholar 

  • Ohta, M., Kimura, S., Furukawa, T., Yoshida, Y., Sussman, M.: Numerical simulations of a bubble rising through a shear-thickening fluid. J. Chem. Eng. Jpn. 45(9), 713–720 (2012)

    Article  Google Scholar 

  • Ohta, M., Yoshida, Y., Sussman, M.: A computational study of the dynamic motion of a bubble rising in Carreau model fluids. Fluid Dyn. Res. 42, 025501 (2010)

    Article  MathSciNet  Google Scholar 

  • Pang, M.J., Wei, J.J., Yu, B.: Investigation on effect of gravity level on bubble distribution and liquid turbulence modification for Horizontal Channel bubbly flow. Microgravity Sci. Technol. 29, 313–324 (2017)

    Article  Google Scholar 

  • Poryles, R., Vidal, V.: Rising bubble instabilities and fragmentation in a confined polymer solution. J. Non-Newtonian Fluid Mech. 241, 26–33 (2017)

    Article  MathSciNet  Google Scholar 

  • Premlata, A.R., Tripathi, M.K., Karri, B., Sahu, K.C.: Numerical and experimental investigations of an air bubble rising in a CarreauYasuda shear-thinning liquid. Phys. Fluids. 29, 033103 (2017a)

    Article  Google Scholar 

  • Premlata, A.R., Tripathi, M.K., Karri, B., Sahu, K.C.: Dynamics of an air bubble rising in a non-Newtonian liquid in the axisymmetric regime. J. Non-Newton. Fluid. Mech. 239, 53–61 (2017b)

    Article  MathSciNet  Google Scholar 

  • Salim, A., Colin, C., Dreyer, M.: Experimental investigation of a bubbly two-phase flow in an open Capillary Channel under microgravity conditions. Microgravity Sci. Technol. 22, 87–96 (2010)

    Article  Google Scholar 

  • Sikorski, D., Tabuteau, H., de Bruyn, J.R.: Motion and shape of bubbles rising through a yield-stress fluid. J. Non-Newtonian Fluid Mech. 159, 10–16 (2009)

    Article  Google Scholar 

  • Sun, D.K., Zhu, M.F., Wang, J., Sun, B.D.: Lattice Boltzmann modeling of bubble formation and dendritic growth in solidification of binary alloys. Int. J. Heat Mass Transf. 94, 474–487 (2016)

    Article  Google Scholar 

  • Tripathi, M.K., Sahu, C., Govindarajan, R.: Dynamics of an initially spherical bubble rising in quiescent liquid. Nat. comom. 6268, 6 (2015a)

    Google Scholar 

  • Tripathi, M.K., Sahu, K.C., Karapetsas, G., Matar, O.K.: Bubble rise dynamics in a viscoplastic material. J. Non-Newtonian Fluid Mech. 222, 217–226 (2015b)

    Article  MathSciNet  Google Scholar 

  • Tsamopoulos, J., Dimakopoulos, Y., Chatzidai, N., Karapetsas, G., Pavlidis, M.: Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment. J. Fluid Mech. 601, 123–164 (2008)

    Article  MathSciNet  Google Scholar 

  • Wang, T., Li, H.Z., Zhao, J.F.: Three-dimensional numerical simulation of bubble dynamics in microgravity under the influence of nonuniform electric fields. Microgravity Sci. Technol. 28, 133–142 (2016)

    Article  Google Scholar 

  • Wu, K., Li, Z.D., Zhao, J.F., Li, H.X., Li, K.: Partial nucleate Pool boiling at low heat flux: preliminary ground test for SOBER-SJ10. Microgravity Sci. Technol. 28, 165–178 (2016)

    Article  Google Scholar 

  • Worner, M.: Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid. Nanofluid. 12, 841–886 (2012)

    Article  Google Scholar 

  • Zacharioudaki, M., Kouris, M., Dimakopoulos, Y., Tsamopoulos, J.: A direct comparison between volume and surface tracking methods with a boundary-fitted coordinate transformation and third-order upwinding. J. Math. Phys. 227(2), 1428–1469 (2008)

    MathSciNet  MATH  Google Scholar 

  • Zenit, R., Feng, J.J.: Hydrodynamic interactions among bubbles, drops, and particles in non-Newtonian liquids. Annu. Rev. Fluid Mech. 50, 505–534 (2018)

    Article  MathSciNet  Google Scholar 

  • Zhang, L., Yang, C., Mao, Z.S.: Numerical simulation of a bubble rising in shear-thinning fluids. J. Non-Newton Fluid. Mech. 165, 555–567 (2010)

    Article  Google Scholar 

  • Zhao, J.F., Zhang, L., Li, Z.D., Qin, W.T.: Topological structure evolvement of flow and temperature fields in deformable drop Marangoni migration in microgravity. Int. J. Heat Mass Transf. 54, 4655–4663 (2011)

    Article  Google Scholar 

  • Zhao, J.F., Zhang, L., Yan, N., Wang, S.F.: Bubble behavior and heat transfer in quasi-steady pool boiling in microgravity. Microgravity Sci. Technol. 21, 175–183 (2009)

    Article  Google Scholar 

  • Zhang, Y.H., Liu, B., Zhao, J.F., Deng, Y.P., Wei, J.J.: Experimental study of subcooled flow boiling heat transfer on a smooth surface in short-term microgravity. Microgravity Sci. Technol. 97, 417–430 (2018)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the NSFC Fund (No. 51376026) and Qinglan Project of Jiangsu province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjun Pang.

Ethics declarations

Conflict of Interest

The authors report no conflict of interest and have received no payment in preparation of this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, M., Pang, M. & Chao, J. Distribution Regularity of Dynamic Viscosity Blind Region behind the Bubble in Shear-Thinning Fluids under Different Gravity Levels. Microgravity Sci. Technol. 31, 139–150 (2019). https://doi.org/10.1007/s12217-019-9673-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-9673-6

Keywords

Navigation