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Abstract
For a simple normal crossing variety X, we introduce the concepts of prelog Chow ring, 
saturated prelog Chow group, as well as their counterparts for numerical equivalence. 
Thinking of X as the central fibre in a (strictly) semistable degeneration, these objects can 
intuitively be thought of as consisting of cycle classes on X for which some initial obstruc‑
tion to arise as specializations of cycle classes on the generic fibre is absent. Cycle classes 
in the generic fibre specialize to their prelog counterparts in the central fibre, thus extend‑
ing to Chow rings the method of studying smooth varieties via strictly semistable degen‑
erations. After proving basic properties for prelog Chow rings and groups, we explain 
how they can be used in an envisaged further development of the degeneration method 
by Voisin et  al. to prove stable irrationality of very general fibres of certain families of 
varieties; this extension would allow for much more singular degenerations, such as toric 
degenerations as occur in the Gross–Siebert programme, to be usable. We illustrate that by 
looking at the example of degenerations of elliptic curves, which, although simple, shows 
that our notion of prelog decomposition of the diagonal can also be used as an obstruction 
in cases where all components in a degeneration and their mutual intersections are rational. 
We also compute the saturated prelog Chow group of degenerations of cubic surfaces.
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1 Introduction

Chow rings are intricate, important and hard to compute invariants of algebraic varieties. 
In this paper, we propose to study Chow rings by means of strictly semistable degenera‑
tions. Let XK be the smooth generic fibre of such a family and let X be its special fibre.

The first main result of this paper is that we construct in Definition 2.4 the prelog 
Chow ring CH∗

prelog
(X) that admits (Theorem 3.2) a specialization homomorphism from 

the Chow ring of the generic fibre

In Proposition  2.9, we derive a calculation scheme for CH∗
prelog

(X) in terms of the 
Chow rings of the components of X and their intersections.

Our interest in the theory derives from the desire to extend Voisin’s degenera‑
tion method [36] (as developed further by Colliot‑Thélène/Pirutka [8], Totaro [34], 
Schreieder [31, 32] et al.) to more singular degenerations, for example toric degenera‑
tions used in the Gross–Siebert programme [15–21].

The main idea on how to apply Voisin’s method to strictly semistable degenerations 
can informally be described as follows: suppose X → Δ is a degeneration of projec‑
tive varieties Xt over a small disk Δ centered at 0 in ℂ with coordinate t. Suppose Xt 
is smooth for t nonzero. Let X∗

→ Δ∗ be the induced family over the punctured disk 
obtained by removing the central fibre X0 . We would like to prove that a very general 
fibre Xt is not retract rational (or weaker, not stably rational). Arguing by contradic‑
tion and assuming to the contrary that Xt is stably rational, we obtain (cf. [36, Proof 
of Thm. 1.1]) that, after replacing t by tk for some positive integer k and shrinking Δ , 
there is a relative decomposition of the diagonal on X∗ ×Δ∗ X

∗
→ Δ∗ : there exists a sec‑

tion � ∶ Δ∗
→ X

∗ and a relative cycle Z∗ ⊂ X
∗ ×Δ∗ X

∗ together with a relative divisor 
D

∗ ⊂ X
∗ such that, for all t ∈ Δ∗

and Z∗ ⊂ D
∗ ×Δ∗ X

∗ . Closing everything up in X ×Δ X  , and intersecting with X0 ×X0 , 
we can specialize this to obtain a decomposition of the diagonal on X0 ×X0.

If the singularities of X0 are sufficiently mild (e.g. only nodes, but more general 
classes of singularities are admissible), then a resolution X̃0 inherits a decomposition 
of the diagonal. Now we can derive a contradiction to our initial assumption that Xt is 
stably rational for t very general since one can obstruct the existence of decompositions 
of the diagonal on nonsingular projective varieties by, for example, nonzero Brauer 
classes, and other unramified invariants. However, we can also try to bypass the neces‑
sity that X0 have mild singularities if we are willing to obstruct directly the existence of 
a decomposition of the diagonal on X0 ×X0 that arises as a “limit" of decompositions 
of the diagonal on the fibres of X∗ ×Δ∗ X

∗
→ Δ∗ . Here the qualifying relative clause is 

important: if the degeneration X0 is sufficiently drastic, e.g. X0 could be simple normal 
crossing with toric components, then decompositions of the diagonal may well exist, but 
still possibly none that arise as a limit in the way described above.

The desire to single out decompositions of the diagonal for X0 that would stand a 
chance to arise via such a limiting procedure naturally leads to the idea of endowing 
X0 with its natural log structure X†

0
 (cf. [18, Chapter 3.2]) obtained by restricting the 

divisorial log structure for (X,X0) to X0 , and develop some kind of log Chow theory 

� ∶ CH ∗(XK) ⟶ CH∗
prelog

(X).

ΔXt
= Xt × �(t) +Z

∗
t
in CH∗(Xt ×Xt)
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on X†

0
 in which cycles carry some extra decoration that encodes information about the 

way they can arise as limits. Although a promising theory that may eventually lead to a 
realization of this hope is currently being developed by Barrott [3], it is still at this point 
unclear to us if and how it can be used for our purposes, so we take a more pedestrian 
approach in this article, always keeping the envisaged geometric applications in view.

While we believe that the correct framework is ultimately likely to be the general theory 
of log structures in the sense of Deligne, Faltings, Fontaine, Illusie, Kato et al. as exposed 
in [29], our point of departure in Sect.  2 is the following simple observation: given a 
strictly semistable degeneration, cycle classes in CH ∗(X0) that arise as specializations in 
fact come from cycle classes on the normalization of X0 satisfying an obvious coherence/
compatibility condition that we call the prelog condition following Nishinou and Siebert 
[26, 27] (in the case of curves). Despite its simplicity, the idea is very effective in applica‑
tions. We cast it in the appropriate algebraic structures in Sect. 2. This takes the shape of 
the prelog Chow ring of a simple normal crossing scheme and its cousin the numerical 
prelog Chow ring, which is easier to handle computationally. We also discuss a relation 
between the prelog condition and the Friedman condition.

In Sect. 3, we treat specialization homomorphisms of strictly semistable degenerations 
into prelog Chow rings, and in Sect. 4 we deal with the problems that arise by the necessity 
to perform a ramified base change t ↦ tk in Voisin’s method outlined above. This leads to 
the concepts of saturated prelog Chow groups and their numerical counterparts.

In Sect. 5 we define the concept of prelog decomposition of the diagonal and prove an 
analogue of Voisin’s specialisation result in this case.

In Sect. 6 we compute the saturated prelog Chow group of a degeneration of cubic sur‑
faces. We explicitly recover the 27 lines as prelog cycles in the central fibre.

In Sect. 7, we consider the case of a degeneration of a family of elliptic curves, realized 
as plane cubics, into a triangle of lines. We show that the central fibre cannot have a prelog 
decomposition of the diagonal, showing in particular again that a smooth elliptic curve 
does not have universally trivial Chow group of zero cycles. This is, although well‑known, 
very reassuring because it shows that the concept of prelog decomposition of the diagonal 
is also a useful obstruction when dealing with degenerations all of whose components and 
mutual intersections of components are rational.

In “Appendix 1” we explain some connections to the Gross–Siebert programme.
Let us also mention that the concepts of prelog Chow rings and groups we introduce are 

eminently computable in even nontrivial examples such as degenerations of self‑products 
of cubic threefolds, compare [6].

Ideas related to the ones proposed in this article have been pursued in [4, 12, 24, 25, 33], 
but we do not see how these could yield results for degenerations all of whose components 
and mutual intersections of components are rational.

2  Prelog Chow rings of simple normal crossing schemes

We work over the complex numbers ℂ throughout.
Let X =

⋃
i∈I Xi be a simple normal crossing (snc) scheme; here I is some finite set, and 

all irreducible components Xi are smooth varieties. Moreover, for a nonempty subset J ⊂ I , 
we denote by XJ the intersection 

⋂
j∈J Xj ⊂ X . In this way, each XJ is a smooth variety 

(possibly not connected). The irreducible components of XJ then form the (|J| − 1)‑dimen‑
sional cells in the dual intersection complex of X. It is a regular cell complex in general, 
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and simplicial if and only if all XJ are irreducible. For nonempty subsets J1 ⊂ J2 of I, we 
denote by

and by

the inclusions. Let

be the normalization.

Definition 2.1 Denote by

the following subring of the Chow ring of the normalization, which we call the ring of 
compatible classes: elements in R are tuples of classes (�i)i∈I with the property that for any 
two element subset {j, k} ⊂ I

We call this property the prelog condition. Furthermore, denote by

the Chow group of X.

Notice that there is in general no well‑defined intersection product on M. We will 
show, however, that one can turn M into an R‑module. We note that R(X) agrees with 
Fulton‑MacPherson’s operational Chow ring [12].

Definition 2.2 Let � = (�i)i∈I be an element in R and let Z be a prime cycle (=irreducible 
subvariety) on X. Let J ⊂ I be the largest subset such that Z ⊂ XJ and let j ∈ J be arbitrary. 
Then we define

This is independent of the choice of j since if j′ is another element of J, the class 𝜄∗
J>{j�}

(𝛼j� ) 
is the same as 𝜄∗

J>{j}
(𝛼j) since by the definition of R we have that 𝜄∗

{j,j�}>{j}
(𝛼j) = 𝜄∗

{j,j�}>{j�}
(𝛼j� ) , 

so the definition is well‑posed. If Z is an arbitrary cycle on X, we define ⟨�, Z⟩ by linearity.

Proposition 2.3 If Z1 and Z2 are rationally equivalent cycles on X, then

In particular, the pairing descends to rational equivalence on X and makes M = CH ∗(X) 
into an R-module. The push forward map induced by the normalization

𝜄J2>J1∶XJ2
↪ XJ1

�J∶XJ ↪ X

� ∶ X� =
⨆
i∈I

Xi → X

R(X) = R ⊂ CH ∗(X𝜈) =
⨁
i∈I

CH ∗(Xi)

𝜄∗
{j,k}>{j}

(𝛼j) = 𝜄∗
{j,k}>{k}

(𝛼k).

M = M(X) = CH ∗(X)

⟨𝛼, Z⟩ ∶= 𝜄J,∗

�
𝜄∗
J>{j}

(𝛼j).[Z]
�
.

⟨�, Z1⟩ = ⟨�, Z2⟩.
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is an R-module homomorphism. Indeed, �∗ ∶
⨁

i CH ∗(Xi) → CH ∗(X) is an R-module 
homomorphism.

Proof The main point is the following consequence of the projection formula that gives a 
way to calculate the pairing ⟨�, Z⟩ in a very flexible way: if Z is a prime cycle contained in 
XJ as in Definition 2.2, then we can write

Moreover, as already remarked in Definition 2.2, here j ∈ J is arbitrary and the result inde‑
pendent of it. Hence, for an arbitrary cycle Z on X and � ∈ R , we can compute ⟨�, Z⟩ as 
follows: first we write, in whichever way we like,

where Zi is a cycle supported on Xi , then form the intersection products �i.Zi on Xi , push 
these forward to X and sum to get the cycle ⟨�, Z⟩ . In particular, this makes it clear that if 
Z1 and Z2 are rationally equivalent on X, then ⟨�, Z1⟩ = ⟨�, Z2⟩ as elements of M. Indeed, 
cycles of dimension d rationally equivalent to zero are sums of cycles T on X that arise 
as follows: take an irreducible subvariety Y ⊂ X of dimension d + 1 , its normalization 
�Y ∶ Y�

→ Y  , and let T be �Y ,∗ of the divisor of zeros and poles of a rational function on Y� . 
Now Y is necessarily contained entirely within one of the irreducible components of X, Xi 
say, and hence T is rationally equivalent to zero on Xi . Hence ⟨�, T⟩ = 0 since we have the 
flexibility to compute this entirely on Xi.

To show that �∗ ∶
⨁

i CH ∗(Xi) → M is an R‑module homomorphism, we take two ele‑
ments � = (�i)i∈I ∈ R, � = (�i)i∈I ∈

⨁
i CH ∗(Xi) and represent �i by a cycle Zi on Xi . All 

we have to show then is that

But this directly follows from the definition of �∗ and the way we can compute the pairing.  
 ◻

Definition 2.4 We call the quotient R(X)∕(ker �∗ ∣R(X)) the prelog Chow ring of X, and 
denote it by CH∗

prelog
(X) when graded by codimension and by CH prelog

∗
(X) when graded by 

dimension. It is indeed naturally a ring since ker �∗ ∣R(X) is an ideal in R(X).

Proposition 2.5 There is an exact sequence 

 where for zij ∈ CH ∗(Xij) with i < j

�∗ ∣R(X)∶ R = R(X) → M

⟨𝛼, Z⟩ = 𝜄J,∗

�
𝜄∗
J>{j}

(𝛼j).[Z]
�
= 𝜄{j},∗𝜄J>{j},∗

�
𝜄∗
J>{j}

(𝛼j).[Z]
�

= 𝜄{j},∗
�
𝛼j.𝜄J>{j},∗[Z]

�
.

Z =
∑
i∈I

Zi

�∗(��) = ⟨�, Z⟩, Z ∶=
�
i∈I

�{i},∗(Zi).
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Proof We recall that by [11, Ex. 1.8.1] if 

 is a fibre square, with i a closed embedding, p proper, such that p induces an isomor-
phism of Z� − Y � onto Z − Y  , then: there is an exact sequence 

 where a(�) = (q∗�, −j∗�), b(�, �) = i∗� + p∗� . Apply this inductively with Y one com-
ponent of an snc scheme and Z′ all remaining components.   ◻

Example 2.6 Consider the snc scheme X obtained by gluing ℙ2 and the Hirzebruch surface 
�1 along a line L in ℙ2 identified with the (−1)‑section of �1 . Then CH 1(X) is of rank 2 gen‑
erated by the class of L and the fibre class F of �1 . CH

prelog

1
X on the other hand is of rank 1 

generated by the class (L, F).

Definition 2.7 Let X be a snc scheme with at worst triple intersections. We say that X 
satisfies the Friedman condition if for every intersection Xij = Xi ∩ Xj we have

Here T is the union of all triple intersections Xijk that are contained in Xij . The Friedman 
condition is commonly also referred to as d‑semistability.

Remark 2.8 By [9, Def. 1.9 and Cor. 1.12] any X that is smoothable with smooth total 
space has trivial infinitesimal normal bundle and in particular satisfies the Friedman 
condition.

The following Proposition describes a relation between the prelog condition, Friedman 
condition and Fulton’s description of the kernel of �∗.

Proposition 2.9 Let X be an snc scheme that has at worst triple intersections and satis-
fies the Friedman condition. Then the following diagram commutes 

�
𝛿(zij)

�
a
=

⎧
⎪⎨⎪⎩

𝜄{ij}>{i}∗(zij) if a=i,

−𝜄{ij}>{j}∗(zij) if a=j,

0 otherwise.

NXij∕Xi
⊗NXij∕Xj

⊗ O(T) = OXij
.
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Here the maps �, �′, �′ are defined as follows, using the convention a < b < c , i < j < k:

Notice that being in the kernel of � amounts to the prelog condition.

Proof It remains to be seen that the lower square commutes. For this we want to prove

There are three cases:
Case 1 |{i, j} ∩ {a, b}| = 0 . In this case both sides of the equation are 0.
Case 2 |{i, j} ∩ {a, b}| = 1 . In this case we can assume {i, j} ∪ {a, b} = {i, j, k} . Depend‑

ing on the relative size of the indices involved there are a number of cases to consider. We 
check only the case a = j, b = k , the others are similar. The left hand side then is

Similarly the right hand side is

�
𝜌(zi)

�
ab

=

⎧
⎪⎨⎪⎩

𝜄∗
{ab}>{i}

(zi) if i = a

−𝜄∗
{ab}>{i}

(zi) if i = b

0 otherwise

�
𝜌�(zij)

�
abc

=

⎧⎪⎪⎨⎪⎪⎩

𝜄∗
{abc}>{ij}

(zij) if (i, j) = (a, b)

−𝜄∗
{abc}>{ij}

(zij) if (i, j) = (a, c)

𝜄∗
{abc}>{ij}

(zij) if (i, j) = (b, c)

0 otherwise

�
𝛿�(zijk)

�
ab

=

⎧
⎪⎨⎪⎩

−𝜄{ijk}>{ab}∗(zijk) if (a, b) = (i, j)

𝜄{ijk}>{ab}∗(zijk) if (a, b) = (i, k)

−𝜄{ijk}>{ab}∗(zijk) if (a, b) = (j, k)

0 otherwise

(
(��◦��)(zij)

)
ab

=
(
(�◦�)(zij)

)
ab
.

(
(𝛿�◦𝜌�)(zij)

)
jk
=
(
𝛿�(𝜄∗

{ijk}>{ij}
(zij) ±⋯)

)
jk
= −𝜄{ijk}>{jk}∗𝜄

∗
{ijk}>{ij}

(zij).
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So our claim is just the commutativity of the diagram 

 Case 3 {i, j} = {a, b} . Here we get on the left hand side

since by our sign convention �′ and �′ always induce opposite signs in this situation. On the 
right hand side we use the Friedman relation:

  ◻

One drawback of CH∗
prelog

(X) is that it is rather hard to compute with in examples, for 
instance it can be very far from being finitely generated. Instead, we would like to have an 
object constructed using numerical equivalence that receives at the very least an arrow from 
CH∗

prelog
(X).

Definition 2.10 Let X be an snc variety. Then we define Rnum(X) and Num∗
prelog

(X) via 
the following diagram induced by the diagram in Proposition 2.9: 

(
(𝜌◦𝛿)(zij)

)
jk
=
(
𝜌
(
𝜄{ij}>{i}∗(zij) − 𝜄{ij}>{j}∗(zij)

))
jk

= 0 −
(
𝜌
(
𝜄{ij}>{j}∗(zij)

))
jk

= −𝜄∗
{jk}>{j}

𝜄{ij}>{j}∗(zij).

(
(𝛿�◦𝜌�)(zij)

)
ij
=

(
𝛿�

(∑
k

±𝜄∗
{ijk}>{ij}

(zij)

))

ij

= −
∑
k

𝜄{ijk}>{ij}∗(zij)𝜄
∗
{ijk}>{ij}

(zij)

(
(𝜌◦𝛿)(zij)

)
ij
=
(
𝜌
(
𝜄{ij}>{i}∗(zij) − 𝜄{ij}>{j}∗(zij)

))
ij

= 𝜄∗
{ij}>{i}

𝜄{ij}>{i}∗(zij) −
(
−𝜄∗

{ij}>{j}
𝜄{ij}>{j}∗(zij)

)

= NXij∕Xi
⋅ zij + NXij∕Xj

⋅ zij

=

(
−
∑
k

𝜄{ijk}>{ij}∗(Xijk)

)
⋅ zij

= −
∑
k

𝜄{ijk}>{ij}∗𝜄
∗
{ijk}>{ij}

(zij).
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Notice that being in the kernel of � amounts to the prelog condition.

Proposition 2.11 The natural projection map

maps classes in the kernel of �∗ ∣R(X) into im � ∩ Rnum(X). Hence we obtain an induced 
homomorphism

Proof This is clear by construction.   ◻

3  Specialization homomorphisms into prelog Chow rings

We start by recalling some facts about specialization homomorphisms, following the origi‑
nal paper [10] or the standard reference [11]. Let

be a flat morphism from a variety X  to a nonsingular curve C. We fix a distinguished 
point t0 ∈ C , and denote by X the scheme‑theoretic fibre Xt0

= �−1(t0) . Let i ∶ X → X  be 
the inclusion. As in [10, §4.1, p. 161] (or [11, Chapter 2.6]) one can then define a “Gysin 
homomorphism"

by defining the map i∗ ∶ Zk(X) → Zk−1X and checking that this descends to rational equiv‑
alence; on the level of cycles, if an irreducible subvariety V of X  satisfies V ⊂ X , one 
defines i∗(V) = 0 , and otherwise as i∗(V) = Vt0

 , where Vt0
 is the cycle associated to the zero 

scheme on V of a regular function defining X inside X  in a neighborhood of X (notice 
that X is a principal Cartier divisor in X  after possibly shrinking C). In the latter case, the 
class of Vt0

 , well‑defined as an element in CH k−1(|X| ∩ V) , is then the intersection X ⋅ V  of 
V with the Cartier divisor X; see also [11, Chapter 2.3 ff.] for further information on this 
construction.

From now on we will want to work more locally on the base, hence assume that 
C = SpecR is a curve trait, by which we mean that R is a discrete valuation ring that is the 
local ring of a point on a nonsingular curve, or a completion of such a ring. By [10, §4.4], 

� ∶ R(X) → Rnum(X)

�̄� ∶ CH∗
prelog

(X) → Num∗
prelog

(X).

� ∶ X → C

i∗ ∶ CH k(X) → CH k−1(X)
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all what was said above remains valid in this set‑up. Let ℂ = R∕� be the residue field of R, 
and K the quotient field. We then have the special fibre Xℂ = X and generic fibre XK with 
inclusions i ∶ X → X  and j ∶ XK → X .

By [10, Prop. in §1.9], there is an exact sequence 

 and i∗i∗ = 0 , so one gets that there is a unique map � = �X  forming 

 This � is called the specialization homomorphism.

Definition 3.1 The flat morphism � ∶ X → C with C a curve trait, or a nonsingular 
curve, with marked point t0 ∈ C , is called a strictly semistable degeneration if X = �−1(t0) 
is reduced and simple normal crossing and X  is a regular scheme.

The advantage of X  being regular is that then all the components Xi of X are Cartier 
divisors in X  , and we can form intersections with each of them separately.

Theorem  3.2 If � ∶ X → C is a strictly semistable degeneration, � takes values in 
CH∗

prelog
(X).

Proof The technical heart of the proof is that by [11, Chapter 2], given a k‑cycle � and 
Cartier divisor D on some algebraic scheme, one can construct an intersection class 
D ⋅ � ∈ CH k−1(|D| ∩ |�|) , satisfying various natural properties. Let � = [Y] be the class 
of a subvariety Y. If Y ⊄ |D| , then Y restricts to a well‑defined Cartier divisor on D whose 
associated Weil divisor is defined to be D ⋅ � ; if Y ⊂ |D| , then one defines D ⋅ � as the 
linear equivalence class of any Weil divisor associated to the restriction of the line bundle 
O(D) to Y.

Let now V be an irreducible subvariety of X  not contained in X. We have X =
⋃

i Xi , 
and all components Xi are Cartier. By [11, Prop. 2.3 b)], one has in CH ∗(|X| ∩ V)

Hence defining �i = Xi ⋅ V  (viewed as classes in CH ∗(Xi) ), we will have proved the Propo‑
sition once we show that (�i) is in the ring R(X) of compatible classes. This follows from 
the important commutativity property of the pairing between Cartier divisors and cycles on 
any algebraic scheme: if D,D′ are Cartier divisors and � a cycle, then

X ⋅ V =

(∑
i

Xi

)
⋅ V =

∑
i

Xi ⋅ V .

D ⋅ (D�
⋅ �) = D�

⋅ (D ⋅ �)
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as classes in CH ∗(|D| ∩ |D�| ∩ |�|) by [11, Cor. 2.4.2 of Thm. 2.4]. We now only have to 
unravel that this boils down to the property we seek to prove: indeed,

and it follows from the definitions that we can compute Xj ⋅ �i as follows: Xj restricts to a 
well‑defined Cartier divisor on the subvariety Xi , which is nothing but the Cartier divisor 
associated to Xi ∩ Xj ; intersecting that Cartier divisor with the cycle �i on Xi gives Xj ⋅ �i ; 
analogously, for Xi ⋅ �j with the roles of i and j interchanged. Hence (�i) is in R(X).   ◻

Remark 3.3 The assumption that the total space X  be nonsingular in Theorem  3.2 is 
essential, and it is useful to keep the following example in mind: take a degeneration of 
a family of plane conics into two lines, and then consider the product family of this with 
itself. The central fibre of the product family is a union of four irreducible components all 
of which are isomorphic to ℙ1 × ℙ1 glued together along lines of the rulings as in Fig. 1 on 
the left‑hand side. The cycle indicated in green is the specialization of the diagonal, and 
the red cycles 1, 2, 3 are all rationally equivalent, but the intersections with the green cycle 
are not rationally equivalent. Moreover, the central fiber in 1  is not snc, but in fact, one 
can nevertheless define the prelog Chow ring as in Sect. 2: one only needs the intersections 
of every two irreducible components to be smooth for this, and all results of that Section, 
in particular, Proposition 2.3 hold with identical proofs if in addition the intersection of 
every subset of the irreducible components is still smooth, which is the case here. So what 
is wrong? The point is that the specialization of the diagonal is not in CH∗

prelog
(X) here. For 

example, the green cycle in 1  on the upper left hand ℙ1 × ℙ1 intersects the mutual inter‑
section of the two upper ℙ1 × ℙ1 ’s in a point, but there is no cycle on the upper right‑hand 
ℙ1 × ℙ1 to match this to satisfy the pre‑log condition.

However, suppose we blow up one of the four components in the total space (this com‑
ponent is a non‑Cartier divisor in the total space), thus desingularizing the total space and 
getting a new central fibre as in 2  . Then the specialization of the diagonal will look like 
the green cycle and is in CH∗

prelog
(X) . The red cycle in 1 here is equivalent to the red cycle 

Xj ⋅ �i = Xi ⋅ �j

Fig. 1  A semistable modification of the product family
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in 2 and, if we try to move it across to the upper left‑hand irreducible component, we see 
that the cycle 1 is equivalent to the dashed cycle 3, with multiplicities assigned to the irre‑
ducible components of the cycle as indicated. The intersection with the green cycle remains 
constant in accordance with Proposition 2.3: first it is 0, then it is +1 − 1 = 0 again.

Remark 3.4 One cannot expect � to be injective, at least not for point classes ( p = 0 ), as 
the degeneration of an elliptic curve into a cycle of rational curves shows.

Example 3.5 Returning to the setup of Example 2.6, let L be a line in ℙ2 and consider the 
strictly semistable family X → �1 obtained by blowing up L × {0} in ℙ2 × 𝔸1 (degenera‑
tion to the normal cone). Restricting to a curve trait, denote by XK ≅ ℙ2 the generic fibre 
and by X the special fibre. X has two components, ℙ2 and the Hirzebruch surface �1 , glued 
by identifying L with the (−1)‑section of �1 . Then the image under � of the hyperplane 
class is the generator (L, F) of CH prelog

1
X and � is an isomorphism.

4  Ramified base change and saturated prelog Chow groups

We keep working in the setup of the previous section, and consider a strictly semistable 
degeneration � ∶ X → C . Suppose that � ∶ C�

→ C is some cover of smooth curves or 
curve traits, in general ramified at the distinguished point t0 ∈ C . Suppose t′

0
 is a distin‑

guished point in C′ mapping to t0 under � . We consider the fibre product diagram 

Then X′ will in general be singular. However, we can still prove that the specialization 
homomorphism �X′ will take values, modulo torsion, in a group that is very similar to the 
prelog Chow ring of X = Xt0

.

Definition 4.1 Let X be a simple normal crossing variety. We define the saturated prelog 
Chow group Chowprelog,sat ,∗

(X) as the saturation of the image of CH∗
prelog

(X) in 
coker (�)∕(torsion) with � as in the diagram of Proposition 2.9.

We define the saturated numerical prelog Chow group Numprelog,sat
∗(X) as the satura‑

tion of the image of Num∗
prelog

(X) in the lattice coker (�)∕(torsion) with � as in the diagram 
in Definition 2.10.

Proposition 4.2 With the notation introduced above, the specialization homomorphism 
�X′ associated to �� ∶ X

�
→ C� takes values in the group Chowprelog,sat ,∗

(X) after we mod 
out torsion from CH ∗(X).

Proof The punchline of the argument is very similar to that used in the proof of 
Theorem  3.2. The irreducible components Xi of X, viewed as the fibre of the family 
�� ∶ X

�
→ C� over t′

0
 , are ℚ‑Cartier, thus there is an integer N such that each Di ∶= NXi 
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is Cartier. This is so because the Xi are Cartier in X  , and local equations of Xi in X  pull 
back, under �′ , to local equations of Xi , with some multiplicity, inside X′ . Hence it makes 
sense, given an irreducible subvariety V of X′ not contained in X, to form the intersection 
products �i = Di ⋅ V  and view them as classes in CH ∗(Xi) . In CH ∗(Xi)⊗ℤ ℚ , we can then 
define the classes �i ∶= (1∕N)�i . Clearly, we have again, as in the proof of Theorem 3.2,

Thus �X� (V) and �∗(�i) define the same class in CH ∗(X)∕(torsion) . Hence it remains to 
show that (�i) is in R(X)ℚ . We use once more the commutativity property for intersections 
of cycles with Cartier divisors:

holds in CH ∗(|Di| ∩ |Dj| ∩ |V|) by [11, Cor. 2.4.2 of Thm. 2.4]. We need to convince our‑
selves that this indeed implies that (�i) is in R(X)ℚ . Immediately from the definition, we see 
that we can compute Di ⋅ (Dj ⋅ V) as follows: consider �j as a class on Xj ; Di then restricts to 
a well‑defined Cartier divisor on Xj , namely the Cartier divisor associated to Xi ∩ Xj (with‑
out multiplicity). Then Di ⋅ (Dj ⋅ V) is just the intersection of Xi ∩ Xj and �j , taken on Xj . 
The same for Dj ⋅ (Di ⋅ V) with i and j interchanged. In other words, N�i and N�j pull‑back 
to the same class in CH ∗(Xi ∩ Xj) , hence the assertion.   ◻

Proposition 4.3 There exists a natural homomorphism of modules

Proof Clear by construction.   ◻

5  Prelog decompositions of the diagonal

We recall some facts concerning the degeneration method in a way that will be suitable to 
develop our particular view point on it. We will follow [36] and [8].

Definition 5.1 Let V be a smooth projective variety of dimension d (over any field K). 
We say that V has a decomposition of the diagonal if one can write

where p is a zero‑cycle of degree 1 on V and Z ⊂ V × V  is a cycle that is contained in 
D × V  for some codimension 1 subvariety D ⊂ V .

This is equivalent to V being universally CH0‑trivial (meaning the degree homomor‑
phism deg ∶ CH0(VK� ) → ℤ is an isomorphism for any overfield K′ ⊃ K ) by [8, Prop. 1.4]. 
If it holds, it holds with p replaced by any other zero‑cycle of degree 1, in particular for p 
a K‑rational point if V has any. If V is smooth and projective and stably rational over K (or 
more generally retract rational), then V has a decomposition of the diagonal by [2], see also 
[8, Lemm. 1.5].

We now consider a degeneration

NX ⋅ V =

(∑
i

Di

)
⋅ V =

∑
i

Di ⋅ V .

Di ⋅ (Dj ⋅ V) = Dj ⋅ (Di ⋅ V)

Chowprelog,sat ,∗
(X) → Numprelog,sat ,∗

(X).

[ΔV ] = [V × p] + [Z] in CH d(V × V)
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over a curve C with distinguished point t0 and special fibre V = Vt0
 . We usually assume a 

general fibre of �V  to be rationally connected and smooth (in particular, all points will be 
rationally equivalent on it), since otherwise the question is not interesting. Let K be the 
function field of C. Suppose that a very general fibre of �V  is even stably rational, then this 
is also true for the geometric generic fibre VK̄ . Indeed, for b outside of a countable union of 
proper subvarieties of C we have a diagram 

 for some isomorphism i and an isomorphism j of schemes (see [35, Lemma 2.1]). In par‑
ticular, VK̄ then has a decomposition of the diagonal and is universally CH0‑trivial.

Now suppose that we want to prove that a very general fibre of �V  is not stably rational. 
We would then assume the contrary, arguing by contradiction, and the classical degenera‑
tion method [8, Thm. 1.14] would then proceed as follows: assume that the special fibre V 
is sufficiently mildly singular, in particular integral with a CH0-universally trivial resolu-
tion of singularities f ∶ Ṽ → V  (meaning f∗ ∶ CH0(ṼK� ) → CH0(VK� ) is an isomorphism 
for all overfields K′ ⊃ K ). Then the fact that VK̄ is universally CH0‑trivial would imply that 
Ṽ  is universally CH0‑trivial as well. Ṽ  being smooth, we can now use various obstructions, 
such as nonzero Brauer classes, to show that Ṽ  is in fact not universally CH0‑trivial and get 
a contradiction.

Definition 5.2 A prelog d-cycle Z on some simple normal crossing scheme X =
⋃

i Xi 
is a tuple of d‑cycles (Zi) with support |Zi| on the normalization X� such that for every 
Xij = Xi ∩ Xj we have 

(a) [Zi].[Xij] = [Zj].[Xij] in CH ∗(Xij).
(b) |Zi| ∩ Xij = |Zj| ∩ Xij , set‑theoretically.

Here (a) means that ([Zi]) ∈ R(X).
A prelog cycle determines a prelog cycle class in CH∗

prelog
(X).

Definition 5.3 Let �V ∶ V → C be a strictly semistable degeneration over a smooth curve 
C with distinguished point t0 . Let �X ∶ X → C be a strictly semistable family fitting into a 
diagram 

�V ∶ V → C
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where the map � is a birational morphism that is an isomorphism outside the central fibres.
Let Xi , i ∈ I , be the irreducible components of X, and Xij = Xi ∩ Xj their mutual inter‑

sections for i ≠ j.
We say that X has a prelog decomposition of the diagonal relative to the given family 

X → C if there exists a ramified cover C′
→ C , and a point t′

0
↦ t0 , such that the follow‑

ing hold: let �X′ be the specialisation homomorphism for the family X′
→ C′ induced by 

X → C

Define

for pL an L‑rational point of VL . We use the identification X = X
�
t�
0

 . Then we require that 
there exist cycles Ai on Xi such that 

(1) (Ai) is a prelog cycle on X.
(2) Let � ∶

⋃
i∈I Xi → X be the normalisation. Then the cycle

 is divisible by r ∈ ℕ>0 as a cycle on X (not a cycle class!) and the class of the cycle 

 is equal to �.
(3) None of the Ai dominate any component of V under the morphism 

pr1◦� ∶ X → V × V → V .

Notice that a family X → C satisfying the assumptions of the above Definition can be 
obtained according to [22, Prop 2.1] by some succession of blow‑ups of components of the 
central fibre of V ×C V → C that are not Cartier in the total space.

Theorem 5.4 Given a strictly semistable degeneration V → C such that VK̄ has a (Chow-
theoretic) decomposition of the diagonal, and given any strictly semistable modification 
X → C of the product family V ×C V → C, the central fibre X has a prelog decomposition 
of the diagonal relative to X → C.

Proof Since VK̄ has a (Chow‑theoretic) decomposition of the diagonal, there is a finite 
extension L ⊃ K corresponding to a ramified cover C′

→ C such that VL ∶= VK ×K L has 

�X� ∶ CH ∗(VL ×L VL) → CH ∗(Xt�
0
).

� = �X� ([ΔVL
]) − �X� ([VL × {pL}])

∑
i∈I

�∗Ai

1

r

∑
i∈I

�∗Ai
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a decomposition of the diagonal. This means that there is a cycle ZL on VL × VL and an 
L‑rational point pL of VL such that

and ZL does not dominate VL via the first projection.
Consider �X� ∶ X

�
→ C� and a point t′

0
 mapping to t0 . Again identify X′

t′
0

 with X. The 
cycle ZL corresponds to a relative cycle ZU over some open subset U in C′ . The image of 
the specialisation map applied to ZL is obtained as follows: take the closure Z  of ZU in X′ 
and intersect this with X, which is a Cartier divisor since

This gives a well‑defined cycle class in CH ∗(X) which is �X� (ZL) . Since X′
→ C′ is a 

base change of a strictly semistable family X → C , in particular, X  is smooth, all compo‑
nents Xi of X are ℚ‑Cartier on X′ ; hence we can find a natural number r such that every rXi 
is Cartier on X′ . More precisely, if the map of germs of pointed curves (C�, t�

0
) → (C, t0) is 

locally given by t ↦ ts , then locally around a general point on the intersection of two com‑
ponents of X, the family X  is given by xy − t = 0 , and the family X′ by xy − ts = 0 , and we 
can choose r = s.

We can define cycles Ai on Xi by intersecting rXi with Z  . The properties (a) and (b) of 
Definition 5.2 are then satisfied. For (b) this is clear by construction. For (a) note that we 
have

as cycle classes on Z ∩ Xi ∩ Xj . Let us interpret the left hand side: firstly Z.(rXi) = Ai , a 
cycle class supported on Xi . To intersect this further with rXj , one has to restrict the Cartier 
divisor rXj to Ai . To do this one can first restrict rXj to Xi to get a Cartier divisor on Xi 
which one then restricts further to Ai . Now rXj restricted to Xi is nothing but the Cartier 
divisor Xij on Xi : from the local equations above, if Xi is locally given by x = t = 0 and 
Xj by y = t = 0 , and the Cartier divisor rXj by y = 0 on X� = (xy − tr = 0) , then restrict‑
ing the equation y = 0 to x = t = 0 gives the Cartier divisor Xij = (x = y = t = 0) on 
Xi = (x = t = 0) . Thus Z.(rXi).(rXj) = Ai.[Xij] and analogously Z.(rXj).(rXi) = Aj.[Xij] . 
This shows (a). Hence Definition 5.3(1) holds.

The cycle

is by construction equal as a cycle to r times the cycle obtained by intersecting Z  with X 
(since they are equal as cycle classes supported on |Z| ∩ |X| by Fulton’s refined intersec‑
tion theory). Hence Definition 5.3(2) holds.

For the property Definition 5.3(3), notice that there exists a relative divisor DU in V′ 
over U, where V′

→ C′ is obtained via base change from V → C , such that ZU is contained 
in D ×C� V

� . Then Z ∩ X is contained in the intersection of the closure of D ×C� V
� in X′ 

with X, which maps to the intersection of the closure of D ×C� V
� in V� ×C� V

� with V × V  
under � .   ◻

Remark 5.5 Notice that the class

[ΔVL
] = [VL × {pL}] + [ZL]

X = �−1

X
� (t

�
0
).

Z.(rXi).(rXj) = Z.(rXj).(rXi)

∑
i∈I

�∗Ai
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is an element of Chowprelog,sat (X) . Moreover, the classes in Chowprelog,sat (X) arising 
in this way from prelog cycles (Ai) satisfying (1), (2), (3) in Definition 5.3 form a sub‑
group Chowprelog,nd (X) of Chowprelog,sat (X) . With this X has a prelog decomposition of the 
diagonal relative to the given family X → C if � ∈ Chowprelog,nd (X) , where we defined 
� = �X� ([ΔVL

]) − �X� ([VL × {pL}]).

Remark 5.6 In the situation of Theorem 5.4 we can also assume more strongly that the 
central fibre X has a prelog decomposition of the diagonal relative to X → C satisfying the 
following additional condition: every connected component of the cycle 

∑
i �∗Ai of Defini‑

tion 5.3 satisfies Condition (1) of that Definition separately.

6  Saturated prelog Chow groups of degenerations of cubic surfaces

In this section we consider a degeneration of a smooth cubic surface S into three planes. 
More precisely let f = 0 be an equation of S and let 

 be the degeneration defined by

Here x, y, z, w are coordinates of ℙ3 and t is the coordinate of �1 . The central fiber Y of Y  
consists of three coordinate planes. The singularities of Y  lie on the intersection of two of 
these planes with f = 0 . We assume f to be generic enough, such that these are three dis‑
tinct points on each line, none of them in the origin. Figure 2 depicts this situation.

To desingularize Y  we first blow up the z = t = 0 plane in Y  . In the central fiber this 
amounts to blowing up P1,… ,P6 in this plane. Next we blow up the strict transform of 
the x = t = 0 plane which amounts to blowing up P7,P8,P9 in that plane. The third plane 
is left unchanged. We thus obtain a strictly semistable degeneration

whose central fiber X = X1 ∪ X2 ∪ X3 is skeched in Fig.  3, where we have denoted the 
exceptional divisor over Pi by Ei.

Proposition 6.1 In this situation

which nicely coincides with CH 1(S).

[
1

r

∑
i∈I

�∗Ai

]

xyz − tf = 0.

� ∶ X → �
1

CH 1
prelog

(X) = CH 1
prelog,sat

(X) = ℤ
7.
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Proof For the convenience of the reader we give a slow walk through the necessary com‑
putations. A Macaulay2 script doing the same work is available at [5].

We calculate the codimension 1 part of CH∗
prelog

(X) . Here we have

The intersections of two components is always a ℙ1 whose Chow group we can identify 
with ℤ via the degree map.

Finally X1,2,3 is a point with CH 0(X1,2,3) = ℤ . The diagram 2.9 is therefore 

3�
i=1

CH 1(Xi) = ⟨H1,E1,… ,E6,H2,E7,… ,E9,H3⟩ = ℤ
12

⨁
1≤i<j≤3

CH 1(Xij) = ℤ
3.

Fig. 2  The central fiber before 
resolution

Fig. 3  The central fiber after 
resolution
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 Now notice that the image of X1,2 in X1 has the class

while its image in X2 has the class

Similarly

With this we obtain

Here for example the first line says that X1,2 is mapped to (H1 − E1 − E2 − E3) − H2 . We 
also get

Here the first column says that H1 intersects X1,2 and X1,3 but not X2,3 . Notice also that 
the sign convention says that the restriction of a divisor on X1 is positive on both X1,2 and 
X1,3 because 1 is the smaller index in both cases. A divisor in X2 is restricted with negative 
sign to X1,2 but with positive sign to X2,3 . A divisor on X3 is restricted with negative sign to 
both X1,3 an X2,3 . Finally we get

A good check that we got everything right is that indeed �� = ���� (this is the Friedman 
condition).

[𝜄∗
{1,2}>{1}

(X1,2)] = H1 − E1 − E2 − E3,

[𝜄∗
{1,2}>{2}

(X1,2)] = H2.

[𝜄∗
{1,3}>{1}

(X1,3)] = H1 − E4 − E5 − E6,

[𝜄∗
{1,3}>{3}

(X1,3)] = H3,

[𝜄∗
{2,3}>{2}

(X2,3)] = H2 − E7 − E8 − E9,

[𝜄∗
{2,3}>{3}

(X2,3)] = H3.

� =

⎛⎜⎜⎝

1 −1 −1 −1 0 0 0 −1 0 0 0 0

1 0 0 0 −1 −1 −1 0 0 0 0 −1

0 0 0 0 0 0 0 1 −1 −1 −1 −1

⎞⎟⎟⎠
.

� =

⎛⎜⎜⎝

1 1 1 1 0 0 0 −1 0 0 0 0

1 0 0 0 1 1 1 0 0 0 0 −1

0 0 0 0 0 0 0 1 1 1 1 −1

⎞⎟⎟⎠

t

.

�� =
(
−1 1 −1

)
and � =

(
1 −1 1

)t
.
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Now one can check that � is injective and that the image of � is saturated in ℤ12 . This 
can be done for example by checking that the gcd of the 3 × 3 minors is 1. Similarly one 
can check that � is surjective.

This shows that the diagram reduces to 

We can compute a representative matrix for � by calculating generators for the kernel of 
� . Since the image of � is saturated in ℤ12 a representative matrix for �∗ is obtained by

We can thus calculate ��∗ . One can check that this matrix has rank 7 and the image is satu‑
rated in ℤ9 . Therefore

  ◻

We now recall the classical log‑geometric count of the 27 lines on a cubic surface. 
Assume that we have a degeneration 

 with the generic fiber of L  a line in a cubic surface. The special fiber L ⊂ Y  is then 
a line in one of the coordinate planes. Its preimage L ⊂ X is a prelog cycle. Because of 
the prelog condition L cannot intersect the coordinate lines outside of the singular points. 
Therefore we have on each of the 3 planes 3 × 3 possibilities to connect 2 singularities on 
the 2 adjacent coordinate lines. So in total we have 3 ⋅ 3 ⋅ 3 = 27 possible “lines” on Y. 
Using log geometry one can then also prove that each of these lines indeed comes from a 
line on S and that each line in Y occurs only once as a limit.

Here we exhibit the 27 prelog cycles on X that map to the above 27 lines on Y:

Proposition 6.2 The following 27 cycles on X are prelog cycles (see Fig. 4):

ker(�t)t.

CH 1
prelog

(X) = CH 1
prelog,sat

(X) = ℤ
7.
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These are the preimages in X of lines connecting two singularities of Y  in Y. One can 
choose 7 such cycles that generate CH 1

prelog
(X).

Proof In the first case H1 − Ei − Ej intersects neither H1 − E1 − E2 − E3 , the images of X1,2 
in X1 , nor H1 − E4 − E5 − E6 , the image of X1,3 in X1 . Therefore there need not be cycles on 
X2 or X3 matching with it on X1,2 or X1,3.

In the second case Ej intersects the image of X1,2 but not the image of X1,3 on X1 . At the 
same time H2 − Ej intersects X1,2 but not X2,3 on X2 . Therefore there need not be a cycle on 
X3 matching with them on the intersection. A similar reasoning proves the third case.

For a given set of 7 lines one can check the assertion by calculating their images in 
CH 1(X) = ℤ9 and check whether they form a saturated sublattice of rank 7. A computer 
program can easily find a set of 7 cycles that works. One such is exhibited in [5].   ◻

(H1 − Ei − Ej, 0, 0) i ∈ {1, 2, 3}, j ∈ {4, 5, 6}

(Ei,H2 − Ej, 0) i ∈ {1, 2, 3}, j ∈ {7, 8, 9}

(Ei,Ej,H3) i ∈ {4, 5, 6}, j ∈ {7, 8, 9}

Fig. 4  The 27 prelog lines of 
Proposition 6.2
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7  Degenerations of self‑products of elliptic curves and their prelog 
Chow rings

We continue with the example of the self‑product of an elliptic curve that will serve as 
an illustration of the degeneration method used to prove stable irrationality. Certainly a 
smooth elliptic curve E is not stably rational and does not have a decomposition of the 
diagonal. To see the latter, suppose you could write, for rational or even just homological 
equivalence,

with p, qi points on E and ai ∈ ℤ . We restrict to homological equivalence for simplicity. 
Intersecting both sides of the equation with E × q for another point q ≠ p , we find that 
q =

∑
aiqi and we may thus assume that

Then, intersecting this equation with the cycle T = {(x, x + p0) ∣ x ∈ E} , where +p0 is 
translation on E by a point p0 different from zero, gives a contradiction: the left hand side 
results in a class of degree 0 and the right hand side in a class of degree 2.

Whereas this is well known and easy, it is nevertheless reassuring that we can also 
deduce it from Theorem 5.4, considering a degeneration �V ∶ V → C of plane cubic curves 
into a triangle of lines V (we keep the notation of the preceding section). Here �V  is strictly 
semistable, but if we form V ×C V → C , the total space has singularities at points where 
four components of the central fibre intersect (which also then fails to be simple normal 
crossing).

This gives rise to nine nodes of the total space. Blowing these up, we get the picture 
schematically depicted on the left of Fig. 5: each node gets replaced by a ℙ1 × ℙ1 that is 
a component of the central fibre. However, as components of the new scheme‑theoretic 
central fibre, these ℙ1 × ℙ1 ’s will have multiplicity 2, and the resulting family is not strictly 

ΔE = E × p +
∑
i

ai(qi × E)

ΔE = E × p + q × E.

Fig. 5  A semistable modification of the product family
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semistable. Therefore we contract the lines of one ruling of each of these quadrics to arrive 
at the picture on the right of Fig. 5 (we contract in the “North‑West South‑East direction" 
in the Figure). Here each hexagon is a ℙ2 with three points blown up, and the intersection 
of two such “hexagons" is a (−1)‑curve in each of the surfaces. In this way we obtain a 
strictly semistable modification � ∶ X → C of the product family. Here we do not follow 
the resolution scheme suggested in [22, Prop 2.1] as our method leads to a more symmetric 
central fibre. The green line in Fig. 5 indicates the specialization of the diagonal, and the 
red line that of “elliptic curve times a point". The blue line is the specialization of “point 
times elliptic curve".

On each one of the hexagons, ℙ2 ’s blown up in three points, there is thus a basis of the 
Picard group consisting of the pullback H of the hyperplane class, and the three excep‑
tional divisors E1,E2,E3 . One can identify the boundary components of each hexagon, pro‑
ceeding in clockwise direction, with E1,H − E1 − E2,E2,H − E2 − E3,E3,H − E1 − E3.

Proposition 7.1 The following hold: 

(1) The classes of the red, green and blue lines in Fig. 5 generate CH1
prelog

(X) modulo tor-
sion.

(2) The classes of the red, green and blue lines in Fig. 5 together with the half of their sum 
generate CH 1

prelog,sat
(X).

Proof Part a) is a computation of the same type as in the proof of Proposition 6.1 and can 
be found in [5]. We observe that in this case the diagram of Proposition 2.9 is of the form 

 Let �̄�∗ be the composition of �∗ with the projection to ℤ11 . The composition 𝜑◦�̄�∗ is an 
11 × 11 matrix representing CH1

prelog
(X) modulo torsion. A computation done in [5] shows 

that the rank of this matrix is 3 in every characteristic except char = 2 where it is 2. The 
sum of the red, green and blue lines is divisible by 2, which gives b).   ◻

Corollary 7.2 There is no prelog decomposition of the diagonal for X relative to the fam-
ily � ∶ X → C satisfying the additional stronger condition of Remark 5.6.

Proof The class � of Definition  5.3 is the difference between the green and red lines, 
regardless of the cover C′

→ C we may have to pass to. If (Ai) is a prelog cycle on X sat‑
isfying (3) of Definition 5.3, then applying �◦pr1 to 

∑
i �∗Ai is a union of points in V. We 

want to show that the cycle class of 
∑

i �∗Ai must be a multiple of the cycle class of the blue 
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line. This will give a contradiction since the classes of the blue, green and red lines are 
independent over ℤ . For this it is sufficient to consider the case where 

∑
i �∗Ai maps to one 

point p in V. It is clear that the support of 
∑

i �∗Ai is contained in the fibre (�◦pr1)−1(p) . We 
distinguish two cases: (1) p is in the smooth part of the triangle of lines V; (2) p is a vertex 
of that triangle. In case (1), we obviously have to take all components of the fibre with 
equal multiplicities to get a prelog cycle (which is depicted in Fig. 5, blue line). In case (2), 
consider Fig. 6.

The prelog cycle can be written as

The prelog condition at the shaded edges gives:

Moreover, �∗X is in the prelog Chow ring. Let r, g be the intersection numbers of �∗X with 
the element given by the red and green cycles, respectively. We have

and by Proposition 2.3, moving the red cycles to the second and third rows of hexagons 
(i.e., replacing them by rationally equivalent ones) we also get

Similarly, considering the green cycles we find

The equations imply that r is equal to g and all �i ’s are equal to each other, and the same 
holds for the �j’s.   ◻

X =

6∑
i=1

�iAi +

6∑
j=1

�jBj.

�2 = �3, �4 = �5, �6 = �1,

�1 = �2, �3 = �4, �5 = �6.

�1 + �1 = r

�3 + �3 = �5 + �5 = r.

�2 + �2 = �4 + �4 = �6 + �6 = g.

Fig. 6  A representation of the 
prelog cycle
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Appendix 1: Interaction with the Gross–Siebert programme

In this section we reformulate the two main examples of this paper in the language of 
the Gross–Siebert programme. This concerns the degeneration of a cubic surface and the 
degeneration of the self‑product of an elliptic curve. Our goal here is to illustrate how the 
prelog Chow rings fit with the constructions of the Gross–Siebert programme. We do not 
give proofs as the results are already proven in the preceding sections. We introduce the 
concepts and construction of the Gross–Siebert programme that we need and refer the 
interested reader to [7, 13, 14] for more details.

While we do not strive for maximal generality, it will be clear how the examples natu‑
rally generalize to degenerations of hypersurfaces in smooth projective toric varieties and 
to degenerations of abelian varieties. The families are described by combinatorial data and 
we will see how 1‑cycles in the general fiber correspond to tropical curves in the dual inter‑
section complex.

For cubic surfaces, we start with the polytope of ℙ3 polarized by O(3) as given by the 
convex hull in ℝ3 of (−1,−1,−1) , (2,−1,−1) , (−1, 2,−1) and (−1,−1, 2) . We take its inte‑
gral regular subdivision obtained by adding the convex hull of each vertex with the edge 
joining (−1,−1,−1) with (0, 0, 0). This determines a degeneration of ℙ3 into the union of 
three copies of ℙ3 each polarized by O(1) . Moreover, a generic section of Oℙ3 (3) degener‑
ates into the union of three hyperplanes. This degeneration is however not strictly semista‑
ble, there are 9 focus-focus singularities, 3 each on the intersection of the hyperplanes, cf. 
Fig. 7. These singularities correspond to the locus where the family is not log smooth (and 
hence also not strictly semistable).

One could now proceed by resolving the singularities as in Sect. 6. For our purposes, we 
however already have enough information to read off the (−1)‑curves from the dual picture, 
namely the dual intersection complex of Fig. 8. Indeed, the (−1)‑curves correspond to the 
lowest degree tropical curves of [7, 13]. These are formed by choosing two of the compact 
edges and on each edge a focus‑focus singularity. From each of the singularities, a ray 
is emitted along the compact edge into the direction opposite to the third compact edge. 
When they meet, they combine according to the balancing condition to a ray that is identi‑
fied with the corresponding ray of the fan. Clearly, there are 27 of them.

We turn to degenerations of abelian varieties, in particular the degeneration of 
E × E from Sect.  7. They fit into the framework of degenerations of abelian varie‑
ties as studied by Mumford [23] and Alexeev [1]. We follow the general framework by 

Fig. 7  The intersection complex 
for the degeneration of a cubic 
surface. There are 9 focus‑focus 
singularities along the inner 
edges

+
+

+

×
×
×

× × ×
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Gross–Hacking–Siebert [14, Section  6]. While we do not give a full treatment, it will 
be clear how strictly semistable degenerations as in [14, Section 6] can be used to study 
Chow groups of abelian varieties. Moreover, the examples below illustrate the concepts 
and results of this paper. The degenerations are encoded by combinatorial information on 
integral affine tori.

Definition 1.1 A differentiable manifold B is an integral affine manifold if its transition 
functions are in Aff(ℤn) ∶= ℤn

⋊ GL(ℤn) . The set B( 1
d
ℤ) ⊆ B of 1/d‑integral points is 

given chartwise locally by the preimage of 1
d
ℤn ⊆ ℝn . B comes with a sheaf of integral 

tangent vectors Λ , resp. cotangent vectors Λ̌.

Let n ∈ ℕ , let M ≅ ℤn be a lattice and write Mℝ ∶= M ⊗ℤ ℝ . Let Γ ⊆ M be a rank n 
sublattice. Then the real n‑torus B ∶= Mℝ∕Γ inherits an integral affine structure from Mℝ . 
Moreover, a Γ‑periodic integral polyhedral decomposition P of Mℝ induces an integral 
polyhedral decomposition P of B. We call the elements of P the cells of B. For a cell � , 
we may consider the restriction Λ� , resp. Λ̌𝜏 , of Λ , resp. Λ̌ , to �.

This datum is enough to determine the central fiber X0 . Each cell � is an integral poly‑
hedron and hence determines a toric variety ℙ� and X0 is given by gluing the ℙ� as pre‑
scribed by P . Next we describe the deformation of X0 . We are interested in 1‑parameter 
deformations and restrict to that generality here. In the notation of [14], this means setting 
Q = ℕ.

Definition 1.2 A piecewise affine function on an open set U ⊆ B is a continuous map 
U → ℝ which restricts to an integral affine function on each maximal cell of P . The sheaf 
of piecewise affine functions is denoted by PA(B) . The sheaf MPA(B) of multivalued 
piecewise affine (MPA-) functions on B is the quotient of PA(B) by the sheaf of affine func‑
tions on B.

Let � be a MPA‑function on B, i.e. a global section of MPA(B) . Let � be a codimen‑
sion 1 cell separating two maximal cells � , �′ and let P ∈ � be an interior point. Choose a 
primitive vector v ∈ ΛP that complements an integral basis of Λ�,P to an integral basis of 
ΛP . Consider the integral span L of v. We identify L with ℤ by choosing the non‑negative 
vectors to point into �′ . Choosing a representative, � induces a piecewise affine function 
𝜑P ∶ L⊗ℤ ℝ = ℝ → ℝ . Denote by n, resp. n′ , the slope of �P on ℝ≤0 , resp. ℝ≥0 . The kink 

Fig. 8  A sketch of the dual 
intersection complex for the 
degeneration of a cubic surface. 
Locally around the 3 vertices, 
the affine structure is given by 
the fan of ℙ2 . Each of the edges 
shared by two of the ℙ2 has 3 
focus‑focus singularities on it. 
One of the 27 (−1)‑curves is 
drawn in green. For the integral 
affine manifold with singulari‑
ties (dual intersection complex) 
that correctly captures the cuts 
induced by the focus‑focus singu‑
larities, see [13, Figure 1.5(3a)]

+
+
+

+
+

+

× × ×
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of � along � is defined to be ��(�) ∶= n� − n ∈ ℤ . As an MPA‑function, � is determined 
by the set of kinks across codimension 1 cells. � is said to be convex if all of its kinks are 
non‑negative.

Example 1.3 Consider ℝ2 with the standard integral structure and consider the polyhe‑
dral decomposition given by the diagonal x = y . Denote by � , resp. �′ , the upper left, resp. 
bottom right, halfplane. Define the piecewise linear function � by setting �|� ∶= y and 
�|�� ∶= x . Choose P to be the origin. Then L as above is for example the span of (1, 0) and 
� is seen to have kink 1.

Let � be a cell of codimension 2 and let �1,… , �k be the adjacent cells of codimension 
1. We work in a chart around a vertex P ∈ � . For 1 ≤ i ≤ k , let ni ∈ Λ̌P be a primitive 
cotangent vector normal to Λ�i

 . The signs of the ni are chosen by following a simple loop 
around the origin of ΛP ⊗ℤ ℝ∕Λ𝜏,P ⊗ℤ ℝ . The balancing condition states that

When the balancing condition is satisfied at each vertex P of each codimension 2 cell � , 
� is locally single‑valued.

While we give a global description of the family below, we can already write down 
local equations, which detect semistability. We denote the smoothing parameter by t. The 
family is defined order by order and is given over Specℂ[t]∕tk+1 for some k. To each cell � 
we define a ℂ[t]∕tk+1‑algebra R� and gluing morphisms according to [14, Section 2.2]. The 
construction is explained by locally at P taking the monoid M̂P which is the upper convex 
hall of the graph of � , then the local rings are given as ℂ[M̂P]∕t

k+1 , where t is identified 
with z0⊕1 , cf. below. We refer for details to [14, 19] and only give an overview here. Note 
that there is no wall structure present, which greatly simplifies the construction. Locally, 
everything is toric and the gluing morphisms are given by identifying monomials in the 
coordinate rings of algebraic tori. The M̂P are the local monoids of the polytope Ξ� below.

For a maximal cell � , R� ∶=
(
ℂ[t]∕tk+1

)
[Λ�] gives an algebraic torus over the base. 

At any point P and for v⊕ m ∈ ΛP ⊕ ℤ , we write zv⊕m for the corresponding element in 
ℂ[ΛP ⊕ ℤ] = ℂ[ΛP][t] . Let P ∈ � be an interior point of a codimension 1 cell � separating 
two cells �+ and �− . Let v+ ∈ ΛP be an integral vector pointing into �+ and completing an 
integral basis of Λ�,P to an integral basis of ΛP . Denote by v− the opposite of v+ , pointing 
into �− and write Z+ = zv+⊕ d𝜑P(v+) and Z− = zv−⊕ d𝜑P(v−) . Notice that v± ⊕ d𝜑P(v±) ∈

�MP 
are elements of the boundary. Then

reflecting the fact that

in M̂P . Notice that compared to [14, Equation (2.11)], the wall‑crossing functions f� = 1 as 
we are only considering degenerations of abelian varieties.

We have just described the deformation family away from codimension ≥ 2 cells. Look‑
ing at the shape of the equations, we conclude that in a neighborhood of an interior point 
of ℙ� , the family is semistable. Notice that while the construction depends on choosing v+ , 

k∑
i=1

𝜅𝜌i (𝜑)⊗ ni = 0.

R� ∶=
(
ℂ[t]∕tk+1

)
[Λ�][Z+, Z−]

/(
Z+Z− − t��(�)

)
,

(
v+ ⊕ d𝜑P(v+)

)
+
(
v− ⊕ d𝜑P(v−)

)
= 𝜅𝜌(𝜑)
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this dependency is removed when identifying Z+ with the corresponding element in R�+
 . 

Semistability at codimension ≥ 2 cells is not guaranteed as the following discussion shows.
At points of cells in codimension 2, the equations depend both on the local structure 

of how the codimension 1 cells meet and the kinks. We describe two examples, which the 
reader will recognize from Sect. 7.

Example 1.4 Start with M = ℤ2 and let Γ be generated by (3, 0) and (0, 3). Figure 9 gives a 
Γ‑periodic polyhedral decomposition of the 2‑torus. The central fiber is obtained by gluing 
copies of ℙ1 × ℙ1 . For the deformation, we choose the kink to be 1 across all edges. Alter‑
natively, we could have rescaled � by a factor of 2, which would correspond to choosing 
the kink to be 2 across all edges. The latter family is obtained by the base change t ↦ t2.

Locally around interior points of the edges, the family is given by Z+Z− = t . Locally 
around the vertex (1,  1), write z1 = z(1,0)⊕1 , z2 = z(−1,0)⊕0 , z3 = z(0,1)⊕1 and z4 = z(0,−1)⊕0 . 
Then the local equation is z1z2 = z3z4 = t and hence the family is not semistable.

Example 1.5 Start with M = ℤ2 and let Γ be generated by (6, 3) and (3, 6). Figure 10 gives 
a Γ‑periodic polyhedral decomposition of the 2‑torus. The central fiber is given by gluing 
copies of degree 6 del Pezzo surfaces. For the deformation, we choose the kink to be 1 
across all edges.

Locally around interior points of the edges, the family is given by Z+Z− = t . Locally 
around the vertex (2,  2), write z1 = z(−1,0)⊕0 , z2 = z(0,−1)⊕0 and z3 = z(1,1)⊕1 . Then the 
local equation is z1z2z3 = t and similarly for other vertices. We conclude that the family is 
semistable.

Next, we describe the global construction of [14, Section  6] yielding a formal family 
X̂ → Spfℂ[[t]] as the quotient of a non‑finite type fan. We will see how to detect the prelog 

Fig. 9  A product polyhedral 
decomposition of the 2‑torus 
with a representative of a convex 
MPA‑function determined by 
choosing the kink to be 1 across 
all edges. The balancing condi‑
tion is satisfied and the MPA‑
function is locally single‑valued
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1‑cycles in Example 1.5 as well as how Example 1.5 is a logarithmic modification of Example 
1.4.

For � ∈ Γ , the Γ‑periodicity of � states that there is an affine linear function �� such that

Start with the polytope

on which � ∈ Γ acts via

�(x + �) = �(x) + �� (x).

Ξ𝜑 ∶=
{
(m,𝜑(m) + q) || q ∈ ℝ≥0

}
⊆ Mℝ ×ℝ,

(m, q) ↦ (m + � , q + �� (m)).

BÖHNING, VON BOTHMER, AND VAN GARREL

•
(0,0)

•
(6,3)

•
(3,6)

•
(9,9)

2

x

y 2x−4

2y−4

x+y−3

2x+y−8

x+2y−8

2x+2y−14

Fig. 10  A polyhedral decomposition of the 2‑torus with a representative of a convex MPA‑function. The 
kink is 1 across horizontal or vertical edges, and 2 across diagonal edges, which determines the smoothing. 
The balancing condition is satisfied and the MPA‑function is locally single‑valued
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Next, consider the normal fan Σ to Ξ� . Σ is a fan in Nℝ ×ℝ with support contained in 
Nℝ ×ℝ≥0 , where N = Hom(M,ℤ) . Σ admits a natural map to the fan ℝ≥0 of �1 given by 
the projection to the last coordinate. Σ is the cone over the faces �̌� of the dual polyhedral 
decomposition P̌ of Nℝ . Denoting by XΣ its associated toric variety, which is not of finite 
type, we thus have a flat morphism

The generic fiber is the algebraic n‑torus. Each ray of Σ , dual to a maximal cell � of 
B, corresponds to the component ℙ� of the central fiber. More precisely, for � a maximal 
cell of B,

is the corresponding maximal face of Ξ� , and the primitive normal vector to this face is (
−d(�|�)t(1), 1

)
 . From this description, we see that Example 1.4 is the product family of a 

degeneration of an elliptic curve into a cycle of three ℙ1 . It is also clear that scaling � by a 
factor r corresponds to dilating P̌ by r.

Denote by Σ� , resp. Σ , the fan for the family of Example 1.4, resp. Example 1.5 and 
by P̌

′
 , resp. P̌ , the respective polyhedral decompositions of Nℝ . Then P̌ is obtained 

from P̌
′
 by refining the decomposition, i.e. Σ is a refinement of Σ� . In other words, the 

family XΣ is a log modification of the family XΣ�.
The action of Γ on Ξ� induces an action of Γ on Σ by

The quotient

gives the degeneration of abelian varieties X → Specℂ[t]∕tk+1 over a thickened point. 
Using [30, Theorem 4.4], it can be extended to an analytic family (Fig. 11).

Next, we describe the prelog 1‑cycles of Example  1.5 from the dual intersection 
complex of Fig. 12. Denote by Σ the corresponding fan. The cone over the dual intersec‑
tion complex is actually the tropicalization of the family. Moreover, we can look at the 
tropicalization of a family of curves in the family. By functoriality, the tropicalization of 
the family of curves maps to the dual intersection complex. In other words, a family of 
curves limits to both prelog 1‑cycles in the prelog Chow group of the central fibre, and 
tropical curves in the dual intersection complex. A priori, tropical curves are decorated 
by homology classes at their vertices, but since the components of the central fiber are 
toric, its Chow groups are identified with singular homology.

Consider a family of curves in the degeneration that over a very general fibre special‑
ises to a generator of CH1(E × E) . This family determines both an element of the prelog 
Chow group of the central fibre, and a tropical curves. In fact, let ΣE be the fan in ℝ2 
whose rays are generated by (m, 1) for m ∈ ℤ , which by projection to the second com‑
ponent admits a natural morphism to the fan of �1 . Taking the quotient by the action 
that identifies the rays (m, 1) and (m�, 1) if m − m� ∈ 3ℤ , we obtain the degeneration of 
a genus 1 curve into a cycle of three ℙ1 . At the level of the fans, we have three natural 
maps inducing vertical, horizontal and diagonal morphisms XΣ� → XΣ , which descend to 
the quotient. See Fig. 13 for the corresponding tropical curve.

f ∶ XΣ → Specℂ[t].

{
(m,�(m) ||m ∈ �

}

� ∶ (n, p) ↦
(
n + (d�� )

t(p), p
)
.

(
XΣ ×Specℂ[t] Specℂ[t]∕t

k+1
)/

Γ → Specℂ[t]∕tk+1
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The behavior of the prelog Chow ring of this family under base change is informa‑
tive. Let C = Specℂ[[t]] , C� = Specℂ[[s]] , and consider the base change C′

→ C given 
by t = sr for some positive integer r. Denote by V → C the degeneration of the elliptic 
curve E into a cycle of 3 lines. Denote by X  the semistable modification given by the 
quotient of the fan of Fig. 12, with central fiber X: 

 Then we can consider the base change 

• • • •
• • • •
• • • •
• • • •

• • • •

• • • •

• • • •

• • • •

Fig. 11  The dual intersection complex of two degenerations of E × E differing by base change. Each vertex 
corresponds to a copy of ℙ1 × ℙ1 in the central fiber. Scaling � by a factor of 2 on B corresponds to dilat‑
ing the decomposition by a factor of 2. Locally, the family is given by the cone over the dual intersection 
complex

Fig. 12  The dual intersection 
complex of the semistable degen‑
eration of E × E of Example 1.5. 
The location of the vertices are 
read off from the slopes of � . 
The resulting family is a log 
modification of the family of 
Example 1.4

•(0,0) • • •(3,0)

• • • •

• • • •

•(0,3) • • (3,3)•
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 which corresponds to multiplying the kinks of Fig. 10 by a factor of r and to dilating 
the dual intersection complex of Fig. 12 by a factor of r. We see that the total family is not 
smooth. This is remedied by subdividing further in the natural way, see Fig. 14 for the case 
r = 2 , leading to a new central fiber X′′

r
 . Then X′′

r
 consists of 9r2 copies of the degree 6 del 

Pezzo surface glued together in a way analogous to Fig. 10. Clearly no new prelog cycles 
have been introduced.

In higher dimensions, using the same method, we can describe specializations of cycles 
that are lower‑dimensional abelian varieties, as torically described prelog cycles of the spe‑
cial fiber. Here we use the basic fact that toric subvarieties of toric varieties can be read off 
from the fan.

For a Mumford degeneration of an abelian surface, the tropical lifting problem is stud‑
ied by Nishinou in [28] with a full solution in the case of 3‑valent tropical curves. This is 
the question whether a tropical curve in the dual intersection complex can be lifted to a 
family of degenerating holomorphic curves with tropicalization the given tropical curve. 
Studying curves by their tropicalization is of course a much finer classification problem 
than studying them by their class in the prelog Chow group.

In all dimensions, having constructed the family, [14] obtain sections of (powers of) the 
ample line bundle that the construction comes with. These are the theta functions, which 
up to a factor agree with the classical theta functions. The theta functions are indexed by 
B(

1

d
ℤ) and their multiplication is given by the multiplication of broken lines. A careful 

analysis reveals the equations of the family in a high dimensional projective space. We 
refer the reader to [14] for details.

•(0,0) • • •(3,0)

• • • •

• • • •

•(0,3) • • (3,3)•

•

•

•

•

Fig. 13  A morphism of dual intersection complexes induced by a morphism of fans, giving all generators of 
CH

prelog

1
(X0)
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