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Abstract
The development of sodium-ion (SIBs) and potassium-ion batteries (PIBs) has increased rapidly because of the abundant 
resources and cost-effectiveness of Na and K. Antimony (Sb) plays an important role in SIBs and PIBs because of its high 
theoretical capacity, proper working voltage, and low cost. However, Sb-based anodes have the drawbacks of large volume 
changes and weak charge transfer during the charge and discharge processes, thus leading to poor cycling and rapid capacity 
decay. To address such drawbacks, many strategies and a variety of Sb-based materials have been developed in recent years. 
This review systematically introduces the recent research progress of a variety of Sb-based anodes for SIBs and PIBs from 
the perspective of composition selection, preparation technologies, structural characteristics, and energy storage behaviors. 
Moreover, corresponding examples are presented to illustrate the advantages or disadvantages of these anodes. Finally, we 
summarize the challenges of the development of Sb-based materials for Na/K-ion batteries and propose potential research 
directions for their further development.
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Introduction

Lithium-ion batteries (LIBs) have penetrated into every 
aspect of people’s life since their commercial application in 
1991. Portable electronic devices and electric vehicles are 
typically powered by LIBs [1, 2]. However, the dramatic rise 
in the cost of LIBs has risen dramatically due to the uneven 
distribution of lithium sources, and the explosive growth 

in demand restricts large-scale energy storage applications 
in the future [3]. In recent years, sodium-ion (SIBs) and 
potassium-ion batteries (PIBs) have attracted much attention 
because they have the same reaction mechanism as LIBs and 
have the advantages of abundant sodium (Na) and potassium 
(K) resources (Fig. 1a), low cost, and applicable working 
voltage [4–6].

To date, few anode materials for SIBs and PIBs can match 
the status of commercial graphite in LIBs. Therefore, a for-
midable challenge for the universal application of SIBs and 
PIBs is to identify and synthesize practical SIB and PIB 
anode electrode materials with high energy density and 
long cycle stability. Various types of anode materials for 
SIBs and PIBs have been studied in detail, such as carbon 
materials, metals, metal oxides, alloys, sulfides, selenides, 
and phosphides [7–16]; among them, alloy-based materials, 
which usually show a higher theoretical capacity by virtue 
of the alloying reaction mechanism (Fig. 1b), have been 
extensively studied [11, 15]. For example, Si-based materi-
als exhibit a relatively high capacity and poor electrical con-
ductivity that limits their inherent advantages. Another type 
of high capacity material is the phosphorus-based compos-
ites; however, they suffer from both the safety issue and an 
over 440% volume expansion during operation. By contrast, 
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antimony (Sb) and Sb-based hybrids have become promising 
candidates because of their excellent cycle stability, high 
theoretical capacity in both Na- and K-storage, and low price 
[17–20]. However, because the failure phenomenon of Sb-
based materials is difficult to avoid, researchers must explore 
new solutions.

The degradation mechanism of Sb-based anodes in 
SIBs and PIBs can be classified into two aspects: failure 
of the electrode material and deficiency of the battery sys-
tem (Fig. 1c). The nature of the material itself is the most 

important degradation factor. Because of the larger ionic 
radius of Na and K, the volume changes of Sb-based mate-
rials during SIB/PIB cycling are worse than that in LIBs. 
Consequently, Sb-based electrodes will face the following 
failure mechanisms during operation: (1) the volume expan-
sion will cause the material to fall off from the electrode, 
resulting in loss of active materials and gradual reduction of 
the capacity that can be used in the operation of the device 
and (2) the huge volume change (390% for Na, 407% for K) 
during the charge and discharge processes will lead to the 

Fig. 1   a Distribution of element content in the earth. b Theoretical capacity of various materials based on alloying reaction mechanism. c The 
degradation mechanism of Sb-based anodes in SIBs.  Reproduced with permission from Ref. [21]. Copyright 2017, IOP Publishing
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pulverization of Sb-based anode and cause the agglomera-
tion of nanoparticles; these phenomena not only slow down 
the chemical reaction kinetics but also weaken the Coulom-
bic efficiency [17, 20, 21].

In addition to the main factor of material properties, 
systemic factors, such as electrolyte selection and battery 
assembly, will cause degradation of the energy storage per-
formance. In the current electrolytes for SIBs and PIBs, 
many side reactions are prone to occur in the process of 
storing Na/K ions, possibly leading to battery failure [20]. 
In particular, in a full cell, the parasitic reaction occurring 
through the SEI layer will irreversibly consume the Na/K 
ions in electrolytes and lead to sharp capacity losses [21].

To overcome the shortcomings of current anodes, a series 
of Sb-based electrodes in a variety of structures, composi-
tions, and projects were designed and prepared as anodes 
for SIBs and PIBs. As shown in Fig. 2, the enhancement 
strategies mainly involve preparing small-sized nanopar-
ticles, compounding with carbon materials, doping with 
heteroatom dopants, obtaining hierarchical/heterogeneous 
structure, and constructing yolk-shelled/hollow structure.

Each of these methods has particular advantages and 
characteristics. The nanoscale particles can directly enhance 
the reaction kinetics of electrode materials by shortening 
the pathway of electron diffusion and charge transfer. More 
importantly, nanoparticles could further alleviate the drastic 
change of volume during the processes of charge and dis-
charge for SIBs/PIBs. For example, Maksym’s group [22] 
demonstrated that Sb nanocrystals of around 20 nm present 
excellent rate and stable properties when used as the anode 

material in SIBs. In addition, one of the most widely used 
methods is to combine a carbon framework with various 
structures obtained through different synthesis strategies 
because the carbon skeleton usually plays a dual role in 
increasing the electrical conductivity of electrode materials 
and preventing pulverization, thereby maintaining excellent 
rate activity and cycle stability [16, 23, 24]. For example, Ge 
and co-workers [25] synthesized ultra-small Sb nanocrystals 
within carbon nanofibers containing hollow nanochannels 
(u-Sb@CNFs) through electrospinning; this u-Sb@CNFs 
complex used as a PIB anode presented a reversible capacity 
of 225 mA∙h/g over 2000 cycles at 1 A/g. Guo’s group [26] 
reported nanostructured Sb in an N-doped carbon matrix 
prepared by a one-step and solvent-free pyrolysis method 
that displayed high sodium storage and excellent cycle sta-
bility. Duan et al. [27] demonstrated a Sb/CCHI nanocom-
posite synthesized by self-wrapping and controlled growth 
process that possessed a reversible capacity of 403 mA∙h/g 
at 250 mA/g, an excellent rate capability (138 mA∙h/g at 32 
A/g), and good cycle stability. In order to further improve the 
conductivity of the carbon framework, enhance the charge 
and ion transfer speed, and boost the amount of sodium/
potassium storage, the patterns of heteroatom doping have 
become the focus of attention. Nitrogen (N), sulfur (S), and 
phosphorus (P) are the most frequently doped atoms, with 
N and S being the most widely used heteroatom dopants 
[28–30]. However, P doping is rarely reported in Sb-based 
materials because of the safety hazards involved with the P 
species and technical difficulties. Chen and Tuan [31] pre-
pared phosphorus-embedded ultra-small BiSb nanocrystals 
through solution precipitation and used the material as a PIB 
anode electrode; the composite material exhibited excellent 
cycle stability (339.1 mA∙h/g at 1 A/g after 550 cycles) and 
outstanding rate performance (258.5 mA∙h/g at 6.5 A/g). 
Dong and co-workers [32] constructed porous phospho-
sulfide nanospheres combined with ultra-small Sb nanopar-
ticles pinned into 3D macroporous carbon foam (Sb∣P-S@C) 
that displayed reversible capacities of 490 mA∙h/g at 0.1 A/g 
over 1000 cycles when used as an SIB anode. Both S and 
P are electrochemically active elements that can react with 
sodium and potassium; this reaction can not only improve 
the conductivity but also provide additional capacity when 
combined with the matrix carbon material [8, 33, 34]. In this 
regard, the composite of P-doped carbon framework and Sb-
based materials should receive increasing attention and be 
developed vigorously. Compared with the above-mentioned 
improved system, generally, the carbon architecture (such 
as multi-level structure, yolk-shelled structure, and hollow 
structure) plays a more significant role in enhancing the stor-
age capacity of Na and K.

In this review, we focus on the use of Sb-based materi-
als as the anodes of SIBs and PIBs. Specifically, Sb-based 
materials will be analyzed according to their respective 

Fig. 2   Species and modification strategies of antimony-based sub-
stances studied in SIBs and PIBs
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composition, including metallic Sb, Sb oxides, Sb sulfides, 
and Sb alloys. For each part, we will define the problems 
faced by Sb-based materials in this category and introduce 
researchers’ measures to solve specific problems, such as 
introducing carbon protection and constructing special 
structures. Consequently, the effectiveness of these meas-
ures will be discussed, and the corresponding energy storage 
performance will be reviewed. Finally, the current opportu-
nities and challenges of Sb-based material will be listed to 
provide guidance for future research on Sb-based electrode 
materials.

Sodium‑Ion Batteries

Metallic Antimony for Sodium‑Ion Batteries

Recently, the sodium storage mechanisms of Sb-based 
materials have been introduced in detail in previous reports. 
Briefly, metal Sb and sodium can contribute up to a theo-
retical capacity of 660 mA∙h/g, depending on the alloying/
dealloying reaction (Sb + 3Na+  + 3e−  ↔ Na3Sb) [11, 16–18, 
20]. However, the volume of Sb changes sharply (around 
390%) during the Na+ charge and discharge processes, caus-
ing the electrode material to be crushed and fall from the 
current collector, resulting in irreversible capacity decline. 
In addition, Sb reduces the performance in sodium storage 
owing to the poor conductivity, especially the rate capacity 
[35, 36]. In the process of overcoming the above conun-
drums, special structures prepared by multi-directional 
synthesis strategies often play a key role. In the structure 
of metal Sb regard [37], Yang et al. [38] used a hybrid of 
amorphous Sb/N-doped layered carbon as a SIB anode 
and obtained remarkable stability (280.5 mA∙h/g over 500 
cycles at 1 A/g) and excellent rate capability (479.6 and 
298.7 mA∙h/g at current density of 0.1 and 2 A/g, respec-
tively). Starting from the structure of Sb itself, Tian et al. 
[39] reported that two-dimensional (2D) few-layer Sb has the 
highest theoretical capacity utilization, as indicated by the 
highest capacity (642 mA∙h/g at 66 mA/g) among many Sb 
materials and the capacity to hold 620 mA∙h/g at 330 mA/g 
over 150 cycles. It can be seen that 2D materials and 2D car-
bon framework modification methods are effective in facili-
tating Na storage because of the rapid migration of electrons 
and charges on the 2D layered substance surface.

The different configurations of Sb-carbon hybrids 
will further affect the Na storage ability of the electrode. 
In particular, the use of a yolk-shelled structure has been 
recognized as one of the most effective methods to adjust 
volume expansion and thus improve the cycle stability of 
materials [40–42]. As displayed in Fig. 3a, b, Song et al. 
[43] prepared yolk-shelled structure Sb@C anodes by vir-
tue of a controlled reduction and selective removal method 

and found that the anodes delivered a high rate capability 
(554 mA∙h/g at 50 mA/g and 315 mA∙h/g at 6.6 A/g) and 
92% capacity retention over 200 cycles (Fig. 3c). The yolk-
shelled structure accommodates the volume expansion of 
Sb during sodium insertion and thus prevents the electrode 
structure from being damaged. Also, in situ TEM charac-
terization was employed to prove that the yolk-shelled struc-
ture can effectively avoid the collapse of the structure dur-
ing the Na+ embedded process, thereby ensuring the cycle 
stability (Fig. 3d). To conduct a full cell investigation, the 
O3-Na0.9[Cu0.22Fe0.30Mn0.48]O2 was chosen as the cathode. 
The electrochemical test showed that the voltage range of the 
full cell is 2.0–4.0 V and the specific energy was calculated 
to be 130 W∙h/kg. In addition, Mai’s group [44] synthesized 
Sb@N–C with a nanorod-in-nanotube structure by way of 
a bottom-up confinement pathway. The structure is of an 
approximate yolk-shelled structure, which can relieve the 
internal stress generated by metal Sb during the charge and 
discharge processes, further improving the cycle stability. 
Moreover, the N-doped carbon nanotube can effectively 
improve ion transport, thus resulting in excellent rate per-
formance. As a result, Sb@N–C showed an excellent high 
rate (309.8 mA∙h/g at 10 A/g) and the cycle stability of up 
to 345.6 mA∙h/g after 3000 cycles at 2 A/g for Na storage.

Recently, our group [45] proposed a one-pot strategy for 
the synthesis of porous microsphere composite materials 
surrounded by N/S co-doped carbon nanosheets wrapped 
with yolk-shelled Sb. Because of the interaction of the 
strong yolk-shelled structure and the N/S co-doped porous 
microspheres, the obtained material has achieved a cycle 
stability of 331 mA∙h/g after 10,000 cycles at 20 A/g. Note 
that the synthesis strategy is suitable for large-scale prepara-
tion and provides a reference for commercial applications. 
More importantly, the yolk-shelled architecture can effec-
tively maintain the structural integrity of electrode materials 
and improve cycle stability during the repeated charge and 
discharge processes. In short, the use of the yolk-shelled 
structure is a promising method to boost the Na storage per-
formance of a Sb-based material.

The hollow structure is one of the most suitable architec-
tures that can improve the Na storage behavior of electrode 
materials, which has a positive effect on Sb species [46, 47]. 
As presented in Fig. 4a, Liu et al. [48] discovered that Sn and 
Sb can exchange ions (3Sn + 4Sb3+ → 3Sn4+ + 4Sb) and that 
the hollow Sb spheres can be formed and completely coated 
by carbon shell during the ion exchange process. There are 
many void spaces in the hollow sphere that can fully accom-
modate the volume change of Sb during charging and dis-
charging. A compact solid electrolyte interface will form 
at the outer layer of the hollow sphere. Finally, the hollow 
Sb@C used as an anode for SIBs displayed high rate capa-
bility at 2 A/g and maintained a capacity of ~ 280 mA∙h/g 
over 200 cycles at 1 A/g (Fig. 4b). Liu and co-workers [49] 
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synthesized unique Sb@C coaxial nanotubes via carbon 
reduction Sb2S3. These coaxial nanotubes have a hollow-like 
structure and can achieve high electron/charge dynamics and 
structural integrity. As a SIB anode, the composite delivered 
a reversible capacity of 350 mA∙h/g and 310 mA∙h/g at 10 
and 20 A/g, respectively, and maintained a specific capacity 
of 240 mA∙h/g over 2000 cycles at 1 A/g. As a recyclable 
template strategy for making pores and hollow skeletons, salt 
template technology has been used in LIBs and SIBs [45, 50, 
51]. Xu et al. [52] employed the KCl template to prepare Sb 
HPs@OCB with hollow Sb nanoparticles encapsulated in a 
carbon box (Fig. 4c). The hollow nanoparticle architecture 
can significantly enhance the kinetics of the sodium storage 
reaction. Ultimately, the Sb HPs@OCB composite displayed 

an excellent rate capability of 345 mA∙h/g at 16 A/g and a 
specific capacity of 187 mA∙h/g over 300 cycles at 10 A/g 
under 50 C. Evidently, the hollow structures obtained via 
various synthesis strategies often exhibit excellent rate and 
cycle stability. However, methods to improve the first-cycle 
Coulombic efficiency and increase the vibration density 
should also be studied.

In addition to using carbon to coat Sb for enhancing the 
performance of sodium storage, compositing Sb with other 
stable materials in the charge and discharge processes is 
another effective approach [41]. For example, Kong and 
co-workers [53] synthesized Sb@C@TiO2 triple-shell 
nano-boxes via a template-engaged galvanic replacement 
approach. As expected, the anode exhibited excellent rate 

Fig. 3   a Formation process of embedded Sb yolk-shelled structure by 
controlled reduction and selective removal, b TEM image and screen-
shots of the 3D reconstruction of Sb@C yolk-shelled structure, c the 
corresponding rate and cycle performance of Sb@C yolk-shelled 

structure, d in situ TEM images of Sb@C yolk-shelled structure upon 
sodiation.  Reproduced with permission from Ref. [43]. Copyright 
2017, Elsevier
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performance and ultra-long cycle stability (193 mA∙h/g over 
4000 cycles at 1 A/g), relying on the TiO2-shell in SIBs. 
In a similar manner, Lee et al. [54] prepared Sb-embedded 
silicon oxycarbide composites via a one-pot pyrolysis pro-
cess (Fig. 5a). Because of the free-carbon domain of the 
silicon–oxygen–carbon framework and uniform distribution 
of embedded Sb nanoparticles, the conductivity is improved 
and the agglomeration of Sb during the reaction process is 
inhibited in the SIB anode. Unsurprisingly, the composite 
materials kept a capacity retention rate of ~ 97% over 250 
cycles and exhibit 510 mA∙h/g and 453 mA∙h/g at 0.1 C 
and 20 C rate, respectively (Fig. 5b, c). At the same time, the 
capacity of the sample did not decrease significantly after 
100 cycles at 0.5, 1, and 2 C (Fig. 5d). Therefore, the influ-
ence of the non-pure carbon matrix should be valued for Na 
storage in the future.

In an alternative approach, the heteroatom dopants inside 
of carbon can effectively improve the ion transport kinetics 
and electron diffusion ability of Sb active materials, thereby 

providing the possibility to obtain a high rate performance 
SIB anode [55–57]. As revealed in Fig. 6a, Cui and co-
workers [58] fabricated composite hybrids of Sb nanorods 
encapsulated in an N and S co-doped carbon skeleton. The 
N and S dopants in the carbon framework contribute to 
the enhancement of charge and electron mobility. There-
fore, the composite displayed high reversible capacities and 
long-term cycle stability (621.1 mA∙h/g at 100 mA/g after 
150 cycles and 390.8 mA∙h/g at 1 A/g after 1000 cycles) 
for a SIB anode. In addition, the hierarchical structure can 
achieve superb Na storage vitality as an anode for metal Sb 
materials because of the large specific surface area and the 
synergy between different types of structures. For instance, 
Yu et al. [59] reported a strategy that enabled the tiny Sb 
nanoparticles to be fully embedded in MOF-derived carbon 
and TiO2 nanotubes. The obtained Sb ⊂ CTHNs presented 
enhanced stability when used as a Na-ion battery anode. 
Using Na3V2(PO4)3 as the cathode, a full cell was assem-
bled to examine the practical performances of Sb ⊂ CTHNs. 

Fig. 4   a EDS mapping of hollow Sb spheres, b rate capability of hol-
low Sb spheres.  Reproduced with permission from Ref. [48]. Copy-
right 2017, American Chemical Society. c TEM images of Sb HPs@

OCB. Reproduced with permission from Ref. [52]. Copyright 2019, 
John Wiley & Sons, Inc
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This cell displayed two charge and discharge plateaus at 
2.45 V and 2.65 V and achieved a reversible capacity of 
497.7 mA∙h/g after 100 cycles. The reason for such stabil-
ity could be the limitation of the volume expansion of Sb by 
the carbon and TiO2 walls. In addition, as shown in Fig. 6b, 
Fan et al. [60] constructed a core-shelled Cu@Sb nanowire 
array anchored on 3D porous Cu foam through anodization 
and high-temperature reduction. The hierarchical 3D struc-
ture with interconnected pores and voids between nanowires 
can effectively relieve the internal stress and promote the 
consistent transport of electrons and ions along the growth 
direction of the nanowire during charging and discharging. 
As a result, this core-shelled structure delivered a capacity 
of 605.3 mA∙h/g at 330 mA/g and demonstrated a capac-
ity retention rate of 84.8% at 3.3 A/g after 200 cycles as 
an anode for SIBs. Li et al. [61] proposed a self-supported 
Sb prism array that was directly grown on a Cu substrate 
by way of a template-free electrodeposition (Fig. 6c). Simi-
lar to the above-mentioned Cu@Sb nanowires array, the 
Sb prism array, by virtue of the hierarchical construction, 
had enough space between each other to adjust the internal 
stress generated during the sodium storage process and thus 
improve the cycle stability. Ultimately, the Sb array kept 
531 mA∙h/g and 492 mA∙h/g over 100 cycles at 0.5 C and 
1 C, respectively (Fig. 6d). Attractively, heteroatom doping 
and ingenious hierarchical structure design can bring excel-
lent sodium storage properties for Sb. In particular, the idea 
can be extended to other Sb-based materials.

In order to better highlight and compare the electrochemi-
cal performance of the metal Sb-based materials, we sum-
marize the reported electrochemical performance of metal Sb 
as the anode of SIBs in Table 1. A variety of nano- or micro-
structural and morphology designs allow metal Sb to exhibit 
excellent rate performance and cycle stability [62–74]. These 
innovative studies not only establish an effective electrode 
configuration for the future exploration of metal Sb but also 
provide a wealth of reference materials for the rational design 
of other Sb-based materials.

Antimony Oxides for Sodium‑Ion Batteries

Antimony oxide mainly contains Sb2O3 and Sb2O4, for 
which the theoretical capacity of the anode is 1102 mA∙h/g 
and 1120 mA∙h/g in SIBs, respectively. In comparison with 
Sb2O4, Sb2O3 has been studied more because it is an easily 
synthesized Sb-based oxide material via the simple lower 
temperature heat treatment. The process of storing sodium by 
antimony oxide can be summarized as follows [17, 75]:

(1)
Sb2O3 + 6Na+ + 6e− ↔ 2Sb + 3Na2O(Sb2O3 ∶ conversion reaction)

(2)
2Sb + 6Na+ + 6e− ↔ 2Na3Sb

(

Sb2O3 ∶ alloying reaction
)

(3)
Sb2O4 + 8Na+ + 8e− ↔ 2Sb + 4Na2O (Sb2O4 ∶ conversion reaction)

Fig. 5   a TEM images and EDS mapping of Sb-embedded silicon 
oxycarbide (SiOC) composites, b the corresponding cycle perfor-
mance of Sb-embedded SiOC composites between 0.001 and 2 V, c 
rate capability of Sb-embedded SiOC electrode materials, d cycling 

performance of Sb-embedded SiOC electrode materials at a current 
density of 0.5, 1, and 2 C, respectively.  Reproduced with permission 
from Ref. [54]. Copyright 2017, John Wiley & Sons, Inc
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However, extensive research studies and practical appli-
cations of Sb2O3/Sb2O4 as an anode for SIBs are lim-
ited because of their poor conductivity. For this reason, 
Sb2O3/Sb2O4 and materials with excellent conductivity 
are combined into composites to produce the electrode 
of SIBs [76–78], with compounding with carbon materi-
als being the most common and effective strategy [79, 80]. 
As revealed in Fig. 7a, Wang et al. [81] prepared Sb2O4/
RGO with Sb2O4 nanorods anchored on reduced graphene 
oxide. With the aid of reduced graphene oxide, the rod-like 
Sb2O4 showed a reversible capacity of ~ 551 mA∙h/g over 
100 cycles at 50 mA/g (Fig. 7b) and obtained a rate perfor-
mance of ~ 401 mA∙h/g at 1 A/g. In another strategy, Guo 
and co-workers [82] fabricated Sb2O3/MXene (Ti3C2Tx) 

(4)
2Sb + 6Na+ + 6e− ↔ 2Na3Sb (Sb2O4 ∶ alloying reaction) hybrid materials via a facile solution-phase project. The 

MXene has two functions: (1) the highly conductive MXene 
can provide an efficient transport path for ions and elec-
trons; (2) the 2D sheet spacing configuration can effectively 
release the internal stress generated during the sodium stor-
age process. Therefore, the Sb2O3/Ti3C2Tx presented a rate 
capacity of 295 mA∙h/g at 2 A/g and delivered a capacity of 
472 mA∙h/g over 100 cycles at 100 mA/g as an SIB anode. 
The combination of Sb and Sb2O3 can boost not only the 
ability of electron diffusion and charge transfer due to the 
higher conductivity of metal Sb but also the extra high spe-
cific capacity produced by Sb2O3 in the process of sodia-
tion and desodiation. Moreover, Na2O produced during the 
discharge process combined with graphene can effectively 
alleviate the volume expansion of electrode materials and 
improve the cycle stability [75, 83, 84]. In contrast, Sb2O3 
cannot be converted into Na2O during the sodium insertion 

Fig. 6   a TEM images and EDS mapping of composite materials 
of Sb nanorods encapsulated in N/S co-doped carbon framework.  
Reproduced with permission from Ref. [58]. Copyright 2019, Ameri-
can Chemical Society. b SEM and TEM images and EDS mapping 
of core-shelled Cu@Sb nanowires array. Reproduced with permis-

sion from Ref. [60]. Copyright 2019, John Wiley & Sons, Inc. c SEM 
and TEM images of self-supported Sb prisms array directly grown on 
a Cu substrate, d the corresponding cycle performance of self-sup-
ported Sb prisms array at 0.5 C. Reproduced with permission from 
Ref. [61]. Copyright 2019, John Wiley & Sons, Inc
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Table 1   Summary of the electrochemical performance of metal Sb anodes for SIBs

Samples Cycle stability Rate capability Ref

Potential (V) Current 
density 
(mA/g)

Revers-
ible capacity 
(mAh/g)

Cycle number Capacity 
retention 
(%)

Current density 
(A/g)

Capacity (mAh/g)

20 nm Sb 0.02–1.5 330 620 200 80 0.066/2.64 609/528 [22]
Sb@G0.25N0.25 0.01–2 100 479 100 87.4 0.5/1/2 436/415/351 [26]
Self-wrapped Sb/C 0.01–2 200 403 100 92.3 32 138 [27]
Sb|P-S@C foam 0.05–2.8 100 540(100th) 1000 90.7 0.4/0.8/1.6 294/267/176 [32]
Sb/ICNNs (inter-

connected carbon 
nanofibers net-
works)

0.01–2 100 542.5 100 92.7 3.2 325 [35]

Pitaya-like Sb@C 
microspheres

0.01–2 200 628 100 93 0.9/1.8/3 570/412/302 [36]

a-Sb/NC 0.01–2.5 1000 280.5 500 – 0.1/2 495.5/298.7 [38]
Few-layer anti-

monene
0.01–1.5 330 620 150 99.7 3.33 429 [39]

Yolk − shelled Sb@
Ti–O-P

0.01–3 500 760 200 94 10 360 [41]

Pomegranate Sb@C 
yolk-shell

0.01–2.5 200 200 99 0.05/0.5/5 637/ 521/441 [42]

Yolk-shelled Sb@C 0.01–2 50 554 200 90 5 315 [43]
Nanorod-in-nano-

tube structured 
peapod-like 
Sb@N–C

0.01–3.0 2000 345.6 3000 – 0.1/10 638.2/309.8 [44]

Yolk-shelled Sb@
NS-3DPCMSs

0.005–3 20,000  ~ 331 10,000 100 5/10/20 349/340/ 334 [45]

Double-Walled Sb@
TiO2−x nanotubes

0.01–2.5 2640 300 1000 – 3.3/6.6/13.2 417/388/312 [46]

Sb nanotubes 0.01–2.0 1000 462.2 6000 74 10 286 [47]
Hollow Sb@C yolk-

shelled
0.01–2.6 1000 208 200 – 1/2 329/279 [48]

Sb@C coaxial 
nanotubes

0.01–2.0 1000 230 2000 – 5/10/20 370/350/310 [49]

Sb HPs@OCB 0–3 10,000 402 300 187 16 345 [52]
Sb@C@TiO2 0–2 1000 193 4000 – 0.1/10 452/212 [53]
Sb-embedded SiOC 0.001–2 132 510 250 97 13.2 453 [54]
Sb@NC 0.01–2 100 440 300 74.5 2/5 285/237 [55]
Sb/NPC composite 0.01–2 100 529.6 100 97.2 1.6 357 [56]
Sb/N-rGO 0.01–2 100 521.7 500 90.7 1/2/5 403.4/360.7/304.8 [57]
Sb nanorod@(N, 

S-C) (cross-linked)
Sb ⊂ CTHNs

0.01–2.5
0.01–2.5

1000
2000

398
345.4

150
1600

–
93

2/5/10
0.1/5

534.4/430.8/374.7
558/347.1

[58]
[59]

Sb@3D Cu NWAs 
(nanowire arrays)

0.01–1.5 330 605.3 200 92.7 3.3 554.6 [60]

Self-supported Sb 
prisms

0–2 330 578 100 91.9 3.3 409 [61]

Porous Sb/C com-
posite

0.01–2.5 100 423 200 90.3 15 226 [62]

Sb/PAA/Pullulan-
CN

0.01–2 660 400 200 76 13.2 320 [63]

Electrospun 
SbNP@C fibers

0–2 2000 185 300 75 4/5/6 123/104/88 [64]

Sb@C 0.01–2.0 180 494 300 92.3 1.2/3/4.2 320/267/228 [65]
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Table 1   (continued)

Samples Cycle stability Rate capability Ref

Potential (V) Current 
density 
(mA/g)

Revers-
ible capacity 
(mAh/g)

Cycle number Capacity 
retention 
(%)

Current density 
(A/g)

Capacity (mAh/g)

Spherical nano-
Sb@C

0.01–2 100 435 500 88.5 355/324/270 1/2/4 [66]

Spherical Sb/C 0.01–2 100 641 150 78.3 0.4/0.6/1.2 498/416/340 [67]
Sb/rGO paper 0.01–2.0 1000 467 100 – 20 237 [68]
Sb-O-C/C 0.1–2 500 454 700 89 3.2 351 [69]
Sandwich-like G@

Sb@C
0.01–2 100 569.5 200 – 5 433 [70]

FernF leaf-like Sb 0.01–2 500 598 150 98.5 3/5/10 505/500/498 [71]
Sb@PCFs 0.01–3 200 560 80 96 1.5 385 [72]
Porous Sb-C
Sb-N/C

0–1.5
0.01–3

660
2000

522
220

195
180

82.4
–

6.6
0.05/10

357
325/142

[73]
[74]

Fig. 7   a TEM images and EDS mapping of Sb2O4 nanorods anchored 
on reduced graphene oxide (Sb2O4/RGO), b cycling performance of 
Sb nanorods composite at 50  mA/g.  Reproduced with permission 
from Ref. [81]. Copyright 2017, Elsevier. c SEM and TEM images 

of 3D porous Sb/Sb2O3 anode materials, d the corresponding cycling 
performance of 3D porous Sb/Sb2O3 electrode material at a current 
density of 66  mA/g. Reproduced with permission from Ref. [85]. 
Copyright 2015, John Wiley & Sons, Inc
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process, and Sb2O3 itself plays the role of reducing internal 
stress [85]. As shown in Fig. 7c, Nam and co-workers syn-
thesized 3D porous Sb/Sb2O3 anode materials via a simple 
electrodeposition project that exhibited a reduced charge 
capacity by 43.3% from 66 mA/g to 3.3 A/g and main-
tained 512.01 mA∙h/g after 100 cycles as an anode in SIBs 
(Fig. 7d). The study found that the Sb2O3 framework can 
act as a buffer matrix for metal Sb and regulate the inter-
nal stress produced by Sb during the charge and discharge 
processes, thus improving the cyclic stability of electrode 
materials. In addition, flexible SIB anode materials have 
also received attention because of the increasing demand 
for wearable and foldable devices. For instance, Fei et al. 
[86] constructed a flexible Sb2O3/carbon cloth composite via 
a simple solvothermal strategy; the carbon cloth has good 
conductivity, and there is a strong chemical bond between 
the carbon cloth and the Sb2O3 in this composite hybrid. 
Unexpectedly, the flexible composite material exhibited a 
high discharge specific capacity of 1248 mA∙h/g in the first 
cycle and sustained a high capacity of 900 mA∙h/g over the 
100 cycles. Although the composite of antimony oxide and 
different conductive materials have been studied, a method 
to produce a composite with various conductive materials in 
the future and give full play to the advantages of conductive 
materials remains a problem.

Table 2 exhibits the electrochemical properties of the 
reported Sb oxides as the anode in SIBs. It is not difficult to 
find that Sb oxides combined with a variety of conductive 
matrices can exhibit more robust stability and excellent rate 

in Na storage; however, this configuration often sacrifices 
its high specific capacity advantage [87–90]. Therefore, a 
heterojunction interface should be employed to compensate 
for the loss of theoretical capacity, or a combination with 
other active materials of high theoretical capacity and excel-
lent conductivity to enhance the Na storage capability of 
Sb-based oxides should be used.

Antimony Sulfides/Selenides for Sodium‑Ion 
Batteries (SIBs)

Theoretically, antimony sulfides and antimony selenides 
have similar electrochemical reaction mechanisms in the 
process of sodiation/desodiation, i.e., conversion reaction 
and alloying reaction during the full charging and discharg-
ing processes. Both antimony sulfides and antimony sele-
nides display high theoretical capacity when they are used 
as an anode in SIBs. The most studied Sb2S3 as a representa-
tive reaction process could be expounded by the following 
formulas [91–93]:

In the above reaction, 1 mol of Sb2S3 can cause 12 mol 
of sodium ions and electrons to participate in the reaction 
together, resulting in a theoretical capacity of 946 mA∙h/g 

(5)
Sb2S3 + 6Na+ + 6e− ↔ 2Sb + 3Na2S

(

Sb2S3 ∶ conversion reaction
)

(6)
2Sb + 6Na+ + 6e− ↔ 2Na3Sb (Sb2S3 ∶ alloying reaction)

Table 2   Summary of the electrochemical performance of Sb-based oxide anodes for SIBs

Samples Cycle stability Rate capability Ref

Potential (V) Current 
density 
(mA/g)

Revers-
ible capacity 
(mAh/g)

Cycle number Capacity 
retention 
(%)

Current density (A/g) Capacity (mAh/g)

Sb2O3/Sb@graphene 0.01–2 100 525.4 275 92.7 5 220.8 [75]
SbOx/RGO 0–2 1000 605.3 100 95 5 352 [76]
SbOx@CF 0.01–2.0 100 451 100 98 4 114 [77]
Tube-like Sb2O4 0.01–2.5 100 381.9 100 – – – [78]
Sb2O3/CNTs/rGO 0.001–3.0 200 456.5 50 100 3 345.4 [79]
Sb2O3/RGO 0–2.0 100 509 50 98.8 0.5/1 435.2/385.98 [80]
Sb2O4/RGO 0.01–3 20 659 100 83.6 1 401 [81]
Sb2O3/Ti3C2Tx 0.01–2.5 100 430.5 100 100 2 295 [82]
Sb/Sb2O3 0.005–3 66 670 100 91.8 3.3 212 [83]
Porous Sb/Sb2O3 0.02–1.5 660 582 180 92.8 10 412 [84]
Sb/Sb2O3-PPy 0.001–1.5 66 520.6 100 98.34 3.3 299.46 [85]
Sb2O3/carbon cloth 0.01–3.0 50 1250 100 72 0.1/0.2/0.5 675/540/340 [86]
Sb2O3 0.01–2 500 414 200 – 0.05/5 550/265 [87]
3D Ni@NiSb/Sb2O3 0.01–2.5 200 445 200 89 0.8/1.6/3.2 413/368/326 [88]
Sb2O4 thin film
Sb2O3 micro-bundles

0.01–3.5
0.01–2.5

1/70C
500

896
418.3

20
140

80.8
–

–
0.05/2

–
538.4/387

[89]
[90]
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via this process as an anode in SIBs [7, 17, 18, 20]. Simi-
larly, the widely reported Sb2Se3 also experienced a two-step 
reaction; the conversion and alloying processes are described 
in the following equations [94]:

The theoretical capacity of sodium storage contributed 
by the resulting material of the above two-step reaction is 
670 mA∙h/g (1 mol Sb2Se3-9 mol Na+) [7, 17, 18, 20]. Evi-
dently, the theoretical capacity of antimony selenides is less 
than that of antimony sulfides and oxides and it is equivalent 
to that of metal Sb.

Antimony sulfides and selenides suffer from several 
issues when used in sodium storage. For instance, the weak 
conductivity of antimony sulfides and selenides, unavoidable 

(7)

Sb
2
Se

3
+ 6Na

+ + 6e
−
↔ 2Sb

+ 3Na
2
Se

(

Sb
2
Se

3
∶ conversion reaction

)

(8)
Sb + 3Na+ + 3e− ↔ Na3Sb

(

Sb2Se3 ∶ alloying reaction
)

volume expansion, and even the discharge products (Na2S 
and Na2Se) can cause the shuttle effect; a similar process 
occurs in lithium-sulfur batteries [95–99]. In view of these 
negative phenomena, many strategies have been adopted to 
alleviate them. Among these strategies, designing a hollow 
structure is widely used; a similar strategy is used to address 
issues in the use of the metal Sb. As presented in Fig. 8a, Ge 
et al. [100] prepared a single-shelled hollow-sphere Sb2S3 
coated with carbon via an Oswald ripening process. The 
single-shelled hollow structure of large void space delivered 
a capacity of around 700 and 180 mA∙h/g at 0.2 and 6.4 A/g, 
respectively. Hollow-sphere Sb2S3 maintained 550.8 mA∙h/g 
over 70 cycles. This performance of the hollow-sphere Sb2S3 
is better than that of the unmodified Sb2S3, thus confirm-
ing the structural advantages of the single-shelled hollow 
structure. Inspired by the single-shelled hollow structure, 
multi-shelled hollow SIB anode materials have been pre-
pared and applied as the anode in SIBs [101–103]. For 
instance, Xie and co-workers [104] reported hollow multi-
shelled Sb2S3 (Fig. 8b) formed by synthesizing a zeolitic 

Fig. 8   a SEM and TEM images and EDS of single-shelled hollow-
sphere Sb2S3 coated with carbon.  Reproduced with permission from 
Ref. [100]. Copyright 2018, Elsevier. b TEM images and EDS map-
ping of hollow multi-shelled Sb2S3 anode materials. Reproduced with 

permission from Ref. [104]. Copyright 2019, Elsevier. c SEM and 
TEM images of Sb2S3 multi-walled carbon nanotubes composites. 
Reproduced with permission from Ref. [105]. Copyright 2017, Else-
vier
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imidazolate framework 8 (ZIF-8) and exchanging the Sb3+ 
and Zn2+. This structure has the characteristics of high sta-
bility for sodium storage by virtue of the hollow structure 
and high gravimetric energy density. The hollow multi-level 
structure material exhibited a reversible capacity of 308 and 
116 mA∙h/g at 0.1 and 2 A/g, respectively. Furthermore, 
compared with pristine Sb2S3, this multiple-shelled structure 
showed more stable cycle and higher specific capacity. In 
addition, similar to the improvement strategy for metal Sb, 
the one-dimensional hollow tube embedded Sb2S3 can also 
deliver excellent performance in sodium storage because 
of the one-dimensional high-speed transmission channel 
and hollow structure that can effectively accelerate charge 
transfer and relieve internal stress during charging/discharg-
ing. Figure 8c shows Sb2S3 multi-walled carbon nanotube 
composites constructed via precipitation and subsequent 
thermal treatment [105]. This composite material has a hol-
low framework with a large specific surface area and large 
expansion space that can accelerate the charge transfer and 
effectively buffer the volume expansion when used as an 
anode for SIBs. The results of charge/discharge of Na+ stor-
age showed a capacity of 442.1 and 339.1 mA∙h/g at 50 and 
1000 mA/g, respectively. Clearly, the hollow structure can 
transfer higher capacity and maintain a stable structure in the 
repeated sodium insertion and escape process. Nonetheless, 
the long-term cycle stability of the composite structure with 
antimony sulfide/selenide requires further improvement.

Another exciting strategy involves the combination 
of doping and modifying the carbon materials with anti-
mony sulfides and antimony selenides. For example, Liu’s 
group [106] reported the production of sulfur-doped gra-
phene sheets combined with nanostructured Sb2S3 (Fig. 9a). 
The doped sulfur in graphene can enhance the electronic 
coupling between Sb2S3 and graphene by forming strong 
chemical bonds. With the aid of this chemical bonding, 
the composite material achieved a high capacity of 792.8 
and 591.6 mA∙h/g at 0.05 and 5 A/g, respectively. Moreo-
ver, the sample maintained an 83% capacity retention rate 
after 900 cycles at 2 A/g. As shown in Fig. 9b, Xie and 
co-workers [107] fabricated silicon–oxygen–carbon nanofib-
ers embedded with Sb2S3 via electrospinning and hydro-
thermal reaction. The Si–O–C nanofibers accelerate elec-
tron and ion transport and alleviate the volume expansion 
of active substances. Thus, the nanofibers offered a high 
capacity of 532 mA∙h/g at 0.1 A/g and exhibited a specific 
capacity of 221 mA∙h/g at 5 A/g for sodium storage. Fur-
thermore, the sample displayed a reversible discharge capac-
ity of 321 mA∙h/g after 200 cycles. As shown in Fig. 9c, 
Choi et al. [95] designed an amorphous phosphorus/carbon 
framework embedded with Sb2S3 via a mechanochemical 
method followed by heat treatment. Doping phosphorus 
in amorphous carbon can enhance the conductivity of the 
matrix and prevent the aggregation of active substances in 

sodium storage. As a result, the sample achieved a reversible 
capacity of 654 and 390 mA∙h/g at 0.05 and 2 A/g, respec-
tively (Fig. 9d), as well as exhibited a capacity retention 
rate of 93.4% over 100 cycles at 50 mA/g. Similar to the 
modification strategy of metal Sb, the silicon–oxygen–car-
bon (Si–O–C) structure can also replace the traditional pure 
carbon materials (e.g., graphene, amorphous carbon, and 
doped carbon) as the reinforcement matrix to combine with 
Sb2S3, thereby improving the cyclicality and conductivity 
while inhibiting the volume expansion during the charg-
ing/discharging [54]. The use of diverse designs of carbon 
materials can improve the electrochemical performance of 
antimony sulfides/selenides. Thus, further modification of 
the carbon architecture represents a practical pathway for 
improvements by significantly enhancing ion and electron 
transport, increasing the capacity of sodium storage, and 
even inhibiting the aggregation of active substances.

Note that the need for traditional powder electrode mate-
rials to be prepared as a slurry in advance makes the process 
tedious and reduces the tapped density of the cell using a 
traditional electrode. Moreover, the introduction of binders 
is detrimental to the Coulombic efficiency during battery 
operation [108–110]. To address these issues, the anode 
materials of self-supporting for SIBs emerged. Self-support-
ing electrode materials of antimony sulfides and antimony 
selenides can avoid the use of additional conductive car-
bon and binder while exhibiting a high capacity of sodium 
storage as good as that of powder electrode materials. As 
a typical example, Lu and co-workers [19], using a facile 
hydrothermal assembly strategy, demonstrated a self-sup-
ported three-dimensional porous graphene foam with Sb2S5 
nanoparticles (~ 5 nm) encapsulated in the framework, as 
displayed in Fig. 10a. The as-prepared composite can be 
used as an electrode without employing a binder, a con-
ductive agent, and a current collector. Moreover, the stable 
combination of ultra-small nanoparticles with 3D porous 
graphene promotes Na+ transfer and electron diffusion. This 
self-supported electrode delivered the ultrahigh rate capac-
ity of 845 and 525 mA∙h/g at 0.1 and 10 A/g, respectively 
(Fig. 10b), and sustained 91.6% capacity retention over 300 
cycles at 200 mA/g. Similarly, for antimony selenides, Luo 
et al. [111] synthesized a free-standing membrane with 
Sb2Se3 nanowires through a facile hydrothermal synthesis 
and vacuum filtration (Fig. 10c). This free-standing com-
posite of satisfactory flexibility and integrity achieved a 
reversible capacity of 360 mA∙h/g at 0.1 A/g and maintained 
289 mA∙h/g after 50 cycles (Fig. 10d). Although antimony 
sulfides and antimony selenides have high specific capaci-
ties, their poor cycle stability still needs to be improved. In 
addition, self-supporting flexible antimony sulfur/selenide 
should also be developed to realize wearable and foldable 
electronic devices.
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Table 3 presents the reported Sb-based sulfides and sele-
nides as anode materials for SIBs and their corresponding 
electrochemical performance. Although most Sb-based 
sulfides and selenides electrode materials exhibit high spe-
cific capacity in sodium storage, their cycle stability is not 
ideal [112–116]. In this regard, more attention should be 
focused on improving their cycle stability during charge and 
discharge processes.

Antimony‑Based Alloy for Sodium‑Ion Batteries

In recent years, Sb-based alloys have developed rapidly. The 
advantage of Sb-based alloys is that the introduction of suit-
able phases can change the electrochemical properties of 
Sb and alleviate its volume expansion during the process 
of sodium storage. In addition, the phase with sodium stor-
age characteristics better cooperates with Sb [117–120]. 

Fig. 9   a SEM and TEM images and EDS mapping of nanostructured 
Sb2S3 combined with S-doped graphene sheets.  Reproduced with 
permission from Ref. [106]. Copyright 2016, American Chemical 
Society. b TEM images and EDS mapping of silicon–oxygen–car-
bon (Si–O–C) nanofibers embedded Sb2S3. Reproduced with permis-
sion from Ref. [107]. Copyright 2019, Elsevier. c TEM images and 

EDS mapping of amorphous phosphorus/carbon framework embed-
ded Sb2S3, d rate capability of amorphous phosphorus/carbon frame-
work embedded Sb2S3 at various current densities from 0.05 to 2 A/g. 
Reproduced with permission from Ref. [95]. Copyright 2016, Else-
vier



20	 B. Chen et al.

1 3

Generally, many types of binary Sb-based intermetallic 
compounds, and even ternary Sb-based alloys, can be syn-
thesized based on the alloy phase diagram. For instance, 
Farbod and co-workers [121] firstly reported ternary Sn-
Ge-Sb thin-film alloys with the particle size of 10–15 nm 
for SIB anodes. A half battery test of Sn-Ge-Sb showed a 
rate capacity of 833 and 381 mA∙h/g at 85 and 8500 mA/g, 
respectively. The cyclic test maintained a specific capacity of 
662 mA∙h/g after 50 cycles at 85 mA/g. Such high capacity 
comes from the interaction between the ternary alloy phases. 
However, the poor conductivity and the inevitable volume 
expansion of Sb-based alloys reduce the cycle period during 
the sodium storage process. Therefore, similar methods for 
improving the above-mentioned Sb-based materials are also 
widely utilized in Sb-based alloys.

For example, Liu et al. [122] reported the production of 
3D NiSb intermetallic hollow nanospheres via a smart low-
temperature crystallization and galvanic replacement reaction 
(Fig. 11a). This 3D interconnected hollow nanosphere struc-
ture possesses many pores that can accommodate the huge 
volume change and reduce the stress that arises from sodium 
storage. When used as an anode in SIBs, the NiSb electrode 
demonstrated a capacity of 201 mA∙h/g at 15 C (Fig. 11b) and 
showed a discharge capacity of 400, 372, and 230 mA∙h/g at 
1, 5, and 10 C over 150 cycles, respectively. Moreover, gra-
phene and RGO are widely used as additives to modify mate-
rials because of their excellent conductivity and mechanical 
strength. As shown in Fig. 11c, Ji and co-workers [123] pre-
pared a composite of SnSb alloy nanoparticles (20–30 nm) and 
RGO via hydrothermal reaction and thermal reduction. The 

Fig. 10   a Photographs of Sb2S5-GO dispersion, after hydrothermal 
reduction, and the corresponding slices, b SEM images and EDS 
mapping 3D porous Sb2S5-GF-8 composite, rate capability of 3D 
porous Sb2S5-GF-8 composite at various current densities from 0.1 
to 10 A/g.  Reproduced with permission from Ref. [19]. Copyright 
2017, American Chemical Society. c The front view and side view 

photographs, SEM and TEM images of the Sb2Se3 ultra-long nanow-
ire-based membrane, d the corresponding cycle performance and 
Coulombic efficiency of Sb2Se3 ultra-long nanowire-based membrane 
at a current density of 100 mA/g. Reproduced with permission from 
Ref. [111]. Copyright 2016, American Chemical Society
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RGO phase with mechanical flexibility can anchor the SnSb 
nanoparticles onto its surface. Such composition can effec-
tively inhibit the agglomeration of SnSb alloy, thereby provid-
ing excellent conductivity to promote electron and ion trans-
port and adjust the internal stress caused by volume change. 
The composite electrode exhibited a reversible capacity of 
407 and 85 mA∙h/g at 5 and 30 C (Fig. 11d), respectively, 
and maintained a reversible specific discharge capacity of 
361 mA∙h/g over 80 cycles at 0.2 C. One of the key develop-
ment goals of electrode materials is the self-supporting feature, 
which was also a goal of the development in Sb-based alloys. 
As shown in Fig. 11e, Han et al. [124] described an N-doped 
carbon nanofiber matrix with encapsulated CoSb nanoparti-
cles through the electrospinning method. This self-supporting 
structure with pseudocapacitive behaviors could obtain fast 
kinetics and high first Coulombic efficiency for SIB anodes. 
The CoSb self-supporting structure exhibited a reversible 
capacity of 703, 648, 559, 541, 445, and 386 mA∙h/g at 0.1, 
0.2, 0.5, 0.75, 1.0, and 2.0 A/g, respectively (Fig. 11f). Moreo-
ver, this composite electrode held a capacity of 413 mA∙h/g 
over 1000 cycles at 1 A/g. As another example, Wang et al. 
[125] reported a binder-free Cu2Sb/Cu electrode via a replace-
ment reaction. Testing of such a self-supporting-like structure 
with porous Cu2Sb nanoparticle film in SIBs revealed a 98.5% 
capacity retention rate retained over 200 cycles at 0.8 A/g.

Some research results revealed that Sb-based bimetallic 
oxides, such as Sb2MoO6 [126] and FeSbO4 [127], can store 
more Na+ via a continuous conversion and alloying reaction. 
In particular, because bismuth (Bi) and Sb belong to the 
same main group in the periodic table of elements, and they 
have similar physical and chemical properties, Bi and Sb 
can form a Sb-Bi-based alloy at any molar ratio. In addition, 
the introduction of Bi into Sb can significantly extend the 
voltage platform and increase the specific capacity during 
charging and discharging processes [17, 120, 128].

In summary, Table 4 lists a number of examples of Sb-
based alloys as the anode in SIBs and the corresponding key 
performance metrics [129, 130]. Because the electrochemi-
cal performance of most Sb-based alloy materials cannot 
match the performance of a metal Sb anode in SIBs, more 
breakthrough explorations are required to address this issue.

Potassium‑Ion Batteries

Metallic Antimony for Potassium‑Ion Batteries

The PIB is another promising candidate to replace the high-
cost lithium-ion battery. Due to the similar reaction mecha-
nism of PIBs and SIBs and the similar ionic radius of K+ and 
Na+, many modification strategies for Sb-based materials 

Table 3   Summary of the electrochemical performance of Sb-based sulfide anodes for SIBs

Samples Cycle stability Rate capability Ref

Potential (V) Current 
density 
(mA/g)

Revers-
ible capacity 
(mAh/g)

Cycle number Capacity 
retention 
(%)

Current 
density 
(A/g)

Capacity (mAh/g)

3D Sb2S5-GF 0.1–3 200 816.6 300 91.6 10 525 [19]
rGO/Sb2S3 0.01–2.5 50 670 50 95 3 520 [91]
Carbon-coated Sb2S3 

nanorods
0–2 100 570 100 – 1/2 415/337 [92]

Sb2S3-graphite 0.01–2.5 1000 662 100 99.1 5/7/10 609/583/536 [93]
Sb2S3 in P/C 0.005–2 100 654 100 93.4 2 390 [95]
Amorphous Sb2S3 0.01–2.5 50 586 100 87.4 3 534 [96]
1D Sb2S3@C rods 0.01–2.5 100 730.5 100 95.7 3.2 429 [97]
Hollow-sphere Sb2S3/C 0.01–3.0 200 693.4 100 80 3.2/6.4 220/180 [100]
Multi-shelled Sb2S3 0.01–1.5 1000 700 50 71.4 1/2 198/116 [104]
Sb2S3@MWCNTs 0.005–3 50 451(10th) 50 91.4 1 339.1 [105]
Sb2S3/SGS 0.01–2.5 2000 631.8 900 83 5 591.6 [106]
Sb2S3/carbon-silicon oxide 0.01–2.5 200 321 200 – 5 221 [107]
Sb2Se3 ultra-long nanowires 0.01–2 100 360 50 80.3 0.8/1.6 234/153 [111]
Sb2S3/C 0.005–2 200 577.8 100 93.1 1/2 557/520 [112]
2D Sb2S3 0.01–3 200 500 100 – 2 300 [113]
Sb2S3@FeS2/rGO 0.1–3 5000 534.8 1000 85.7 10 537.9 [114]
2D layered Sb2Se3/C
Sb2Se3/CNFs

0–3
0.01–3

50
1000

407
302.7

50
800

92.9
–

1C/3C
10

323/270
250

[115]
[116]
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Fig. 11   a SEM and TEM images of 3D NiSb intermetallic hol-
low nanospheres, b rate capability of 3D NiSb intermetallic hollow 
nanospheres electrode materials at various current densities from 0.1 
to 15 C.  Reproduced with permission from Ref. [122]. Copyright 
2015, Elsevier. c SEM and TEM images of SnSb alloy nanoparticles 
composite with RGO (RGO-SnSb), d rate capability of RGO-SnSb 
composites at various current densities from 0.1 to 30 C. Reproduced 

with permission from Ref. [123]. Copyright 2015, American Chemi-
cal Society. e SEM and TEM images and EDS mapping of self-sup-
ported N-doped carbon nanofibers encapsulated CoSb nanoparticles, 
f the corresponding rate performance of self-supported N-doped car-
bon nanofibers encapsulated CoSb nanoparticles composites at vari-
ous current densities from 0.1 to 2 A/g. Reproduced with permission 
from Ref. [124]. Copyright 2013, Royal Society of Chemistry

Table 4   Summary of the electrochemical performance of Sb-based alloy anodes for SIBs

Samples Cycle stability Rate capability Ref

Potential (V) Current 
density 
(mA/g)

Revers-
ible capacity 
(mAh/g)

Cycle number Capacity 
retention 
(%)

Current density 
(A/g)

Capacity (mAh/g)

3D SnSb@N-PG
SnSb/3D-NPC

0.005–3
0–2

10,000
5000

 ~ 190
266.6

4000
15,000

100
–

–
0.2/20

–
793.4/359.1

[51]
[117]

Sb/NiSb 0–2 100 521 100 96 0.1/2 567/279.7 [118]
Zn-Sb intermetallic 

nanowires
0.01–2.0 414 – 200 – 0.828/2.07 247/187 [119]

BiSb3/C 0–2 2000 233.2 2500 73.1 0.2/5 405.3/249.9 [120]
Sn-Ge-Sb 0.01–2 425 653 50 75.2 8.5 381 [121]
3D interconnected 

NiSb hollow 
nanospheres

0.01–2 10C 230 150 – 5C/15C 300/201 [122]

RGO-SnSb 0.001–3 100 391.5 80 92.3 1 330 [123]
CoSb@C Nanofib-

ers
0.01–3 1000 413 1000 – 1/2 445/386 [124]

Cu2Sb/Cu 0.05–2 800 270 200 98.5 2/4/8 267.9/263.5/ 256.1 [125]
FeSbO4 0.01–2.5 200 200 200 – – – [127]
n-MnSb2S4/rGO
SnSb/N-PCNW

0–2.5
0.01–2.5

2000
2000

492.4
180

700
10,000

74.9
–

0.1/1
0.05/10

953.7/472.9
400/133

[129]
[130]
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(e.g., metal Sb, oxide, sulfide, selenide, and alloy) have been 
used to enhance their performance as the anodes of PIBs. 
However, the Sb-based materials have encountered obsta-
cles as an anode in PIBs that are similar to those of SIBs; 
these obstacles can be overcome by several classic strategies, 
such as coupling carbon material, introducing heteroatom 
dopants, combining with other conductive substrates, syn-
thesizing specific structures, and employing specific electro-
lytes and binders [131–145].

In situ testing technology can reveal the in-depth reaction 
mechanisms in real time, thereby laying a solid foundation 
for a deeper understanding of the causes and processes of 
electrochemical reactions. The reaction mechanism of Sb-
based materials has also been studied through the corre-
sponding in situ process in PIBs, such as in situ XRD and 

in situ TEM [139, 142, 144]. As shown in Fig. 12a, Huang 
and co-workers[145] employed in situ TEM to reveal the 
reason that the yolk-shelled Sb-carbon nano-boxes located 
in the nanowire have an excellent stable cycle (227 mA∙h/g 
after 1000 cycles at 1 A/g). The pore space derived from the 
Sb nanoparticles and their surrounding carbon effectively 
accommodates the entire volume change and maintains 
the structural integrity. Additionally, optimizing a suitable 
electrolyte is also beneficial to improving the performance 
of Sb-based PISs. Studies have found that different elec-
trolytes are likely to have a diametrically opposite differ-
ence for the impact of the same material in K-storage [142]. 
As presented in Fig. 12b, Zhou et al. [143] improved the 
K-storage ability of Sb alloy via electrolyte engineering. The 
electrolyte composition (anion, solvent, concentration, etc.) 

Fig. 12   a Illustration of the synthesis processes for Sb@CNFs, SEM 
images of Sb@CNFs at different magnifications, and TEM images of 
Sb@CNFs at different magnifications and the corresponding perfor-
mance: the cycle at 200 mA/g and the long-term cycle at 1000 mA/g.  

Reproduced with permission from Ref. [145]. Copyright 2020, John 
Wiley & Sons, Inc. b Schematic illustration of the electrolyte analysis 
and interfacial model. Reproduced with permission from Ref. [143]. 
Copyright 2021, John Wiley & Sons, Inc
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resulted in an excellent performance. Furthermore, the sol-
vent type and anion species can affect the electronegativity 
of the K+-solvent-anion complex. As a result, the Sb anode 
without nano-structural engineering and carbon modification 
exhibited a high capacity of 628 and 305 mA∙h/g at current 
densities of 0.1 and 3 A/g, respectively, and remained stable 
over 200 cycles.

Antimony Oxides for Potassium‑Ion Batteries

Although the specific mechanism of antimony oxides storing 
K ions has not been fully studied, this does not prevent us 
from using them as the anode of PIBs. For example, pro-
ducing porous structures and introducing heteroatoms are 
universal approaches to improving the electrodes of PIBs. 
Recently, our group [141] successfully prepared core-shelled 
heterostructure Sb@Sb2O3 nanoparticles encapsulated 
in N-doped hollow porous microspheres via spray drying 
and heat treatment procedures (Fig. 13). The carbon struc-
ture is porous and hollow, and the embedded nanoparticles 
have a heterogeneous interface between Sb and Sb2O3. The 
composite architecture showed an excellent rate (474 and 
239 mA∙h/g at 0.1 and 5 A/g, respectively) and ultra-long 
stability (10,000 cycles at 2 A/g) as an anode for PIBs. It can 
be seen that the synergy between multiple effective strate-
gies can often promote the energy storage application of 
micro–nano-composite materials in alkaline ion batteries. In 
this regard, determining how to adjust the balance between 
different modification systems and giving full play to their 
advantages will become a key factor in the improvement of 
PIBs anode materials.

Antimony Sulfides/Selenides for Potassium‑Ion 
Batteries (PIBs)

As a member of a large family of Sb-based materials, the 
Sb chalcogenides are also studied in PIBs. For example, 
Yang and co-workers [135] produced Sb2S3/Sb2Se3 nano-
dots/carbon composites via pyrolysis and co-sulfurization/
selenylation process. The S (Se)-doped carbon matrix and 
ultra-small nanoparticles (Sb2S3/Sb2Se3) can synergistically 
increase the transport capacity of K+ and alleviate volume 
expansion. As a result, the Sb2Se3 nanodots/carbon configu-
ration exhibited a reversible capacity of ~ 312 mA∙h/g over 
200 cycles at 1 A/g [135]. In addition, because 2D transi-
tion metal carbides, carbonitrides, and nitrides (named as 
MXene) have similar high conductivity and buffer function 
as carbonaceous materials, they are being adopted widely 
in the energy storage field. Regarding Sb-based materi-
als in PIBs, Wang et al. [136] constructed self-assembled 
Sb2S3 nanoflower composite MXene (Ti3C2) flakes using a 
solvothermal and calcination process. Not surprisingly, the 
PIBs anode exhibited an outstanding rate performance of 
102 mA∙h/g at 2 A/g and maintained 79% capacity reten-
tion after 500 cycles at 100 mA/g. Lu and Chen [146] 
reported that the Sb2S3 nanoparticles could be dispersed 
in S, N-doped graphene (Sb2S3-SNG) to form a self-sup-
ported anode for PIBs. Such nanoparticle architecture not 
only enhanced the electric conductivity and the mechanical 
stability but also greatly decreased the inactive weight of the 
electrode. When assembled with KVPO4F-C, the obtained 
full cell achieved a high energy density of 166.3 W∙h/kg.

As another element similar to S, the antimonide of 
selenium (Se) should theoretically exhibit a similar potas-
sium storage capacity. Qian et  al. [147] demonstrated 

Fig. 13   Schematic illustration of the morphological and structural 
evolution process for Sb@Sb2O3@N-3DCHs composite during 
the preparation, and corresponding SEM and TEM images of Sb@

Sb2O3@N-3DCHs composite.  Reproduced with permission from 
Ref. [141]. Copyright 2021, John Wiley & Sons, Inc
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a self-templating method to fabricate the Sb2Se3@C 
microtube. In this work, the hollow structure enabled 
the Sb2Se3@C to present a capacity of 191.4 mA∙h/g at 
500 mA/g after 400 cycles as a PIB anode. The in situ 
Raman spectra indicated that Sb2Se3@C storage K occurs 
via a conventional-alloying-type mechanism; the reaction 
can be described as:

The volume change should be taken into account when 
designing the PIBs using Sb2Se3 as the anode. In this 
regard, researchers reported a strategy that applied the 
self-wrinkled RGO as the matrix to house tiny Sb2Se3 
nanoparticles. When used in PIBs, the RGO with high 
elasticity acted as the buffer to relieve the volume expan-
sion of Sb2Se3. As a result, the Sb2Se3@RGO anode could 
retain the capacity of 203.4 mA∙h/g at 500 mA/g [148].

Antimony‑Based Alloy for Potassium‑Ion Batteries

The preparation of Sb-based alloys is also conducive to 
improving the K-storage when used as battery electrodes. As 
a typical example, Xiong et al. [139] fabricated a composite 
porous nanosheet embedded with BiSb alloy nanoparticles 
through a freeze-drying and pyrolysis process (Fig. 14a, 
b). The porous two-dimensional carbon material, which 
effectively relieves the internal stress generated during the 
potassium storage process, delivered a specific capacity 
of 320 mA∙h/g over 600 cycles at 0.5 A/g. Furthermore, 
the anode electrode also exhibited excellent performance 
in potassium-ion full cells. Using K4Fe(CN)6 (KFC) as the 
cathode, the full cell (BiSb@C//KFC) showed a voltage pla-
teau at 3.0 V and displayed a high capacity of 396 mA∙h/g. 
Coincidentally, another project on salt template-directed 
pore formation was reported by Yang and co-workers 
(Fig. 14c) [140], in which a series of Swiss-cheese-like 
nitrogen-doped porous carbon embedded with MSb (M = Ni, 
Co, or Fe) with M–N–C coordination (Fig. 14d) were gener-
ated. The CoSb electrodes presented super discharge capaci-
ties of 1214, 1016, 835, 701, 589, 458, and 343 mA∙h/g at 
0.1, 0.2, 0.5, 1, 2, 5, and 10 A/g, respectively.

Finally, the related Sb-based materials used as elec-
trodes in PIBs are summarized in Table 5 [149, 150]. 
Compared with SIBs anode, studies on Sb-based PIBs 
materials started later and are fewer in number. There-
fore, more relevant research is needed, with much progress 
required before the emergence of self-supporting, high-
performance Sb-based electrodes for PIBs.

(9)
Sb2Se3 + 12K+ + 12e− ↔ 3K2Se + 2K3Sb(K insertion)

(10)
3K2Se + 2K3Sb ↔ Sb2Se3 + 12K+ + 12e−(K extraction)

Conclusion and Perspectives

In this review, we summarized in detail the recent research 
progress of Sb-based materials, ranging from metal to 
compounds to alloys, as anodes for SIBs/PIBs. Because 
these Sb-based materials suffer from the shortcomings 
of volume change and poor conductivity, we specifically 
highlighted the general strategies to address these short-
comings, such as reducing the size of Sb-based active 
materials, introducing carbon materials, designing the 
core-shelled or hollow structure, and utilizing other sta-
ble and conductive protection materials. According to the 
above strategies, many types of Sb-based materials with 
nanostructures and diversity morphologies have been 
reported. Benefit from the high conductivity, high poros-
ity, large specific surface area of the hollow structure, and 
high degree of protection of the core-shelled structure, 
these Sb-based materials effectively achieve high-speed 
ion transfer and electron diffusion, alleviate the internal 
stress upon cycling, and even promote the penetration of 
electrolyte into the electrode. Thus, using these Sb-based 
materials, the specific capacity, the long-term cycle stabil-
ity, and the rate doubling ability of the electrodes of SIBs/
PIBs are greatly improved.

Despite the achievements that have been achieved, chal-
lenges still exist in the aspect of exploring the mechanism of 
energy storage, improving the performance of actual devices, 
and enhancing the potential of large-scale applications.

First, in terms of the mechanism, the interaction of 
Sb-based materials with Na/K ions needs to be studied in 
depth. In particular, Sb oxides and alloy materials react in 
a complicated manner. Considering the cost, safety, test 
conditions, and other aspects, it is difficult to explore the 
reaction process of various materials. Therefore, it is of 
great significance to establish a reliable database that pro-
vides guidance for the effective search of candidate elec-
trode materials and electrolytes; this database will help 
simplify the subsequent experimental procedures and 
costs. Moreover, to understand the “black box” mecha-
nisms, researchers need closer in situ analysis methods 
and more in-depth physical theoretical models to meet this 
challenge [6, 11, 151–153]. Recently, widely used in situ 
techniques (such as in situ Raman spectroscopy, cryo-elec-
tron microscopy, and Fourier infrared spectroscopy) have 
been used to analyze not only the chemical composition 
of the SEI film but also the distribution of each element. 
Therefore, these techniques can be used to effectively help 
to investigate the side reactions and the role of each sol-
vent in the recycling process. These results can guide us 
to adopt more effective electrolyte optimization strategies.

On the aspect of battery devices, the biggest problem 
is the gap between experimental research and practical 
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usage. For example, to the best of our knowledge, almost 
no Sb-based material has an initial Coulombic efficiency 
of more than 95%. Furthermore, most of the reported Sb-
based materials have not shown satisfied long cycle stabil-
ity. The solution to this, it is necessary to pay more atten-
tion to study the full cell systems of SIBs and PIBs. We 
must strengthen the research of the mechanism to guide 
the matching design of the cathode and the anode. In addi-
tion, it is required to optimize the assembly process of the 
full cell so that the potential of Sb-based materials can be 
fully utilized. Furthermore, the optimization of the electro-
lyte is an important task for the development of high-per-
formance SIBs/PIBs. For Sb-based electrodes, the suitable 
electrolyte should meet the following requirements: (1) 

ability to form a uniform and stable SEI layer; (2) stable 
chemical properties within the working voltage window.

In addition to the general issues, there are also some chal-
lenges under special conditions of use. For example, the 
high- and low-temperature sodium/potassium storage capac-
ities are an indispensable basic requirement for large-scale 
fixed energy conversion equipment in the future. Although 
adequate high-temperature performance is relatively easy 
to achieve, there are few reports on the low-temperature 
sodium/potassium storage capacity of Sb-based materials. 
In contrast, our group studied the low-temperature Na stor-
age behavior of Sb-based materials earlier and obtained 
relatively good low-temperature stability. Therefore, it will 
be a long-term opportunity and challenge to study the high/

Fig. 14   a Schematic illustration of the synthesis process of BiSb@C 
composite, b SEM and TEM images of BiSb@C with 2D porous car-
bon nanosheet.  Reproduced with permission from Ref. [139]. Copy-
right 2020, American Chemical Society. c Illustration of the fabrica-

tion of MSb@NPC (M = Ni, Co, or Fe) composites for LIBs, d SEM 
and TEM images of CoSb@NPC composite. Reproduced with per-
mission from Ref. [140]. Copyright 2021, John Wiley & Sons, Inc
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low-temperature properties of Sb-based materials in SIBs/
PIBs.

Finally, we must also consider the issue of large-scale 
applications. The current methods to improve the energy 
storage performance of Sb-based materials include three 
aspects: (1) developing the potential of Sb itself, such as 
changing the alloy composition or building unique nano-
structures [154]; (2) introducing composite materials, such 
as three-dimensional carbon [155, 156]; (3) improving 
additives, such as adhesives and conductive agents [157]. 
Indeed, most researchers focus on the structure and mor-
phology modulation, whereas they ignore the feasibility of 
the preparation strategy in industrial production. Therefore, 
the development of a low-cost and large-scale synthesis 
strategy is another urgent need in the practical application 
of Sb-based materials.

Overall, we hope that this review serves as a reference for 
research on energy storage related to Sb-based materials and 
provides guidance for their future development.
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