Skip to main content
Log in

Hydrodynamic Cavitation: An approach to Degrade Chlorpyrifos Pesticide from Real Effluent

  • Environmental Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Chlorpyrifos (O,O-diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate) is a broad spectrum organophosphate pesticide which is widely used in agriculture and residential pest control throughout the world. It is moderately toxic to humans, which persists in nature for relatively long period due to its physicochemical and structural properties, low volatilization, affecting environmental matrices. Thus has been selected as model pollutant for degradation using hybrid treatment method of Hydrodynamic Cavitation (HC). It was found that Chlorpyrifos in real effluent sample can be degraded with orifice induced cavitating conditions. Effect of various process parameters such as operating inlet pressure (over range of 3-8 bars), operating temperatures (with sets of intense cooling, moderate cooling and uncontrolled operation) and pH (natural pH = 10, neutral = 7 and acidic = 3) is investigated for extent of degradation of Chlorpyrifos. Results reflect that an optimum value of inlet pressure (5 bars) gave maximum removal/degradation of 72.7%, high temperature and acidic pH of 3 are suitable. To study the effect of intensification, ozone was used as an intensifying agent. Ozone alone gave 12.2% degradation, but when combined with hydrodynamic cavitation, it resulted into 100% efficiency in 45 minutes of treatment time. Work presented in this paper can be said to be concluding to the effective use of hydrodynamic cavitation in combination with ozone for the degradation of Chlorpyrifos in real wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, J. and Silambarasan, S. (2013). “Biodegradation of chlorpyrifos and its hydrolyzing metabolite.” Process Biochemistry, vol. 48, no. 10, pp. 1559–1564, DOI: 10.1016/j.procbio.2013.06.034.

    Article  Google Scholar 

  • Affam, A. C., Chaudhuri, M., Kutty, S. R. M., and Muda, K. (2014). “UV fenton and sequencing batch reactor treatment of chlorpyrifos, cypermethrin and chlorothalonil pesticide wastewater.” International Biodeterioration and Biodegradation, vol. 93, pp. 195–201, DOI: 10.1016/j.ibiod.2014.06.002.

    Article  Google Scholar 

  • Agudelo, R. M., Peñuela, G., Aguirre, N. J., Morató, J., and Jaramillo, M. L. (2010). “Simultaneous removal of chlorpyrifos and dissolved organic carbon using horizontal sub-surface flow pilot wetlands.” Ecological Engineering, vol. 36, no. 10, pp. 1401–1408, DOI: 10.1016/j.ecoleng.2010.06.019.

    Article  Google Scholar 

  • Alina, C., Sanda, B., Monica, T., and Ioana, B. (2011). “The study for determination chlorpyrifos residual from fruit samples.” Analele Universităţii din Oradea, vol. 17, Nos. 3–5, pp. 635–640.

    Google Scholar 

  • Amin, L. P., Gogate, P. R., Burgess, A. E., and Bremner, D. H. (2010). “Optimization of a hydrodynamic cavitation reactor using salicylic acid dosimetry.” Chemical Engineering Journal, vol. 156, no. 1, pp. 165–169, DOI: 10.1016/j.cej.2009.09.043.

    Article  Google Scholar 

  • Anwar, S., Liaquat, F., Khan, Q. M., Khalid, Z. M., and Iqbal, S. (2009). “Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-Trichloro-2-Pyridinol by Bacillus Pumilus Strain C2A1.” Journal of Hazardous Materials, vol. 168, no. 1, pp. 400–405, DOI: 10.1016/j.jhazmat. 2009.02.059.

    Article  Google Scholar 

  • Authority, N. R. and Chemicals, V. (n.d.). “The NRA Review of Chlorpyrifos: Section 6 Environmental Assessment.” 2000.

    Google Scholar 

  • Badve, M., Gogate, P., Pandit, A., and Csoka, L. (2013). “Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry.” Separation and Purification Technology, vol. 106, pp. 15–21, DOI: 10.1016/j.seppur.2012.12.029.

    Article  Google Scholar 

  • Bagal, M. V. and Gogate, P. R. (2013). “Degradation of 2,4-Dinitrophenol Using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes.” Ultrasonics Sonochemistry, vol. 20, no. 5, pp. 1226–1235, DOI: 10.1016/j.ultsonch.2013.02.004.

    Article  Google Scholar 

  • Bagal, M. V. and Gogate, P. R. (2014a). “Wastewater treatment using hybrid treatment schemes based on cavitation and fenton Chemistry: A review.” Ultrasonics Sonochemistry, vol. 21, no. 1, pp. 1–14, DOI: 10.1016/j.ultsonch.2013.07.009.

    Article  Google Scholar 

  • Bagal, M. V. and Gogate, P. R. (2014b). “Degradation of diclofenac sodium using combined processes based on hydrodynamic cavitation and heterogeneous photocatalysis.” Ultrasonics Sonochemistry, vol. 21, no. 3, pp. 1035–1043, DOI: 10.1016/j.ultsonch.2013.10.020.

    Article  Google Scholar 

  • Bhagobaty, R. K., Joshi, S. R., and Malik, A. M. (2006). “Microbial degradation of organophosphorous pesticide: Chlorpyrifos (Mini-Review).” The Internet Journal of Microbiology, vol. 4, no. 1, pp. 1–6, DOI: 10.5580/1282.

    Google Scholar 

  • Bokhari, A., Chuah, L. F., Yusup, S., Klemeš, J. J., Akbar, M. M., and Kamil, R. N. M. (2016). “Cleaner production of rubber seed oil methyl ester using a hydrodynamic cavitation: Optimisation and parametric study.” Journal of Cleaner Production, Vol. 136, DOI: 10.1016/j.jclepro.2016.04.091.

  • Capocelli, M., Musmarra, D., Prisciandaro, M., and Lancia, A. (2014). “Chemical effect of hydrodynamic cavitation: Simulation and experimental comparison.” AIChE Journal, vol. 60, no. 7, pp. 2566–2572, DOI: 10.1002/aic.14472.

    Article  Google Scholar 

  • Capocelli, M., Prisciandaro, M., Lancia, A., and Musmarra, D. (2014). “Hydrodynamic cavitation of P-Nitrophenol: A theoretical and experimental insight.” Chemical Engineering Journal, vol. 254, pp. 1–8, DOI: 10.1016/j.cej.2014.05.102.

    Article  Google Scholar 

  • Capocelli, M., Prisciandaro, M., Musmarra, D., and Lancia, A. (2013). “Understanding the physics of advanced oxidation in a venturi reactor.” Chemical Engineering Transactions, vol. 32, pp. 691–696, DOI: 10.3303/CET1332116.

    Google Scholar 

  • Chand, R., Bremner, D. H., Namkung, K. C., Collier, P. J., and Gogate, P. R. (2007). “Water disinfection using the novel approach of ozone and a liquid whistle reactor.” Biochemical Engineering Journal, vol. 35, no. 3, pp. 357–364, DOI: 10.1016/j.bej.2007.01.032.

    Article  Google Scholar 

  • Deng, S., Chen, Y., Wang, D., Shi, T., Wu, X., Ma, X., Li, X., Hua, R., Tang, X., and Li, Q. X. (2015). “Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas Sp. G1.” Journal of Hazardous Materials, vol. 297, pp. 17–24, DOI: 10.1016/j.jhazmat.2015.04.052.

    Article  Google Scholar 

  • Farhan, M., Khan, U., Wahid, A., Ahmad, M., and Ahmad, F. (2012). “Biodegradation of chlorpyrifos using indigenous pseudomonas Sp. isolated from industrial drain.” Pakistan Journal of Nutrition, vol. 11, no. 12, pp. 1183–1189, DOI: 10.3923/pjn.2012.1183.1189.

    Article  Google Scholar 

  • George W. Ware (2012). Review of Environmental Contamination and Toxicology, 131st edn, (Springer Science and Business Media).

    Google Scholar 

  • George, N., Chauhan, P. S., Sondhi, S., Saini, S., and Puri, N. (2014). ‘Biodegradation and analytical methods for detection of organophosphorous pesticide: Chlorpyrifos.” Int. J. Pure Appl. Sci. Technol., vol. 20, no. 2, pp. 79–94.

    Google Scholar 

  • Gogate, P. R. (2011). “Hydrodynamic cavitation for food and water processing.” Food and Bioprocess Technology, vol. 4, no. 6, pp. 996–1011, DOI: 10.1007/s11947-010-0418-1.

    Article  Google Scholar 

  • Gogate, P. R. and Patil, P. N. (2015). “Combined treatment technology based on synergism between hydrodynamic cavitation and advanced oxidation processes.” Ultrasonics Sonochemistry, vol. 25, no. 1, pp. 60–69, DOI: 10.1016/j.ultsonch.2014.08.016.

    Article  Google Scholar 

  • Gogate, P. R., Mededovic-Thagard, S., McGuire, D., Chapas, G., Blackmon, J., and Cathey, R. (2014). “Hybrid reactor based on combined cavitation and ozonation: From concept to practical reality.” Ultrasonics Sonochemistry, vol. 21, no. 2, pp. 590–598, DOI: 10.1016/j.ultsonch. 2013.08.016.

    Article  Google Scholar 

  • Hossain, M. S., Fakhruddin, A. N. M., Zaman, M. A., and Alam, M. K. (2013). “Degradation of chlorpyrifos, an organophosphorus insecticide in aqueous solution with gamma irradiation and natural sunlight.” Journal of Environmental Chemical Engineering Vol. 1, no. 3, pp. 270–274, DOI: 10.1016/j.jece.2013.05.006.

    Article  Google Scholar 

  • Ismail, M., Khan, H. M., Sayed, M., and Cooper, W. J. (2013). “Advanced oxidation for the treatment of chlorpyrifos in aqueous solution.” Chemosphere, vol. 93, no. 4, pp. 645–651, DOI: 10.1016/j.chemosphere.2013.06.051.

    Article  Google Scholar 

  • Jawale, R. H., Gogate, P. R., and Pandit, A. B. (2014). “Treatment of cyanide containing wastewater using cavitation based approach.” Ultrasonics Sonochemistry, vol. 21, no. 4, pp. 1392–1329, DOI: DOI: 10.1016/j.ultsonch.2014.01.025.

    Article  Google Scholar 

  • John, E. M. and Shaike, J. M. (2015). “Chlorpyrifos: Pollution and remediation.” Environmental Chemistry Letters, vol. 13, no. 3, pp. 269–291.

    Article  Google Scholar 

  • Joshi, R. K. and Gogate, P. R. (2012). “Degradation of dichlorvos using hydrodynamic cavitation based treatment strategies.” Ultrasonics Sonochemistry, vol. 19, no. 3, pp. 532–539, DOI: 10.1016/j.ultsonch. 2011.11.005.

    Article  Google Scholar 

  • Manjunatha, B., Tirado, J. O., and Philip, G. H. (2015). “Determination of chlorpyrifos residues in water and liver tissue of zebrafish (Danio Rerio) by High Performance Liquid Chromatography (HPLC) with UV Detection.” Journal of Chemical and Pharmaceutical Research, vol. 7, no. 6, pp. 721–726.

    Google Scholar 

  • Patil, P. N. and Gogate, P. R. (2012). “Degradation of methyl parathion using hydrodynamic cavitation: Effect of operating parameters and intensification using additives.” Separation and Purification Technology, vol. 95, pp. 172–179, DOI: 10.1016/j.seppur.2012.04.019.

    Article  Google Scholar 

  • Pengphol, S., Uthaibutra, J., Arquero, O., Nomura, N., and Whangchai, K. (2012). “Oxidative degradation and detoxification of chlorpyrifos by ultrasonic and ozone treatments.” Journal of Agricultural Science, vol. 4, no. 8, pp. 164–172, DOI: 10.5539/jas.v4n8p164.

    Article  Google Scholar 

  • Phung, D. T., Connell, D., Miller, G., Hodge, M., Patel, R., Cheng, R., Abeyewardene, M., and Chu, C. (2012). “Biological monitoring of chlorpyrifos exposure to rice farmers in vietnam.” Chemosphere, vol. 87, no. 4, pp. 294–300, DOI: 10.1016/j.chemosphere.2011. 11.075.

    Article  Google Scholar 

  • Pradhan, A. and Gogate, P. R. (2010). “Removal of P-Nitrophenol using hydrodynamic cavitation and fenton chemistry at pilot scale operation.” Chemical Engineering Journal, vol. 156, no. 1, pp. 77–82, DOI: 10.1016/j.cej.2009.09.042.

    Article  Google Scholar 

  • Racke, K. D. (1993). “Environmental fate of chlorpyrifos.” Reviews of Environmental Contamination and Toxicology, vol. 131, pp. 1–150, DOI: 10.1007/978-1-4612-4362-5_1.

    Google Scholar 

  • Raut-jadhav, S., Badve, M. P., Pinjari, D. V, Saini, D. R., Sonawane, S. H., and Pandit, A. B. (2016). “Treatment of the pesticide industry effluent using hydrodynamic cavitation and its combination with process intensifying additives (H2O2 and Ozone).” Chemical Engineering Journal, vol. 295, pp. 326–335, DOI: 10.1016/j.cej.2016.03.019.

    Article  Google Scholar 

  • Saharan, V. K., Badve, M. P., and Pandit, A. B. (2011). “Degradation of reactive red 120 Dye using hydrodynamic cavitation.” Chemical Engineering Journal, vol. 178, pp. 100–107, DOI: 10.1016/j.cej. 2011.10.018.

    Article  Google Scholar 

  • Saharan, V. K., Pandit, A. B., Satish Kumar, P. S., and Anandan, S. (2012). “Hydrodynamic cavitation as an advanced oxidation technique for the degradation of acid red 88 Dye.” Industrial and Engineering Chemistry Research, vol. 51, no. 4, pp. 1981–1989, DOI: 10.1021/ie200249k.

    Article  Google Scholar 

  • Senthil Kumar, P., Siva Kumar, M., and Pandit, A. B. (2000). “Experimental quantification of chemical effects of hydrodynamic cavitation.” Chemical Engineering Science, vol. 55, no. 9, pp. 1633–1639, DOI: 10.1016/S0009-2509(99)00435-2.

    Article  Google Scholar 

  • Taylor, P., Ghoshdastidar, A. J., Saunders, J. E., Brown, K. H., and Tong, A. Z. (2012). “Membrane bioreactor treatment of commonly used organophosphate pesticides.” Journal of Environmental Science and Health, Part, vol. 47, pp. 742–750, DOI: 10.1080/03601234.2012. 669334.

    Article  Google Scholar 

  • Theerthagiri, J., Senthil, R. A., Thirumalai, D., and Madhavan, J. (2015). “Handbook of ultrasonics and sonochemistry.” pp. 1–29, DOI: 10.1007/978-981-287-470-2.

    Book  Google Scholar 

  • Vichare, N. P., Gogate, P. R., and Pandit, a B. (2000). “Optimization of hydrodynamic cavitation using a model reaction.” Chemical Engineering & Technology, vol. 23, pp. 683–690, DOI: 10.1002/1521-4125 (200008)23:8%3C683::AID-C.

    Article  Google Scholar 

  • W. Ware, G. (2012). Reviews of Environmental Contamination and Toxicology, 160th edn, (Springer Science and Business Media).

    Google Scholar 

  • Wang, X. and Zhang, Y. (2009). “Degradation of alachlor in aqueous solution by using hydrodynamic cavitation.” Journal of Hazardous Materials, vol. 161, no. 1, pp. 202–207, DOI: 10.1016/j.jhazmat. 2008.03.073.

    Article  Google Scholar 

  • Yue, W., Yao, P., Wei, Y., and Mo, H. (2008). “Synergetic effect of ozone and ultrasonic radiation on degradation of chitosan.” Polymer Degradation and Stability, vol. 93, no. 10, pp. 1814–1821, DOI: 10.1016/j.polymdegradstab.2008.07.010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrikant Bhausaheb Randhavane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Randhavane, S.B., Khambete, A.K. Hydrodynamic Cavitation: An approach to Degrade Chlorpyrifos Pesticide from Real Effluent. KSCE J Civ Eng 22, 2219–2225 (2018). https://doi.org/10.1007/s12205-017-2045-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-2045-0

Keywords

Navigation