Skip to main content
Log in

Enhanced adsorption of heavy metals with biogenic manganese oxide immobilized on zeolite

  • Environmental Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Although nano-sized Biogenic Manganese Oxide (BMO) provides excellent adsorption capacity, its use in water treatment has been limited because it is too small to be readily separated from treated water. Therefore, this work investigated the feasibility of immobilizing BMO on zeolite (BMO/Zeolite) and the use of this material for heavy metal adsorption. BMO/Zeolite was prepared by incubating Pseudomonas putida strain MnB1 in the presence of Mn2+ and natural zeolite pretreated with NaCl (NaCl-Zeolite). BMO immobilization was confirmed by transmission electron microscopy and energy dispersive X-ray analysis. The maximum BMO loading (BMO/Zeolite) was 17.09 mg/g, and the specific surface area increased as the BMO loading was increased. Isotherms and kinetics studies were performed to evaluate the heavy metal adsorption characteristics. The maximum adsorption capacities of Pb2+, Cd2+, and Zn2+ with the BMO/Zeolite were 36.4-70.5% higher than with the NaCl-Zeolite. The amount of heavy metal adsorption increased with higher pH and temperature and with lower ionic strength. The results from this study demonstrate that immobilized BMO not only promotes heavy metal adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Calvo, B., Canoira, L., Morante, F., Martínez-Bedia, J. M., Vinagre, C., García-González, J. E., Elsen, J., and Alcantara, R. (2009). “Continuous elimination of Pb2+, Cu2+, Zn2+, H+ and NH4 + from acidic waters by ionic exchange on natural zeolites.” J. Hazard. Mater., Vol. 166, pp. 619–627, DOI: 10.1016/j.jhazmat.2008.11.087.

    Article  Google Scholar 

  • Camacho, L. M., Parra, R. R., and Deng, S. (2011). “Arsenic removal from groundwater by MnO2-modified natural clinoptilolite zeolite: Effects of pH and initial feed concentration.” J. Hazard. Mater., Vol. 189, pp. 286–293, DOI: 10.1016/j.jhazmat.2011.02.035.

    Article  Google Scholar 

  • Caspi, R., Tebo, B. M., and Haygood, M. C. (1998). “c-Type cytochromes and manganese oxidation in Pseudomonas putida MnB1.” Appl. Environ. Microb., Vol. 64, No. 10, pp. 3549–3555.

    Google Scholar 

  • Castaldi, P., Santona, L., Enzo, S., and Melis, P. (2008). “Sorption processes and XRD analysis of a natural zeolite exchanged with Pb2+, Cd2+ and Zn2+ cations.” J. Hazard. Mater., Vol. 156, Nos. 1-3, pp. 428–434, DOI: 10.1016/j.jhazmat.2007.12.040.

    Article  Google Scholar 

  • Cozmuta, L. M., Cozmuta, A. M., Peter, A., Nicula, C., Nsimba, E. B., and Tutu, H. (2012). “The influence of pH on the adsorption of lead by Naclinoptilolite: kinetic and equilibrium studies.” Water SA, Vol. 38, No. 2, pp. 269–278, DOI: 10.4314/wsa.v38i2.13.

    Article  Google Scholar 

  • Cozmuta, L. M., Cozmuta, A. M., Peter, A., Nicula, C., Tutu, H., Silipas, D., and Indrea, E. (2014). “Adsorption of heavy metal cations by Na-clinoptilolite: Equilibrium and selectivity studies.” J. Environ. Manage., Vol. 137, pp. 69–80, DOI: 10.1016/j.jenvman. 2014.02.007.

    Article  Google Scholar 

  • David, R. L. (2005). “CRC Handbook of chemistry and physics.” CRC Press, Boca Raton, FL, Internet Version. http://www.hbcpnetbase.com.

    Google Scholar 

  • Fachini, A. and Vasconcelos, M. T. (2006). “Effects of zeolites on cultures of marine micro-algae: A brief review.” Environ. Sci. Pollut. R., Vol. 13, No. 6, pp. 414–417, DOI: 10.1065/espr2006.01.293.

    Article  Google Scholar 

  • Feng, X. H., Zhan, L. M., Tan, W. F., Lin, F., and He, J. Z. (2007). “Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals.” Environ. Pollut., Vol. 147, No. 2, pp. 366–373, DOI: 10.1016/j.envpol.2006.05.028.

    Article  Google Scholar 

  • Foo, K. Y. and Hameed, B. H. (2010). “Insights into the modeling of adsorption isotherm systems.” Chem. Eng. J., Vol. 156, No. 1, pp. 2–10, DOI: 10.1016/j.cej.2009.09.013.

    Article  Google Scholar 

  • Gerlach, I., Kawase, M., and Miura, K. (2009). “In-situ preparation of supported precious metal and metal oxide nanoparticles by Nano reactor flash pyrolysis.” Micropor. Mesopor. Mat., Vol. 122, Nos. 1-3, pp. 79–86, DOI: 10.1016/j.micromeso.2009.02.019.

    Article  Google Scholar 

  • Günay, A., Arslankaya, E., and Tosun, I. (2007). “Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics.” J. Hazard. Mater., Vol. 146, Nos. 1-2, pp. 362–371, DOI: 10.1016/j.jhazmat.2006.12.034.

    Article  Google Scholar 

  • Ho, Y. S. (2006). “Review of second-order models for adsorption systems.” J. Hazard. Mater., Vol. 136, No. 3, pp. 681–689, DOI: 10.1002/chin.200648222.

    Article  Google Scholar 

  • Hsu, J. N., Tsai, C. J., Chiang, C., and Li, S. N. (2007). “Silane removal at ambient temperature by using alumina-supported metal oxide adsorbents.” JAPCA J. Air Waste Ma., Vol. 57, No. 2, pp. 204–210, DOI: 10.1080/10473289.2007.10465309.

    Article  Google Scholar 

  • Joseph, L., Flora, J. R. V., Park, Y. G., Badawy, M., Saleh, H., and Yoon, Y. (2012). “Removal of natural organic matter from potential drinking water sources by combined coagulation and adsorption using carbon nanomaterials.” Sep. Purif. Technol., Vol. 95, No. 19, pp. 64–72, DOI: 10.1016/j.seppur.2012.04.033.

    Article  Google Scholar 

  • Kiran, I., Akar, T., Ozcan, A. S., Ozcan, A., and Tunali, S. (2006). “Biosorption kinetics and isotherm studies of Acid Red 57 by dried Cephalosporium aphidicola cells from aqueous solutions.” Biochem. Eng. J., Vol. 31, No. 3, pp. 197–203, DOI: 10.1016/j.bej.2006.07.008.

    Article  Google Scholar 

  • Kragovic, M., Dakovic, A., Sekulic, Z., Trgo, M., Ugrina, M., Peric, J., and Gattac, G. D. (2012). “Removal of lead from aqueous solutions by using the natural and Fe(III)-modified zeolite.” Appl. Surf. Sci., Vol. 258, No. 8, pp. 3667–3673, DOI: 10.1016/j.apsusc.2011.12.002.

    Article  Google Scholar 

  • Liu, Y. (2008). “New insights into pseudo-second-order kinetic equation for adsorption: Short communication.” Colloid Surface A, Vol. 320, Nos. 1-3, pp. 275–278, DOI: 10.1016/j.colsurfa.2008.01.032.

    Article  Google Scholar 

  • Mandernack, K. W., Fogel, M. L., Tebo, B. M., and Usui, A. (1995). “Oxygen isotope analyses of chemically and microbially produced manganese oxides and manganates.” Geochim. Cosmochim. Acta, Vol. 59, No. 21, pp. 4409–4425, DOI: 10.1016/0016-7037(95)00299-f.

    Article  Google Scholar 

  • Meng, Y. T., Zheng, Y. M., Zhang, L. M., and He, J. Z. (2009). “Biogenic Mn oxides for effective adsorption of Cd from aquatic environment.” Environ. Pollut., Vol. 157, Nos. 8-9, pp. 2577–2583, DOI: 10.1016/j.envpol.2009.02.035.

    Article  Google Scholar 

  • Nelson, Y. M., Lion, L. W., Ghiorse, W. C., and Shuler, M. L. (1999). “Production of biogenic Mn oxides by Leptothrix discophora SS-1 in a chemically defined growth medium and evaluation of their Pb adsorption characteristics.” Appl. Bioche. Biotechnol., Vol. 65, No. 1, pp. 75–180, DOI: 10.1016/0016-7037(88)90186-x.

    Google Scholar 

  • Ragnarsdottir, K. V., Graham, C. M., and Allen, G. C. (1996). “Surface chemistry of reacted heulandite determined by SIMS and XPS.” Chem. Geol., Vol. 131, Nos. 1-4, pp. 167–181, DOI: 10.1016/0009-2541(96) 00065-4.

    Article  Google Scholar 

  • Sasaki, K., Kaseyama, T., and Hirajima, T. (2009). “Selective sorption of Ce3+ over La3+ Ions on biogenic manganese oxides.” Adv. Mat. Res., Vols. 71-73, pp. 633-636, DOI: 10.4028/www.scientific.net/amr.71-73.633.

  • Sasaki, K., Matsuda, M., Urata, T., Hirajima, T., and Konno, H. (2008). “Sorption of CO2+ ions on the biogenic Mn oxide produced by a Mnoxidizing fungus, Paraconiothyrium sp. WL-2.” Mater. Trans., Vol. 49, No. 03, pp. 605–611, DOI: 10.2320/matertrans.m-mra2007888.

    Article  Google Scholar 

  • Sasaki, K., Yu, Q., Momoki, T., and Kaseyama, T. (2014). “Adsorption characteristics of Cs+ on biogenic birnessite.” Appl. Clay Sci., Vol. 101, pp. 23–29, DOI: 10.1016/j.clay.2014.06.028.

    Article  Google Scholar 

  • Serrano, S., O’Day, P. A., Vlassopoulos, D., García-González, M. T., and Garrido, F. (2009). “A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils.” Geochim. Cosmochim. Acta, Vol. 73, No. 3, pp. 543–558, DOI: 10.1016/j.gca. 2008.11.018.

    Article  Google Scholar 

  • Shin, W. S., Kang, K., and Kim, Y. K. (2014). “Adsorption characteristics of multi-metal ions by red mud, zeolite, limestone, and oyster shell.” Environ. Eng. Res., Vol. 19, No. 1, pp. 15–22, DOI: 10.4028/www.scientific.net/kem.368-372.1541.

    Article  Google Scholar 

  • Sprynskyy, M., Buszewski, B., Terzyk, A. P., and Namiesnik, J. (2006). “Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite.” J. Colloid Interface Sci., Vol. 304, No. 1, pp. 21–28, DOI: 10.1016/j.jcis.2006.07.068.

    Article  Google Scholar 

  • Taffarel, S. R. and Rubio, J. (2009). “On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites.” Miner. Eng., Vol. 22, No. 4, pp. 336–343, DOI: 10.1016/j.mineng.2008.09.007.

    Article  Google Scholar 

  • Taguchi, A. and Schüth, F. (2005). “Ordered mesoporous materials in catalysis.” Micropor. Mesopor. Mater., Vol. 77, No. 1, pp. 1–45, DOI: 10.1016/j.micromeso.2004.06.030.

    Article  Google Scholar 

  • Tahir, S. S. and Rauf, N. (2003). “Thermodynamic studies of Ni (II) sorption onto bentonite from aqueous solution.” J. Chem. Thermodyn., Vol. 35, No. 12, pp. 2003–2009, DOI: 10.1016/s0021-9614(03) 00153-8.

    Article  Google Scholar 

  • Tani, Y., Ohashi, M., Miyata, N., Seyama, H., Iwahori, K., and Soma, M. (2004). “Sorption of Co(II), Ni(II), and Zn(II) on biogenic manganese oxides produced by a Mn-oxidizing fungus, strain KR21-2.” J. Environ. Sci. Heal. A, Vol. 39, No. 10, pp. 2641–2660, DOI: 10.1081/ese-200027021.

    Article  Google Scholar 

  • Tebo, B. M., Bargar, J. R., Clement, B. G., Dick, G. J., Murray, K. J., Parker, D., Verity, R., and Webb, S. M. (2004). “Biogenic manganese oxides: Properties and mechanisms of formation.” Annu. Rev. Earth. Pl. Sc., Vol. 32, pp. 287–328, DOI: 10.1146/annurev.earth.32.101802. 120213.

    Article  Google Scholar 

  • Tebo, B. M., Clement, B. G., and Dick, G. J. (2007). “Biotransformations of Manganese.” In: Manual of Environmental Microbiology, 3rd Edition, Hurst, C. J., Crawford, R. L., Garland, J. L., Lipson, D. A., Mills A. L., and Stetzenbach, L.D. (Eds), ASM Press, Washington, D.C., pp. 1223–1238, DOI: 10.1128/9781555815882.ch100.

    Google Scholar 

  • Thompson, I. A., Huber, D. M., and Schulze, D. G. (2006). “Evidence of a multicopper oxidase in Mn oxidation by Gaeumannomyces graminis var tritici.” Phytopathology, Vol. 62, No. 2, pp. 130–136, DOI: 10.1094/phyto-96-0130.

    Article  Google Scholar 

  • Toner, B., Manceau, A., Web, S. M., and Sposito, G. (2006). “Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm.” Geochim. Cosmochim. Acta, Vol. 70, No. 1, pp. 27–43, DOI: 10.1016/j.gca.2005.08.029.

    Article  Google Scholar 

  • Trgo, M., Periæ, J., and Medvidovic, N. V. (2006a). “A comparative study of ion exchange kinetics in zinc/leaddmodified zeoliteclinoptilolite systems.” J. Hazard. Mater., Vol. 136, No. 3, pp. 938–945, DOI: 10.1016/j.jhazmat.2006.01.032.

    Article  Google Scholar 

  • Trgo, M., Periæ, J., and Medvidovic, N. V. (2006b). “Investigation of different kinetic models for zinc ions uptake by natural zeolitic tuff.” J. Environ. Manage., Vol. 79, No. 3, pp. 298–304, DOI: 10.1016/j.jenvman.2005.07.009.

    Article  Google Scholar 

  • Turan, M., Mart, U., Yüksel, B., and Çelik, M. S. (2005). “Lead removal in fixed-bed columns by zeolite and sepiolite.” Chemosphere, Vol. 60, No. 10, pp. 1487–1492, DOI: 10.1016/j.chemosphere.2005. 02.036.

    Article  Google Scholar 

  • Villalobos, M., Bargar, J., and Sposito, G. (2005). “Mechanisms of Pb (II) Sorption on a biogenic manganese oxide.” Environ. Sci. Technol., Vol. 39, No. 2, pp. 569–576, DOI: 10.1021/es049434a.

    Article  Google Scholar 

  • Villalobos, M., Toner, B., Bargar, J., and Sposito, G. (2003). “Characterization of the Mn oxide produced by Pseudomonas putida strain MnB1.” Geochim. Cosmochim. Acta, Vol. 67, No. 14, pp. 2649–2662, DOI: 10.1002/chin.200551272.

    Article  Google Scholar 

  • Wang, W., Shao, Z., Liu, Y., and Wang, G. (2009). “Removal of multiheavy metals using biogenic manganese oxides generated by a deep-sea sedimentary bacterium -Brachybacterium sp. strain Mn32.” Microbiology+, Vol. 155, pp. 1989–1996, DOI: 10.1099/mic.0.024141-0.

    Google Scholar 

  • Xu, Y., Boonfueng, T., Axe, L., Maeng, S., and Tyson, T. (2006). “Surface complexation of Pb(II) on amorphous iron oxide and manganese oxide: Spectroscopic and time studies.” J. Colloid Interf. Sci., Vol. 299, No. 1, pp. 28–40, DOI: 10.1016/j.jcis.2006.01.041.

    Article  Google Scholar 

  • Yang, X., Yang, S. B., Yang, S. T., Hu, J., Tan, X. L., and Wang, X. K. (2011). “Effect of pH, ionic strength and temperature on sorption of Pb(II) on NKF-6 zeolite studied by batch technique.” Chem. Eng. J., Vol. 168, No. 1, pp. 86–93, DOI: 10.1016/j.cej.2010.12.039.

    Article  Google Scholar 

  • Zhou, D., Kim, D. G., and Ko, S. O. (2014). “Heavy metal adsorption with biogenic manganese oxides generated by Pseudomonas putida strain MnB1.” J. Ind. Eng. Chem., In Press, DOI: 10.1016/j.jiec. 2014.09.020.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Oh Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DG., Nhung, T.T. & Ko, SO. Enhanced adsorption of heavy metals with biogenic manganese oxide immobilized on zeolite. KSCE J Civ Eng 20, 2189–2196 (2016). https://doi.org/10.1007/s12205-016-0356-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-0356-1

Keywords

Navigation