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Abstract: Dynamic modeling and active control of a strap-on launch vehicle are studied in this paper. In the
dynamic modeling, the double-compatible free-interface modal synthesis method is used to establish dynamic
model of the system, and its model precision is compared with those of finite element method (FEM), fixed-
interface modal synthesis method and free-interface modal synthesis method. In the active control, the swing
angle of rocket motor is used as design variable, and the control law design based on the model of mass center
motion is adopted to validate the system. Simulation results indicate that the double-compatible model synthesis
method can properly approximate the FEM which is used as the benchmark solution, and the model precision
of the double-compatible modal synthesis method is obviously higher than those of the fixed-interface and free-
interface modal synthesis methods. Based on the control law design, the deflection of mass center of the launch
vehicle is very small.
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0 Introduction

It is well known that flexible components are vastly
used in aerospace structures due to the limit on the
weight of launch vehicle. In order to deliver more
payloads to outer space, launch vehicle trends to long
thruster so as to carry more fuel. This results in obvi-
ous flexibility of the launch vehicle. The introduction
of flexibility brings big difficulty to dynamic modeling
and control system. To exactly describe dynamic be-
havior of the system, researcher should adequately take
the flexible characteristics in the system into account
to establish the very high order of dynamic model in
the modeling process. But control design and imple-
ment require that the order of the system should be
as low as possible. Therefore, model reduction work
should be done so as to obtain a low-order mode conve-
nient for control design. This low-order mode should be
able to reflect the dynamic characteristics of the origi-
nal system and its order should be low enough too. On
the other hand, from the point of dynamic simulation,
model order should not be high so as to improve com-
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putational efficiency.
For linear structure, lower-order modes play a main

role in dynamic response of the structure. So the lower-
order modes are often preserved to form a reduction
model to represent the original system approximately.
This is the so-called modal truncation technique which
has been widely applied to both theoretical research
and engineering application. Essentially, the modal
synthesis technique using the modal truncation tech-
nique is a method to build low-order dynamic model for
complex system. In the modal synthesis method, the
complex system is divided into several components rea-
sonably, and high-order dynamic equation of each com-
ponent is firstly established by finite element method
(FEM). Then, the modal truncation technique is ap-
plied to the FEM equation to obtain a low-order modal
dynamic equation of the component. Finally, the dy-
namic equation of the system is established by doing
the modal synthesis for all the components based on
displacement and force compatibility conditions at in-
terfaces of the components. Up to now, some differ-
ent types of modal synthesis methods have been pro-
posed by researchers according to different selection of
modal function of flexible component[1-4]. The typi-
cal ones are the free-interface modal synthesis method
and the fixed-interface modal synthesis method. In
Refs. [4-5], the free-interface modal synthesis method
is modified, a double-compatible free-interface modal
synthesis method is proposed, and this method can
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achieve higher computational precision than the free-
interface and fixed-interface modal synthesis methods.
The modal synthesis method is applicable to dynamic
modeling of large and complex engineering structures,
and its validity has been justified in many practical
applications[6-13]. For modern large-scale aerospace
structure, the modal synthesis method is still an im-
portant and effective analysis tool. For example, space
station is mainly composed of several cabins which are
sent into space at different time. Generally, ground test
needs to be done for every cabin before sending them
into space. However, the overall ground test of space
station is usually impossible. For this case, the modal
synthesis method is available to get the characteristics
of the space station by synthesizing data of every cabin.

All flight vehicles require manipulation (i.e., adjust-
ment or control) of position, velocity and attitude (or
orientation) for successful and efficient flight. A space-
craft launch rocket must achieve the necessary orbital
velocity while it maintains a particular plane of flight.
A missile rocket has to track a maneuvering target such
that an intercept is achieved before running out of pro-
pellant. An atmospheric entry vehicle must land at a
particular point with a specific terminal energy without
exceeding the aero-thermal load limits. In all of these
cases, precise control of the vehicle attitude is required
all the time since the aerodynamic forces governing an
atmospheric trajectory are very sensitive to the body’s
orientation relative to the flight direction. Furthermore,
in some cases attitude control alone is crucial for the
mission success. Therefore, attitude dynamics analysis
is necessarily complex due to these factors mentioned
above. For example, Explorer 1 as the first U.S. satel-
lite in February 1958 is useless as an observation or
communication platform due to tumbling, even though
it may be in the desired orbit.

Any flight vehicle must have two separate classes of
control systems: � control of position and linear ve-
locity relative to a planet fixed frame, called trajectory
control;� control of vehicle’s orientation (attitude con-
trol) with respect to a frame of reference. Over the
years, many scholars have dedicated to the study of
the space vehicle attitude dynamics analysis and active
control design[14-21]. A launch vehicle is essentially a
long slender beam, and thus it is structurally very flex-
ible. As a result, one significant risk for a large flexible
launch vehicle ascent flight control system is the poten-
tial for interaction between the ascent flight control and
the structural bending mode. The control system has
the potential to excite the bending mode and destabi-
lize the vehicle dynamics[22]. Since engines apply forces
to the launch vehicle’s structure, energy can be fed into
the structure at various frequencies. This can reinforce
elastic oscillations, ultimately leading to structural fail-
ure of the vehicle[23], or enlargement of deflection of
mass centre of the vehicle.

In this paper, dynamic modeling and active control of
a strap-on launch vehicle are investigated. The double-
compatible modal synthesis method is used to establish
the dynamic equation of the system, and the swing an-
gle of motor thrust is used as a design variable to make
the deflection of mass centre of the launch vehicle as
small as possible. Simulation results prove the effec-
tiveness of the theoretical analysis.

1 Dynamic Modeling by the Double-
Compatible Free-Interface Modal
Synthesis Method

1.1 Dynamic Equation
For a strap-on launch vehicle, the system may be de-

scribed by beam model when the system is symmetrical
and the vibration of the system is linear. As shown in
Fig. 1(a), the launch vehicle is composed of a core stage
and four boosters. Four boosters are identical and are
symmetrically arranged with respect to the core stage.
In this paper, the plane problem of the strap-on launch
vehicle is considered, as shown in Fig. 1(b), where the
core stage is represented by the long beam and the
two boosters are represented by the short beams. The
modal synthesis method is used to establish dynamic
equation of the system. In the modal synthesis method,
the system is divided into three substructures, as shown
in Fig. 2. Substructures 1 and 3 are both connected to
the long beam through two nodes shown as the big black
dots in Fig. 2. In practice, it is expected that there only
exists force action at the joint of the core stage and the
boosters, where bending moment may cause deforma-
tion damage of the shell of the launch vehicle. So the
joint of the long beam and the short beam in Fig. 2
can be regarded as the hinge joint. In other words, the
interface force on the big black node in Fig. 2 only con-
tains force component and does not contain bending
moment. Three substructures in Fig. 2 are analyzed by
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Fig. 1 Simplified model of strap-on launch vehicle
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Fig. 2 Substructure division

FEM before the modal synthesis is done. The black
dot in Fig. 2 represents the FEM node. Each dot has
three degrees of freedom (DoFs), i.e. the transverse and
axial displacements and the angle of cross-section. The
parameters F1, F2 and F3 are the thrusts produced by
three engines of the core stage and the two boosters,
they act at the lowest nodes of the three beams, as
shown in Fig. 2, and the angles between the thrusts
and the axial direction are all δ.

Substructure 1 is considered firstly in the FEM. It is
divided into five sections: I1, J1, I2, J2 and I3, as shown
in Fig. 2. The vectors of FEM node coordinates of these
five sections are represented by u1I1, u1J1, u1I2, u1J2

and u1I3, respectively, where u1I1, u1I2 and u1I3 are
the internal node coordinates, and u1J1 and u1J2 are
the interface node coordinates. The first number “1”
in subscript represents Substructure 1. For example,
u1I2 means the node-coordinate vector of the I2 section
of Substructure 1. This kind of subscript expression
will be used in this paper.

The FEM dynamic equation of Substructure 1 can
be written as

M1ü1 + K1u1 = B1ff1J + B1F F1. (1)

In Eq. (1), u1 is the node-coordinate vector of Sub-
structure 1, u1 = [uT

1I1 uT
1J1 uT

1I2 uT
1J2 uT

1I3]
T; M1

and K1 are the mass and stiffness matrices, respec-
tively; f1J is the interface-force vector of Substructure
1, f1J = [fT

1J1 fT
1J2]

T, where f1J1 and f1J2 are the
interface-force vectors of the two nodes of Substructure
1 connected to Substructure 2, respectively. Since there
only exists force action on the two nodes, f1J1 and f1J2

both only contain the two force components in trans-
verse and axial directions, respectively. The parameter
B1f is the Boolean indicated matrix of f1J; F1 is the
external force of Substructure 1, namely the thrust of

Substructure 1; B1F is the Boolean indicated matrix
of F1. Since F1 acts at the lowest node of the I3 sec-
tion and the angle of inclination is δ, two elements of
B1F corresponding to F1 are sin δ and cos δ with other
elements of B1F being zero.

The node-coordinate vector u1 can be rearranged as

u∗
1 = [uT

1I1 uT
1I2 uT

1I3 uT
1J1 uT

1J2]
T = [uT

1I uT
1J]

T, (2)

where u1I = [uT
1I1 uT

1I2 uT
1I3]

T and u1J = [uT
1J1 uT

1J2]
T.

The relationship between u1 and u∗
1 is

u∗
1 = T1u1, T1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0

0 0 I 0 0

0 0 0 0 I

0 I 0 0 0

0 0 0 I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where I is the identity matrix. Making transformation
for Eq. (1) yields

M∗
1 ü∗

1 + K∗
1u∗

1 = B∗
1ff1J + B∗

1F F1, (4)

where

M∗
1 = T1M1T

−1
1 , K∗

1 = T1K1T
−1
1 ,

B∗
1f = T1B1f , B∗

1F = T1B1F .

Making modal analysis for Substructure 1 yields

u∗
1 = Φ1np1 = [Φ1k Φ1d]

[
pT

1k

pT
1d

]
=

Φ1kp1k + Φ1dp1d, (5)

where Φ1n = [Φ1k Φ1d] is the modal transformation
matrix; Φ1k and Φ1d are the lower and higher modes
of Substructure 1, respectively; p1 = [pT

1k pT
1d]

T is
the modal coordinate vector of Substructure 1; p1k and
p1d are the vectors corresponding to Φ1k and Φ1d, re-
spectively. Substituting Eq. (5) into Eq. (4) and left
multiplying ΦT

1n, one can obtain

M̃∗
1 p̈1 + K̃∗

1p1 = B̃∗
1ff1J + B̃∗

1F F1, (6)

where

M̃∗
1 =

[
ΦT

1kM∗
1 Φ1k ΦT

1kM∗
1 Φ1d

Φ1kM∗
1 ΦT

1d ΦT
1dM

∗
1 Φ1d

]
=

[
M̃∗

1k 0

0 M̃∗
1d

]
,

K̃∗
1 =

[
ΦT

1kK∗
1Φ1k ΦT

1kK∗
1Φ1d

Φ1kK∗
1ΦT

1d ΦT
1dK

∗
1Φ1d

]
=

[
K̃∗

1k 0

0 K̃∗
1d

]
,

B̃∗
1f = [ΦT

1k ΦT
1d]

TB∗
1f , B̃∗

1F = [ΦT
1k ΦT

1d]
TB∗

1F .

Writing Eq. (6) into the block matrix form yields

M̃∗
1kp̈1k + K̃∗

1kp1k = ΦT
1kB∗

1ff1J + ΦT
1kB∗

1F F1, (7)

M̃∗
1dp̈1d + K̃∗

1dp1d = ΦT
1dB

∗
1ff1J + ΦT

1dB
∗
1F F1. (8)
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Equations (7) and (8) are the dynamic equations of low
and high modes of Substructure 1, respectively. From
Refs. [3-4], we know that the response of Substructure
1 is mainly dominated by Eq. (7) and the contribution
of high modes to the response of Substructure 1 is close
to the static part. If dynamic terms and external force
in Eq. (8) are neglected, the static equation of Eq. (8)
can be written as

K̃∗
1dp1d ≈ ΦT

1dB
∗
1ff1J, (9)

thus
p1d ≈ K̃∗−1

1d ΦT
1dB

∗
1ff1J. (10)

Substituting Eq. (10) into Eq. (5) yields

u∗
1 =Φ1kp1k + Φ1dK̃

∗−1
1d ΦT

1dB
∗
1ff1J =

Φ1kp1k + Ψ1df1J, (11)

where Ψ1d = Φ1dK̃
∗−1
1d ΦT

1dB
∗
1f is actually the resid-

ual flexibility of the interface force f1J, also called the
residual mode[3-4], and it represents the static contri-
bution of high modes. In the double-compatible free-
interface modal synthesis method, Ψ1d is used in modal
synthesis for the system. However, in the classical free-
interface modal synthesis method, only the low modes
of Substructure 1 are used in modal synthesis and Ψ1d

is useless. In Subsection 1.2, it is demonstrated through
numerical simulation that the use of Ψ1d can greatly im-
prove the accuracy of modal synthesis. Equation (11)
shows that, as the modal coordinate p1k, the interface
force f1J can also be regarded as a kind of modal coor-
dinate.

Substituting Eq. (11) into Eq. (4) and left multiply-
ing [ΦT

1k ΨT
1d]

T, one can obtain

M̄∗
1
¨̄p1 + K̄∗

1 p̄1 = B̄∗
1ff1J + B̄∗

1F F1, (12)

where

p̄1 = [pT
1k fT

1J]
T,

M̄∗
1 =

[
ΦT

1kM∗
1 Φ1k ΦT

1kM∗
1 Ψ1d

Φ1kM∗
1 ΨT

1d ΨT
1dM

∗
1 Ψ1d

]
=

[
M̄∗

1k 0

0 M̄∗
1d

]
,

K̄∗
1 =

[
ΦT

1kK∗
1Φ1k ΦT

1kK∗
1Ψ1d

Φ1kK∗
1ΨT

1d ΨT
1dK

∗
1Ψ1d

]
=

[
K̄∗

1k 0

0 K̄∗
1d

]
,

B̄∗
1f = [ΦT

1k ΨT
1d]

TB∗
1f , B̄∗

1F = [ΦT
1k ΨT

1d]
TB∗

1F ,

M̄∗
1d and K̄∗

1d are the residual mass and stiffness ma-
trices, respectively.

Equation (12) is the modal equation of Substructure
1 and is used for modal synthesis of the system. Ac-
cording to the same treatment for Substructures 2 and
3, two modal equations as Eq. (12) can be obtained and
the processing procedure is omitted herein. Assembling
the three modal equations yields

M̄∗ ¨̄p + K̄∗p̄ = f̄∗ + B̄∗F , (13)

where

p̄ = [p̄T
1 p̄T

2 p̄T
3 ]T, M̄∗ = diag(M̄∗

1 , M̄∗
2 , M̄∗

3 ),
K̄∗ = diag(K̄∗

1 , K̄∗
2 , K̄∗

3 ),

f̄∗ = [(B̄∗
1ff1J)T (B̄∗

2ff2J)T (B̄∗
3ff3J)T]T,

B̄∗ =

⎡
⎢⎢⎣
B̄∗

1F 0 0

0 B̄∗
2F 0

0 0 B̄∗
3F

⎤
⎥⎥⎦ , F = [F1 F2 F3]T.

Equation (13) is not an independent coordinate equa-
tion of the system since the elements of p̄ are not inde-
pendent. The vectors p̄1, p̄2 and p̄3 all contain the
interface DoFs of the system. Below we apply the
displacement and force compatibility conditions of the
three substructures to the removal of the redundant
DoFs so as to obtain the independent coordinate equa-
tion of the system.

The displacement compatibility equation of the three
substructures is

u1J = u2J = u3J, (14)

where u1J, u2J and u3J are the vectors of interface co-
ordinates of the three substructures, respectively. They
can also be written as

u1J = B1u
∗
1, u2J = B2u

∗
2, u3J = B3u

∗
3, (15)

where B1, B2 and B3 are the Boolean indicated ma-
trices of the three substructures, respectively, and their
functions are to get the interface displacement vectors
u1J, u2J and u3J from the entire displacement vectors
u∗

1, u∗
2 and u∗

3. From Eq. (11), one can obtain

B1(Φ1kp1k + Ψ1df1J) = B2(Φ2kp2k + Ψ2df2J), (16)
B3(Φ3kp3k + Ψ3df3J) = B2(Φ2kp2k + Ψ2df2J), (17)

where f1J, f2J and f3J are the interface-force vectors
of the three substructures, respectively. Equations (16)
and (17) are the compatibility equations of interface
displacement described by the modal coordinate pik

(i = 1, 2, 3) and the interface force fiJ (i = 1, 2, 3).
Based on Eqs. (16) and (17), fiJ can be written as a
function of pik; thus it may be eliminated in the pro-
cess of modal synthesis. The detailed process is given
as follows.

From Eqs. (16) and (17), one can obtain

f1J =(B1Ψ1d)−1[B2(Φ2kp2k+
Ψ2df2J) − B1Φ1kp1k], (18)

f3J =(B3Ψ3d)−1[B2(Φ2kp2k+
Ψ2df2J) − B3Φ3kp3k]. (19)

The condition of interface force of the three substruc-
tures is

f1J + f2J + f3J = 0. (20)
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Substituting Eqs. (18) and (19) into Eq. (20) yields

f2J = Δ2[p1k p2k p3k]T, (21)

where

Δ2 =Π−1
2

⎡
⎢⎣

(B1Ψ1d)−1B1Φ1k

−(B1Ψ1d)−1B2Φ2k−(B3Ψ3d)−1B2Φ2k

(B3Ψ3d)−1B3Φ3k

⎤
⎥⎦

T

,

Π2 =(B1Ψ1d)−1B2Ψ2d + I + (B3Ψ3d)−1B2Ψ2d.

Substituting Eq. (21) into Eqs. (18) and (19) yields

f1J = Δ1

⎡
⎢⎢⎣
p1k

p2k

p3k

⎤
⎥⎥⎦ , f3J = Δ3

⎡
⎢⎢⎣
p1k

p2k

p3k

⎤
⎥⎥⎦ , (22)

where

Δ1 = [−(B1Ψ1d)−1B1Φ1k (B1Ψ1d)−1B2Φ2k 0]+

(B1Ψ1d)−1B2Ψ2dΔ2,

Δ3 = [0 (B3Ψ3d)−1B2Φ2k − (B3Ψ3d)−1B3Φ3k]+

(B3Ψ3d)−1B2Ψ2dΔ2.

The independent coordinate of the system is defined
as

q = [p1k p2k p3k]T. (23)

The relationship between q and p̄ in Eq. (13) is

p̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1k

f1J

p2k

f2J

p3k

f3J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Sq = S

⎡
⎢⎢⎣
p1k

p2k

p3k

⎤
⎥⎥⎦ , (24)

where S is the coordinate transformation matrix that
can be obtained by the matrix assembly of Eqs. (21)
and (22). Substituting Eq. (24) into Eq. (13) and left
multiplying ST, one can obtain

Mq̈ + Kq = B̄F , (25)

where

M = STM̄∗S, K = STK̄∗S, B̄ = STB̄∗.

Since the interface force appears in pairs in the struc-
tural system, only the external force F appears in the
right hand of Eq. (25). Equation (25) is the final dy-
namic equation of the system obtained by the double-
compatible modal synthesis method, and can be used
for dynamic analysis and control design for the system.
In this equation, all the interface forces are eliminated
and only the low-order modal coordinates of each com-
ponent of the system are preserved, so the order di-
mension of Eq. (25) is the amount sum of the preserved
low-order modes of all components of the system.

1.2 Numerical Simulations
Numerical simulations are carried out to demonstrate

the validity of the proposed modeling method in this
paper. In Fig. 2, the length of long beam is l2 = 55 m,
the cross section area is A2 = 1.217 7 m2, the elasticity
modulus is E2 = 72 GPa and the mass is m2 = 1.815 0×
105 kg. The corresponding parameters of the two short
beams are: l1 = l3 = 15 m, A1 = A3 = 0.545 4 m2,
E1 = E3 = 72 GPa and m1 = m3 = 2.217 1× 104 kg.

In the FEM, the long beam is divided into 55 ele-
ments and the short beam is divided into 15 elements,
so there are 56 nodes and 168 DoFs for the long beam,
and 16 nodes and 48 DoFs for the short beam. The
total number of DoFs of the system is 264. In the
modal truncation method for the three substructures,
the top 1/3 modes of the long beam and the first ten
modes of the two short beams are preserved, so the
total number of the preserved modes of the system
is 76. Therefore, the order of the reduction model
established by the double-compatible modal synthe-
sis method is 76. We can see that the model order
of the system has been reduced greatly. Natural fre-
quencies of the system obtained by the FEM and the
double-compatible modal synthesis method are com-
pared numerically to verify the validity of the reduction
model. Table 1 shows the results of the first thirty fre-
quencies. The results obtained by the FEM and the
double-compatible modal synthesis method are com-
pared with the results obtained by the classical free-
interface and fixed-interface modal synthesis methods.
The first three frequencies in Table 1 are zero, repre-
senting the rigid modes of the system. Here we display
the frequency error using the frequency ratio ω′/ω0,
where ω0 represents the natural frequency obtained by
the FEM, and ω′ represents the natural frequency ob-
tained by the free-interface, fixed-interface and double-
compatible modal synthesis methods, separately. The
frequency error is shown in Fig. 3, and Fig. 3(b) is the
enlarged figure of Fig. 3(a). We can observe from Table
1 and Fig. 3 that the results of the double-compatible
modal synthesis method agree well with those of the
FEM. The free-interface modal synthesis method is su-
perior to the fixed-interface modal synthesis method,
but they are both worse than the double-compatible
modal synthesis method. The low-order frequencies of
the free-interface and fixed-interface modal synthesis
methods show agreement with those of the FEM and
the double-compatible modal synthesis method, but big
error appears in high-order frequency band. The com-
putational precision of the double-compatible modal
synthesis method is obviously higher than that of the
classical free-interface and fixed-interface modal synthe-
sis methods.

The frequency response of flexible vibration of the
system is also used as the judgment standard to evalu-
ate the effectiveness of dynamic model. Two models
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Table 1 The first thirty natural frequencies of the system

Order of

mode

Natural frequency/Hz

FEM Free-interface method Fixed-interface method Double-compatible method

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 6.257 547 462 6.257 560 888 6.260 776 584 6.257 547 462

5 16.995 141 24 16.995 357 97 17.006 187 90 16.995 141 24

6 33.704 997 31 33.705 959 91 33.730 669 42 33.704 997 31

7 35.878 142 97 35.895 658 42 35.896 631 54 35.878 143 00

8 40.896 853 57 40.911 225 85 40.922 389 48 40.896 853 61

9 42.066 112 51 42.134 099 80 42.237 862 73 42.066 112 61

10 57.063 759 05 57.065 304 68 57.113 534 44 57.063 759 05

11 83.513 103 03 83.516 416 81 83.782 258 89 83.513 103 19

12 93.996 676 82 94.205 676 40 94.500 476 29 93.996 684 78

13 111.803 043 0 111.822 581 4 112.548 500 3 111.803 045 9

14 133.901 926 6 134.041 344 0 134.035 672 3 133.901 942 3

15 139.600 309 2 139.681 124 4 139.961 115 8 139.600 321 6

16 144.658 093 0 144.788 824 5 146.173 336 9 144.658 123 1

17 147.534 033 2 147.553 245 6 149.497 131 5 147.534 042 7

18 184.752 247 5 184.797 023 1 196.789 700 2 184.752 281 6

19 187.189 099 9 187.199 463 7 198.831 292 2 187.189 112 9

20 198.730 493 2 206.883 626 1 243.794 099 9 198.740 741 1

21 198.730 493 2 209.934 096 6 252.929 930 2 198.745 027 1

22 225.519 212 7 225.568 983 0 272.768 181 6 225.519 274 6

23 229.716 080 9 230.366 634 1 275.301 476 3 229.716 885 1

24 263.947 316 3 264.113 922 9 393.152 971 3 263.947 945 9

25 271.585 856 9 271.785 291 6 400.568 208 5 271.587 302 1

26 274.350 262 0 274.409 230 3 432.236 550 7 274.350 696 2

27 283.209 025 6 283.881 022 7 432.237 746 4 283.211 419 3

28 311.256 124 9 311.352 991 2 450.723 827 4 311.256 785 6

29 332.662 458 7 332.774 649 5 597.085 542 4 332.663 355 1

30 359.927 785 8 359.932 532 1 600.044 711 8 359.927 845 5
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Fig. 3 Frequency error of the system

are used in the simulations: � the FEM model of
the system; � the reduction model with 76 DoFs
obtained by the double-compatible modal synthesis
method. The simulation results are shown in Fig. 4.

The result using the reduction model agrees better with
that using the FEM model. The reduction model can
reflect the dynamic characteristics of the original sys-
tem effectively.
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Fig. 4 Frequency response using the FEM model and the model of modal synthesis method

2 Active Control Design

In this section, control design problem is studied.
The flight trajectory of the launch vehicle is firstly in-
troduced, then a control law for the system is designed
by using the swing angle of rocket thrust as design vari-
able, sequentially the calculation method for the deflec-
tion of mass center of the launch vehicle is given, and
finally numerical simulation is done to verify the valid-
ity of the control law.
2.1 Brief Introduction to Trajectory of Launch

Vehicle
The high earth orbit and the low earth orbit are two

different flight phases of strap-on launch vehicle from ig-
nition and lift-off to launching satellite into the desired
spatial position. The space conditions of the launch
vehicle in the two phases are different, so the demand
of dynamic analysis for the vehicle is different too. In
the low earth orbit, the launch vehicle is put into orbit
by the stage engines burning continuously one after an-
other so that the required orbital velocity is achieved at
the end of the powered phase of the trajectory, so this
phase is called the active flight one. The gravity vari-
ation along with the flight height of the launch vehicle
in this phase may be neglected since the flight height
in this phase is very smaller than the earth radius. The
horizontal distance of flight of the launch vehicle in this
phase is small too. The influence of the earth curvature
is so little that it can be neglected. When the launch
vehicle reaches to the position of the height of 130 km
and the horizontal distance of 160km, the rocket engine
burns out and the launch vehicle begins to fly under its
inertia, so this phase may be called the unpowered flight
one or the free flight one. When the launch vehicle is
close to the desired satellite orbit, the rocket engine ig-
nites again to develop a thrust to accelerate the launch
vehicle to the required speed and the desired satellite
orbit. Figure 5 shows the three flight phases of the
launch vehicle mentioned above. In this paper, we con-
sider an active control problem of the vehicle in the
active flight phase.

Accelerating phase

Accelerating phase

Free flight phase

Earth

Satellite orbit

Fig. 5 Schematic diagram of trajectory of launch vehicle

2.2 Control Law Design
When the launch vehicle is regarded as a mass point,

the force analysis is illustrated in Fig. 6, where mg is the
gravity and F is the total thrust. From Figs. 1 and 2,
we know that F = F1+F2+F3 and m = m1+m2+m3.
In Fig. 6, v is the flight velocity of the launch vehicle,
θ is the angle between the thrust and the horizontal
direction, and γ is the angle between the flight velocity
and the horizontal direction. For simplicity, the mass
of the launch vehicle is assumed to be constant during
the flight. The motion equation of the vehicle can be

y

F

mg

O x

v
δ

θ γ

Fig. 6 Schematic diagram of force and motion
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written as

mẍ = F cos θ

mÿ = F sin θ − mg

}
. (26)

The launch vehicle remains vertical before launch.
The thrust direction is vertical too in the beginning of
rocket launch. Then it is changed to make the vehicle
travel with the pre-designed trajectory. From Ref. [24]
we know that the thrust value of a launch vehicle is
generally constant and the angle δ between the thrust
and flight velocity direction is often used as the design
variable of control. According to Ref. [24], we design δ.

It is pointed out in Ref. [24] that the total time of
active flight phase for a typical flight of launch vehicle
is about 160 s, where the vertical ascent is from 0 to 7 s,
namely θ = 90◦ at t ∈ [0, 7] s; in the period of [7, 87] s, θ
changes uniformly from 90◦ to 30◦, and θ keeps 30◦ in
the period of [87, 160] s. The change law of θ is shown in
Fig. 7. When the thrust F is known, the horizontal and
vertical flight distances, x and y, the flight speed v and
the angle γ can be obtained by Eq. (26). So the control
law δ can be computed by δ = θ − γ. The deflection of
mass center of the system can be calculated by applying
this control law to the flexible vibration model of the
launch vehicle.
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Fig. 7 Time history of θ given in Ref. [24]

2.3 Deflection of Mass Center of the Launch
Vehicle

In this paper, the deflection of mass center of the
launch vehicle is calculated numerically. It is expected
that this deflection should be as small as possible during
the flight of the launch vehicle. The dynamic equation
of the launch vehicle system established by the modal
synthesis method is shown in Eq. (25). The launch vehi-
cle system is a positive semi-definite system. Equation
(25) contains three DoFs of the rigid body, namely the
rigid body motions of the system in the axial, transverse
and rotational directions, respectively. Since the launch
vehicle is essentially a long slender beam, the axial and
rotational deflections of mass center are much smaller

than the transverse one, so we only consider the trans-
verse deflection in the simulation. The launch vehicle is
a symmetric structure as shown in Fig. 1, and the mass
centre is located in the core stage. From Fig. 8, the
position of mass centre of the system can be written as

y0 =
m1y1 + m2y2 + m3y3

m1 + m2 + m3
, (27)

where y1, y2 and y3 are the mass centre coordinates of
the three substructures, respectively.

y

xO

y 2
y 1 y 3
y 0

Fig. 8 Position of mass center of the system

In order to calculate the deflection of mass center
by Eq. (25), the three DoFs of rigid body should be
removed from this equation to obtain the flexible vi-
bration equation of the system. Next we introduce a
method to obtain the flexible vibration equation.

Equation (25) may be divided into the rigid body
motion and the flexible body motion by

q = qg + qe = Tgηg + Teηe, (28)

where qg and qe are the displacement vectors of rigid
and flexible body motions of the system, respectively;
Tg and Te are the corresponding modal matrices, and
ηg and ηe are the corresponding modal coordinates.
Since there exist only three rigid modes in the system,
Tg can be written as Tg = [Tg1 Tg2 Tg3], where Tg1,
Tg2 and Tg3 are the rigid modes in the axial, transverse
and rotational directions, respectively.

Substituting Eq. (28) into Eq. (25), one can obtain
the flexible vibration equation:

Mq̈e + Kqe = B̄F − MT gη̈g. (29)

From the theory of modal orthogonality, we know
that Tg and Te are mass-orthogonal and stiffness-
orthogonal, so T T

g MT e = 0 and T T
g KT e = 0 . Multi-

plying T T
g for Eq. (29) yields

T T
g B̄F − T T

g MT gη̈g = 0. (30)
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When Tg is the normalized mode, there is T T
g MT g =

I, so Eq. (30) can be written as

η̈g = T T
g B̄F . (31)

Substituting Eq. (31) into Eq. (29) yields

Mq̈e + Kqe = B̄F − MT gT
T
g B̄F = BB̄F , (32)

where B = Ig −MT gT
T
g . Equation (32) is the flexible

vibration equation of the system that the rigid body
motion is removed.
2.4 Numerical Simulations

Control simulations are carried out in this section.
The parameters of the launch vehicle are the same as
those in Subsection 1.2. According to Ref. [24], the
thrust of the core stage is chosen as F2 = 2.961 6 MN
and those of the two boosters are F1 = F3 = 1.484MN,
so the total thrust is F = 5.929 6MN. The arrangement
of flight time of the launch vehicle given in Ref. [24] is
used herein, and can be found in Subsection 2.2 too.
The change law of θ is shown in Fig. 7. The mass centre
position is determined to be y0 = 23.57 m.

Figure 9(a) shows the time history of the angle γ be-
tween the vehicle velocity and the horizontal direction.
Figure 9(b) shows the changing curve of the angle δ
between the directions of the thrust and the vehicle ve-
locity. Figure 10 displays the deflection of mass centre
of the system in the transverse direction. Figure 10(b)
is the enlarged figure of Fig. 10(a) in [120, 130] s. It is
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observed from Fig. 10(b) that the mass center behaves
with a very small vibration near its equilibrium posi-
tion. Figure 11 illustrates the change of the horizontal
and vertical distances of the launch vehicle.
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Fig. 10 Deflection of mass centre of the system
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3 Conclusion

In this paper, dynamic modeling and active control
of a strap-on launch vehicle are studied. The double-
compatible modal synthesis method is used to establish
the dynamic model of the system, and the control law
design based on the model of mass center motion is
applied to the system to verify its validity. The com-
putational precision of the double-compatible modal
synthesis method is numerically compared with that
of the classical free-interface and fixed-interface modal
synthesis methods. Simulation results indicate that
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the computational precision of the double-compatible
modal synthesis method is much higher than that of the
free-interface and fixed-interface modal synthesis meth-
ods. The dynamic model established by the double-
compatible modal synthesis method is effective in de-
scribing the dynamic characteristics of the original sys-
tem. The mass center of the launch vehicle behaves
with a very small vibration near its equilibrium posi-
tion under the action of the given control law.
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