Skip to main content
Log in

Estimation of identification limit for a small-type OSL dosimeter on the medical images by measurement of X-ray spectra

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Our aim in this study is to derive an identification limit on a dosimeter for not disturbing a medical image when patients wear a small-type optically stimulated luminescence (OSL) dosimeter on their bodies during X-ray diagnostic imaging. For evaluation of the detection limit based on an analysis of X-ray spectra, we propose a new quantitative identification method. We performed experiments for which we used diagnostic X-ray equipment, a soft-tissue-equivalent phantom (1–20 cm), and a CdTe X-ray spectrometer assuming one pixel of the X-ray imaging detector. Then, with the following two experimental settings, corresponding X-ray spectra were measured with 40–120 kVp and 0.5–1000 mAs at a source-to-detector distance of 100 cm: (1) X-rays penetrating a soft-tissue-equivalent phantom with the OSL dosimeter attached directly on the phantom, and (2) X-rays penetrating only the soft-tissue-equivalent phantom. Next, the energy fluence and errors in the fluence were calculated from the spectra. When the energy fluence with errors concerning these two experimental conditions was estimated to be indistinctive, we defined the condition as the OSL dosimeter not being identified on the X-ray image. Based on our analysis, we determined the identification limit of the dosimeter. We then compared our results with those for the general irradiation conditions used in clinics. We found that the OSL dosimeter could not be identified under the irradiation conditions of abdominal and chest radiography, namely, one can apply the OSL dosimeter to measurement of the exposure dose in the irradiation field of X-rays without disturbing medical images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amy Berrington de Gonzalez and Sarah Darby. Risk of cancer from diagnostic X-ray: estimates for the UK and 14 other countries. The Lancet. 2004;363:345–51. doi:10.1016/S0140-6736(04)15433-0.

    Article  Google Scholar 

  2. Uffmann M, Prokop CS. Digital radiography: the balance between image quality and required radiation dose. Eur J Radiol. 2009;72:202–8. doi:10.1016/j.ejrad.2009.05.060.

    Article  PubMed  Google Scholar 

  3. Komiya I, Shirasaka T, Umezu Y, et al. Patient dose measurement with fluorescent glass dosimeter: characteristics evaluation and patient skin dose measurement in abdominal interventional radiology. Jpn J Radiol Technol. 2003;60(2):270–7.

    Google Scholar 

  4. Shortt CP, Malone L, Thornton J, et al. Radiation protection to the eye and thyroid suring diagnostic cerebral angiogralhy: a phantom study. J. Med. Imaging Radiat Oncol. 2008;52:365–9. doi:10.1111/j.1440-1673.2008.01970.x.

    Article  CAS  PubMed  Google Scholar 

  5. Matsunaga Y, Kawaguchi A, Kobayashi K, et al. Dose Estimation for Exposure Conditions of Diagnostic Radiology Acquired by a 2011 Questionnaire in a Phantom Study. Jpn J Radiol Technol. 2013;69(12):1372–8. doi:10.6009/jjrt.2013_JSRT_69.12.1372.

    Article  Google Scholar 

  6. Jursinic PA. Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements. Med Phys. 2007;34(12):4594–604. doi:10.1118/1.2804555.

    Article  PubMed  Google Scholar 

  7. Reft CS. The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovoltage photon, megavoltage photon, and electron, proton, and carbon beams. Med Phys. 2009;36(5):1690–9. doi:10.1118/1.3097283.

    Article  CAS  PubMed  Google Scholar 

  8. Lehmann J, Dunn L, Lye JE, et al. Angular dependence of the response of the nanoDot OSLD system for measurements at depth in clinical megavoltage beams, Med. Phys. 2014;41(6):061712-1-9. doi:10.1118/1.4875698.

  9. Kerns JR, Kry SF, Sahoo N, et al. Angular dependence of the nanoDot OSL dosimeter. Med Phys. 2011;38(7):3955–62. doi:10.1118/1.3596533.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Takegami K, Hayashi H, Okino H, et al. Practical calibration curve of small-type optically stimulated luminescence (OSL) dosimeter for evaluation of entrance-skin dose in the diagnostic X-ray. Radiol Phys Technol. 2015;8:286–94. doi:10.1007/s12194-015-0318-1.

    Article  PubMed  Google Scholar 

  11. Takegami K, Hayashi H, Nakagawa K, et al. Measurement method of an exposed dose using the nanoDot dosimeter. Eur. Sor. Radiol. (EPOS). 2015;. doi:10.1594/ecr2015/C-0218.

    Google Scholar 

  12. Hayashi H, Takegami K, Okino H, et al. Procedure to measure angular dependences of personal dosimeters by means of diagnostic X-ray equipment. Med Imaging Inf Sci. 2015;32(1):8–14. doi:10.11318/mii.32.8.

    Google Scholar 

  13. Okazaki T, Hayashi H, Takegami K, et al. Evaluation of angular dependence of nanoDot OSL dosimeters toward direct measurement of entrance skin dose. Eur Soc Radiol (EPOS). 2015;. doi:10.1594/ecr2015/C-0721.

    Google Scholar 

  14. Takegami K, Hayashi H, Okino H, et al. Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment. Radiol Phys Technol. 2015;9(1):99–108. doi:10.1007/s12194-015-0339-9.

    Article  PubMed  Google Scholar 

  15. Nakagawa N, Hayashi H, Okino H, et al. Fabrication of Annealing Equipment for Optically Stimulated Luminescence (OSL) Dosimeter. Jpn J. Radiol Technol. 2014;70(10):1135–42. doi:10.6009/jjrt.2014_JSRT_70.10.1135.

    Article  Google Scholar 

  16. Hayashi H, Nakagawa K, Okino H, et al. High accuracy measurements by consecutive readings of OSL dosimeter. Med Imaging Inf Sci. 2014;31(2):28–34. doi:10.11318/mii.31.28.

    Google Scholar 

  17. Maehata I, Hayashi H, Kimoto N. Practical method for determination of air-kerma by using an ionization chamber toward the construction of secondary X-ray field to be used in clinical examination rooms. Radiol Phys Tech. 2016. doi:10.1007/s12194-016-0352-7.

  18. Debertin K, Schötzig U. Limitations of the pulser method for pile-up corrections in Ge(Li)-spectrometry. Nucl Instrum Meth. 1977;140(2):337–40. doi:10.1016/0029-554X(77)90302-0.

    Article  CAS  Google Scholar 

  19. Then SS, Geurink FDP, Bode P. A pulse generator simulating Ge-detector signals for dead-time and pile-up correction in gamma-ray spectrometry in INAA without distortion of the detector spectrum. J Radioanal Nucl Chem. 1997;215(2):249–52. doi:10.1007/BF02034473.

    Article  CAS  Google Scholar 

  20. Cano-Ott D, Tain JL, Gadea A. Pulse pileup correction of large NaI(Tl) total absorption spectra using the true pulse shape. Nucl Instrum Meth. 1999;430:488–97. doi:10.1016/S0168-9002(99)00216-8.

    Article  CAS  Google Scholar 

  21. Hirayama H, Namito Y, Bielajew AF, et al. The EGS5 code system, SLAC Report number: SLAC-R-730, KEK Report number: 2005-8.

  22. Okino H, Hayashi H, Nakagawa K, et al. Measurement of Response Function of CdTe Detector Using Diagnostic X-ray Equipment and Evaluation of Monte Carlo Simulation Code. Jpn J Radiol Technol. 2014;70(12):1381–91. doi:10.6009/jjrt.2014_JSRT_70.12.1381.

    Article  Google Scholar 

  23. Knoll GF. Radiation Detection and Measurement. New York: Willy; 2000.

    Google Scholar 

  24. Fukuda I, Hayashi H, Takegami K, et al. Development of an experimental apparatus for energy calibration of a cdte detector by means of diagnostic X-ray equipment. Jpn J Radiol Technol. 2013;69(9):952–9. doi:10.6009/jjrt.2013_JSRT_69.9.952.

    Article  Google Scholar 

  25. Asada Y, Suzuki S, Kobayashi K, et al. Summary of results of the patient exposures in diagnostic radiography in 2011 questionnaire -focus on radiographic conditions-. Jpn J Radiol Technol. 2012;69(9):1261–8. doi:10.6009/jjrt.2012_JSRT_68.9.1261.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 15K19205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Hayashi.

Ethics declarations

Conflict of interest

T. Okazaki, T. Hashizume, and I. Kobayashi are employees of Nagase Landauer Ltd. and are collaborative researchers.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takegami, K., Hayashi, H., Okino, H. et al. Estimation of identification limit for a small-type OSL dosimeter on the medical images by measurement of X-ray spectra. Radiol Phys Technol 9, 286–292 (2016). https://doi.org/10.1007/s12194-016-0362-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-016-0362-5

Keywords

Navigation