Journal on Multimodal User Interfaces (2021) 15:359-372
https://doi.org/10.1007/s12193-020-00362-8

ORIGINAL PAPER O‘)

Check for
updates

PLAAN: Pain Level Assessment with Anomaly-detection based Network

Yi Li' - Shreya Ghosh'@® - Jyoti Joshi'

Received: 9 June 2020 / Accepted: 17 November 2020 / Published online: 6 January 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021

Abstract

Automatic chronic pain assessment and pain intensity estimation has been attracting growing attention due to its widespread
applications. One of the prevalent issues in automatic pain analysis is inadequate balanced expert-labelled data for pain
estimation. This work proposes an anomaly detection based network addressing one of the existing limitations of automatic
pain assessment. The evaluation of the network is performed on pain intensity estimation and protective behaviour estimation
tasks from body movements in the EmoPain Challenge dataset. The EmoPain dataset consists of body part based sensor data
for both the tasks. The proposed network, PLAAN (Pain Level Assessment with Anomaly-detection based Network), is a
lightweight LSTM-DNN network which considers features based on sensor data as the input and predicts intensity level of pain
and presence or absence of protective behaviour in chronic low back pain patients. Joint training considering body movement
patterns, such as exercise type, corresponding to pain exhibition as a label improves the performance of the network. However,
contrary to perception, protective behaviour rather exists sporadically alongside pain in the EmoPain dataset. This induces
yet another complication in accurate estimation of protective behaviour. This problem is resolved by incorporating anomaly
detection in the network. A detailed comparison of different networks with varied features is outlined in the paper, presenting
a significant improvement with the final proposed anomaly detection based network.

Keywords Automatic Pain Assessment - Protective behaviour - Emopain challenge - Neural network - Anomaly detection

1 Introduction

The International Association for the Study of Pain defines
chronic pain as “an unpleasant sensory and emotional experi-
ence associated with actual or potential tissue damage” which
lasts for a long period of time [1]. Chronic pain can influ-
ence an individual’s emotional and mental well-being. It can
bring changes to one’s attitude, beliefs, personality and thus,
adversely affecting important activities of daily living such
as in workplace or social life [2]. For some chronic pain
patients, even standing for five minutes could bring a lot of
pain, which would not allow them to continue what they are
going to do next. Hence, correct pain intensity as well as pro-
tective behaviour assessment is necessary to assist patients in
their pain management. Mostly, pain intensity and protective
behaviour is measured by self-report via clinical interview
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of the patient [1]. Thus, correct assessment of occurrence
of pain and its intensity is a challenging problem in itself
due to idiosyncrasy and subjective biases [3]. Additionally,
the treatment and management of pain not only depends on
the occurrence of pain but also heavily relies on the correct
estimation of pain intensity.

There are different treatments available to manage and
ease the pain for chronic patients [4]. Generally, people with
chronic pain go through rehabilitation for their pain man-
agement in proper clinical settings. Trained physiotherapists
treat chronic pain patients via psychological support, move-
ment and demolish patients’ ‘movement behaviour fear’ [5].
The most common treatment is called ‘cognitive behavioural
therapy’” which requires an experienced therapist to help the
patients to set up a personalized solution for their daily
activities. The main difficulty in this treatment is that a
patient could not verbally express his/her reaction to the
pain explicitly. Due to the aforementioned difficulty, some-
times the cognitive behavioural therapy fails to heal the
patient properly. Furthermore, when patients are not avail-
able for self-reporting the pain, direct behaviour observation
done by clinicians could be an alternative. While interact-
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ing with professional practitioners, patients are prone to
avoid pain-related uncomfortable behaviours which they are
experiencing [6]. Therefore, physicians can assess the pain
severity by observing the magnitude of patients’ behaviour.
Even so, there are some drawbacks of direct observation.
The main drawback occurs when patients tend to control their
spontaneous behaviour. Either restraining or exaggerating the
expressions could lead to inaccurate observed results. On the
other hand, biased observed outcomes could exist between
different observers [6].

Nowadays clinicians are shifting from physical rehabili-
tation to self-management, in which ubiquitous technology-
based tools provide huge support to the physiotherapists [7].
The ‘self-care’ based therapy is mainly based on patients’
better understanding of their own pain level which could be
effective in managing their pain. On the other hand, it is
obvious that the patient does not have sufficient knowledge
to select the appropriate exercises/movements for them. The
physiotherapists guide them regarding the same.

With advances in deep learning and ubiquitous comput-
ing, the automatic monitoring of chronic pain patients in the
rehabilitation center is drawing an increasing attention [8—
12]. These studies have addressed the existing challenges in
the domain of automatic pain assessment and pain inten-
sity estimation. Similar to pain, protective behaviour can
cause reduced participation in social life [13,14] which fur-
ther leads to depression. According to a study [9], there
are five types of protective behaviours (hesitation, guarding,
stiffness, bracing and support). The performance of PLAAN
is evaluated on the EmoPain Challenge dataset [9]. In this
dataset, all of the above-mentioned behaviours are treated as
one class (protective behaviour) [11].

In the present work, deep learning-based light-weight
networks are proposed which predict pain intensity and pro-
tective behaviour of the chronic pain patients. Additionally,
the concept of anomaly detection in the context of automatic
pain assessment is also proposed. Anomaly detection is the
identification of outliers in a given data. This paper is an
extension of our earlier work [15], which was part of the
EmoPain 2020 challenge. The key-additions are: (a) pain
intensity and protective behavior are modelled as anomaly
detection; (b) pain estimation is further explored as a hier-
archical classification problem; (c) pain intensity estimation
is proposed by protective behaviour only, and (d) extensive
literature review is performed. The main contributions of this
paper are as follows:

— A deep learning-based light-weight network, PLAAN
(Pain Level Assessment with Anomaly detection based
Network), is proposed to predict pain intensity and pro-
tective behaviour.
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— To enhance the performance of PLAAN, joint-training of
the networks are performed considering exercise type as
an additional label.

— In order to handle data imbalance, anomaly detection
strategy is adopted which further improves class bias.

The rest of the paper is organized as follows: Sect. 2
describes the prior work in this area. Section 3 contains the
details of the proposed method. Section 4 is about the exper-
imental details. Section 5 contains the experimental result
description and ablation study. The last section describes con-
clusion and future directions of this study.

2 Background

This paper attempts to cover several subtopics from the lit-
erature which form essential parts of the proposed PLAAN
architecture. The related work is presented in the follow-
ing order—Existing techniques for automatic pain behaviour
analysis, Sect. 2.1; Proposed algorithm literature for segre-
gating outliers by means of anomaly detection in sequential
inputs, Sect. 2.2; Persisting issues and management of insuf-
ficient and imbalanced datasets in automatic pain assessment,
Section 2.3.

2.1 Pain behaviour analysis

The development of automatic pain detection can be chased
back to one of the early works done by Ashraf et al. [16]. In
the study, shape and appearance characteristics from video
sequences of facial expression were extracted by Active
Appearance Models (AAM) [17]. Further, the refined fea-
tures were piped into Support Vector Machines (SVM) for
classifying whether the pain event exists. The main finding
of this study proves the feasibility of detecting pain expres-
sion automatically in video sequences. However, to relax the
pressure on memory, Ashraf et al. [16] compressed the tem-
poral information during pain detection, which is considered
having a negative influence on model accuracy as reported in
a study by Lucey et al. [18]. The study conducted a compar-
ison between the performance of two different compressed
signals on the AAM model followed by SVM classification
similar to Ashraf et al.’s work [16]. This experiments proved
the importance of temporal information with respect to pain
estimation in video clips.

In another work, Lucey et al. [19] collected UNBC-
Mac-Master Shoulder Pain Expression Archive Database. To
evaluate the dataset effectiveness in pain behaviour detec-
tion, they used the same system in the previous study [18]
as a baseline network and then compared it with the other
two experiments: detection of pain-related action units at the
sequence-level and frame-level. The results imply that the
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accuracy of a pain estimation network should be considered
in the context of the system application, whether a frame-
level detection result is required. The study by Sikka et al.
[20] proposed a novel framework to address the issues in
automatic pain recognition in a video sequence when the
frame-wise pain level is absent, and the specific timing of
the occurrence of pain behaviour is unknown. The proposed
network was the first implementation of Multiple Instance
Learning (MIL) in video-based pain detection, and it treats
every video sequence as a bag and generates multiple seg-
ments from it for further weakly supervised learning. In
present work, a similar MIL based framework to differen-
tiate multiclass pain intensity has been explored, and it is
further used to make a comparison with the best-performed
network.

In one of the earlier works in pain intensity estimation,
Hammal and Cohn [21] used Prkachin and Solomon Pain
Intensity (PSPI) to classify frame-wise pain level of video
clips from the UNBC-McMaster shoulder pain dataset, and
trained an SVM classifier for each pain intensity individually.
This study shows the reliability of using facial expression in
pain level recognition. In another study, instead of treating
pain intensity as multiclass classification, Kaltwang et al.
[22] considered it as a regression problem and developed a
framework of Relevance Vector Regression (RVR) to esti-
mate the continuous pain intensity. The study suggests that
the regression network outperforms the calculation done by
AUs in terms of pain intensity in a static image.

In another study of pain recognition from facial images,
Bellantonio et al. [23] figured out three essential factors that
will affect the pain detection outcome. One of them is the
static information from a single video frame, and another
one is the dynamic information regarding continuous facial
expression along the entire video sequence. Furthermore,
they emphasise that including deep temporal information can
enhance the network’s discrimination ability between differ-
ent pain levels. This idea is also confirmed later in the work
of Rodriguez et al. [24], where they proposed a CNN to esti-
mate the binary pain recognition on facial images and further
improved the performance by piping the CNN output features
to LSTM. Similarly, Zhou et al. [10] developed a novel frame-
work by embedding multiple RNN layers after a standard
CNN layer. This network effectively predicts the continu-
ous pain intensity of facial videos from UNBC-McMaster
shoulder pain dataset. Recently, Bargshady et al. [25] design
a framework that feeds VGG features to a two-stream DNN
and conclude that this joint training approach can improve
the performance of pain level multi-classification problem.

While the field of pain estimation draws significant atten-
tion, some of the studies also focus on the detection of
protective behaviour since it is essential for pain recogni-
tion. Wang et al. [26] explored the approach of implementing
stacked LSTM and dual LSTM for detecting protective

behaviour from MoCap and sEMG data. The performance
of different LSTM networks was also evaluated for detect-
ing the protective behaviour in videos from patients with
Chronic Low Back Pain (CLBP) [12]. Wang et al. [11]
investigated further on the usage of an attention-based deep
learning algorithm in the detection of protective behaviour
and also proposed a framework called BodyAttentionNet that
can learn more informative information to improve the detec-
tion accuracy.

Kaltwang et al. [22] discovered that the combination of
facial landmarks and appearance features can adequately
estimate the pain severity compared with applying only one
type of features using images. In another work related to
severity estimation of CLBP, Olugbade et al. [27] explored
the feasibility of investigating body motion and muscle
activity patterns while the participants carry out an action
or perform an activity that involves them in reaching for-
ward. One key finding is that considering electromyographic
data from muscle activities individually for the task of pain
detection shows excellent performance. Moreover, another
significant result is that the combination of body motion and
muscle activity achieved an optimal result in the estimation
of levels of CLBP. Later, they also confirmed that the modal-
ity is also valuable when the participants are undertaking full
trunk flexion and sit-to-stand exercises [28].

Some studies have also emphasised that the detection
of protective behaviour is critical in the context of chronic
pain recognition [8]. When people with chronic pain try
to prevent themselves from getting hurt in some intensive
physical activities, their body will naturally react avoidance.
Therefore, bodily expression as protective behaviour is a
salient representation of chronic pain. After confirming the
effectiveness of body movement and muscle energies in the
context of automatic pain detection, Aung et al. [9] curated
the EmoPain dataset. The baseline of this dataset was based
on a random forest on the 13 joint angles, joint energies and
sEMG data. The work presented in this paper utilises this
dataset and also makes a comparison with results from other
available studies using same data. The performance compar-
ison is listed in Tables 5, 6 and 7.

Another study [29] focuses on manipulating the input data
where a multimodal and multilevel network is constructed
that will treat the existence of protective behaviour as an
early sign of future pain event, and perform pain recognition
in several stages. The proposed network detects the appear-
ance of pain first, then feeds the output and previous features
to the second level to detect the occurrence of protective
behaviour. Next, the outcome of the second level will be
concatenated with the previous input to estimate the pain
intensity at the last stage. The main finding of this work is
that the successful detection of the existence of protective
behaviour can improve the result of pain estimation. A similar
network architecture is evaluated in this paper for comparison
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with other proposed approaches. Furthermore, the proposed
network, PLAAN, is trained to discriminate the undertak-
ing exercise type and the associated pain intensity/protective
behaviour at the same time.

Another work of EmoPain Challenge by Yuan and Mah-
moud [30] focuses on building an effective neural net-
work. They proposed an Autoencoder-LSTM-Attention-Net
(ALANet), which was designed for extracting the most
expressive temporal information. In comparison with the
baseline network of EmoPain dataset, ALANet exceeds the
baseline accuracy with only one-twentieth training time.
However, this network cannot discriminate well between low
pain and high pain targets. This issue is occurring due to
the class-wise imbalance in the EmoPain dataset. PLAAN
is developed especially to address this concern by applying
anomaly detection.

Similar to Wang et al. [11], similar terminology has been
used in this paper: ‘sample’ refers to a single data point at
every single timestep; ‘segment’ or ‘frame’ refers to a small
data chunk having several samples within; ‘instance’ is at
participant-level data which contains full data sequence of
all the activities during one trial.

2.2 Anomaly detection

The proportion of frames containing an event of occurrence
of pain or protective behaviour in the EmoPain dataset is
significantly less. Statistically, the number of frames hav-
ing pain or protective behaviour labels are in range 16-20
per 100 frames. This motivate us to follow the approach of
anomaly detection. In an interesting work, Ravanbaksh et
al. [31] proposed a video based flow detection of an event
via an adversarial approach for abnormal activity detection.
Ribeiro et al. [32] proposed a convolutional auto encoder
based technique for anomaly detection in videos. The recon-
struction error of each frame is considered as an anomaly
score. The final score for a video is predicted by aggregat-
ing high-level spatial and temporal features with the input
frames. Meheta et al. [33] used an adversarial network com-
prised of two channel 3D convolutional auto encoders. Both
channels deals with video sequences and optical flow which
reconstruct thermal data and optical flow input sequences.
Chalapathy et al. [34] conducted a survey on deep learning
techniques for abnormal activity detection. Most of the exist-
ing research on this topic focus on a application of specific
research area where the learning is based on an auto-encoder
for one class learning.

2.3 Handling imbalanced data
A useful technique for handling imbalanced data is required

to improve the network performance, given the huge imbal-
ance in the EmoPain Challenge data. The implementation
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of balancing techniques are generally at the input level.
The training dataset can be manually balanced by over-
sampling the minority class or under sampling the majority
class. Furthermore, Synthesizing new data for the minority
class can also balance the class distribution. Chawla et al.
[35] develop the Synthetic Minority Over-sampling Tech-
nique (SMOTE) that can enhance the discrimination between
minority and majority classes. SMOTE is based on the idea
of the KNN algorithm. For any randomly picked instances
from the minority class, SMOTE will choose its K near-
est neighbours and compute the distances between it and its
neighbours, then synthesize new data points with only half
of the previous distance. Inspired by the above mentioned
literature, we use SMOTE data balancing technique in our
experiments.

Except for the manipulation of data records, an alternative
way to modify the input data would be feature engineering. In
the study of continuous pain estimation on UNBC-McMaster
pain database, Egede et al. [36] imply that a combination of
handcrafted features and deep learned features could combat
the limitation of the imbalanced data, since the significant
features can improve the network performance.

3 Proposed approach
3.1 Preliminaries

This section introduces the deep learning frameworks, which
are trained to classify the above mentioned tasks. The Long
Short Term Memory (LSTM) [37], Bidirectional-LSTM
[38], Attention-LSTM and LSTM-DNN networks are trained
and evaluated. For all cases, layers configurations are chosen
empirically.

LSTM We use a simple LSTM network as a baseline.
LSTM is an improved version of RNN, which is designed
to solve the long dependency issue. LSTM’s main learning
mechanism called ‘gate’, which allows the network itself
to identify the part having less/more information. It acts
accordingly to ignore and pay more attention that specific
part of the sequential input. Thus, LSTM can learn and cap-
ture the dependency within the sequence better and provide
higher performance on time series data. The network has
three LSTM layers: 1024, 512, 256 for pain intensity estima-
tion and 128, 64, 128 for protective behaviour respectively.

Bi-directional LSTM Based on traditional LSTMs, Bidi-
rectional LSTMs were developed to improve the estimation
quality by two way sequence analysis. One way to compare
LSTM with Bidirectional LSTM is that in the latter, the first
LSTM layer is duplicated. Then two LSTM layers are con-
catenated side by side so that the output of the first layer
will be reversed and fed to the second layer. The network
in our case, contains one 1024 dimensional bi-LSTM layer
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followed by two 512 and 256-dimensional LSTM layers for
pain intensity estimation.

Attention-LSTM The attention-LSTM architecture used
in protective behaviour estimation task and contains three
layer LSTMs (128, 64, 128 dimensional) followed by a dense
attention layer (64 dimensional) and a dense layer (64 dimen-
sional) before joint estimation for the same task.

LSTM-DNN The LSTM-DNN architecture has three-layer
LSTMs (128, 64, 128 dimensional) followed by three dense
layers having 512, 1024, 128 nodes.

3.2 Joint training with exercise type

In this work, both pain intensity and protective behaviour are
estimated on the basis of body part movement. The move-
ment in the body parts occurs when the participants performs
the instructed exercises. The hypothesis behind joint train-
ing of the network considering exercise type as an additional
label is that there is a correlation between exercise labels
and tasks performed. Based on our assumption, we calcu-
late the correlation coefficient and plot a graph between both
tasks and exercise labels (Fig. 1). The plots in Fig. 1 show
the Spearman’s Rank-Order correlation between the types
of exercise undertaken and pain intensity estimation, pro-
tective behaviour detection, respectively. From Table 1, it is
observed that while the participants perform exercise (for
example one leg stand, bend etc.) they are feeling low/high
pain and protective behaviour. Thus, there is a positive cor-
relation of these exercises with LP, HP, P. The exception
happens for standing still and walking. The reason behind
this is that during these two activities the chronic back pain
does not occur. There is another category in the data, termed
as other, where no activity is performed. Thus, in this case
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Fig. 1 Correlation plots representing the correlation between exercise
and the task. The left plot represents the correlation between exer-
cise and pain intensity level. The right plot represents the correlation
between exercise and protective behaviour. Here, Ex-0, Ex-1, Ex-2, Ex-

also, pain usually does not occur. Additionally, please note
that the correlation results also include the statistics from
healthy patients as well where ideally there is no correlation
between any exercise and pain levels, protective behaviour.

Further, we jointly trained all the networks with exercise
type along with ground truth labels which enhances the per-
formance for both the tasks. More information on the dataset
and labels follows in the Sect. 4.1.

3.3 Anomaly detection framework

As occurrence of either chronic pain or protective behaviour
is infrequent event with respect to total number of frames,
it is difficult to extract the patterns from the imbalanced
data. To handle this problem, presence of exhibition of pain
and protective behaviour is considered as an anomaly detec-
tion problem in a LSTM-DNN framework. For simplicity,
we consider non-protective and protective as ‘normal’ and
‘abnormal’ activities, respectively. Similarly for the pain esti-
mation, we consider no-pain and pain categories as ‘normal’
and ‘abnormal’ activity, respectively. Further following steps
are taken:

1. A LSTM-DNN framework is jointly trained for a binary
classification task.

2. The anomaly score is calculated for each frames in a seg-
ment. Here, the overall loss of the LSTM-DNN network
is considered as the anomaly score.

3. The average of the anomaly scores over a segment is cal-
culated to get segment wise anomaly score.

4. An empirical threshold is applied on the anomaly score
to predict abnormal activity.

Correlation between Exercise Type and Protective Behaviour
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3, Ex-4, Ex-5, Ex-6, Ex-7, Ex-8 represent different exercises including
others, one-leg-stand, reach-forward, bend, sit-to-stand, stand-to-sit, sit-
ting still, standing still, and walking. NP, LP, HP, nP and P represents no
pain, low pain, high pain, non-protective and protective, respectively
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Table 1 The correlation and corresponding p values between exercise type and pain behaviour labels

Exercise type Correlation matrix p values
NP LP HP nP P NP LP HP nP P

One-leg-stand  —0.2945 0.3014 0.0370 —0.0404 0.0404 0.002988  <0.00001  <0.00001 0.00692 <0.00001
Reach forward —0.1520 0.1479 0.0276 —0.1337 0.1337  <0.00001 <0.00001  <0.00001  <0.00001  <0.00001
Bend —0.1602 0.0236 0.1753 —0.1561 0.1561 0.005978  <0.00001  <0.00001  <0.00001  <0.00001
Sit-to-stand —0.1784 0.0527 0.1661 —0.1714 0.1714  <0.00001 <0.00001  <0.00001 0.00053 <0.00001
Stand-to-sit —0.2726 0.0897 0.2435 —0.2633 0.2633  <0.00001 <0.00001  <0.00001  <0.00001  <0.00001
Sitting still 0.2930 —0.1901 —0.1583 0.1875 —0.1875  <0.00001 <0.00001  <0.00001  <0.00001 0.00173
Standing still 0.3178 —0.2063 —0.1716 0.2033 —0.2033  <0.00001 <0.00001  <0.00001  <0.00001  <0.00001
Walking 0.1510 —0.0980 —0.082 0.0966 —0.0966  <0.00001 <0.00001  <0.00001  <0.00001  <0.00001
Other 0.3837 —0.2489 —0.2073 0.2455 —0.2455  <0.00001 <0.00001  <0.00001  <0.00001  <0.00001

Here, NP, LP, HP, nP and P represents no pain, low pain, high pain, non-protective and protective, respectively

3.4 Hierarchical classification for pain estimation

A hierarchical pain intensity estimation method is employed.
In the first step, ‘no-pain’ and ‘pain’ classes are classified via
anomaly detection on the basis of LSTM-DNN’s loss predic-
tion. Further, estimation of low and high pain is performed via
a LSTM-DNN based pain classifier where the pain classifier
is trained on the low pain and high pain labeled data. Further,
we treated this activity as anomaly detection problem. The

3.4.1 Protective to pain hierarchical classification

Patients having CLBP are mostly protective in nature. Based
on this hypothesis, we propose a two stage network archi-
tecture, which predicts protective behaviour in first stage
followed by pain intensity estimation in the second stage.
The overview of the proposed PLAAN network for both
pain intensity and protective behaviour prediction is shown
in Fig. 2.

overview of this network is shown in Fig. 2.
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Fig.2 Overview of the proposed PLAAN network. Here, data processing refers to the window based temporal segment selection process. For the
estimation task, either pain intensity or protective behaviour is used
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4 Experiments
4.1 Emopain dataset

Aung et al. [9] curated the Emopain dataset for research
purposes and released the dataset through the movement
challenge [39]. The dataset comprises of 30 participants
whose data is partitioned randomly into three sets: training
set (10 CLBP participants, 6 healthy participants), validation
set (4 CLBP participants, 3 healthy participants) and test set
(4 CLBP participants, 3 healthy participants). This dataset
has full-body motion capture (MoCap) data captured with
18 microelectromechanical (MEMS) based Inertial Measure-
ment Units (IMU). The placement of 18 sensors is as follow:
twelve sensors were distributed on 4 limbs evenly; one on
the hip, one on the centre of the torso, a pair on both ends
of the shoulder, one around the neck and the last one is on
the head. Each sensor was connected with Velcro attach-
ment straps to minimize subject’s uncomfortable that could
bring inaccuracy to the motion data. While the participant
was performing the required exercises, each sensor recorded
a sequence of 3D Euler angles, which was used in calculating
the postural information of 26 anatomical joints in 3D space.
The surface electromyography (SEMG) data were collected
from 4 locations on the back, two of them were at the upper
back, while the other two were at the lower back. Each video
recorded the body movement data taken from a participant
instance doing a series of exercises for one specific difficulty.

Recorded activities included: One-leg-stand, Stand-to-sit,
Sit-to-stand, Reach forward and Bend—typical everyday
activities that are generally challenging for subjects with
CLBP. This paper focuses mainly on two tasks corresponding
to the challenge. The first task is pain intensity estimation;
that is to determine if a participant has chronic pain along
with the estimation of the intensity of the pain (i.e. low-
level pain or high-level pain) or if s(h)e is a healthy control
participant. The second task is protective behaviour identi-
fication; based on the exercise performance of a participant,
presence or absence of any protective behaviour has to be
identified.

Dataset statistics In Emopain dataset, for body movement
data, the training and validation sets ratio is approximately
2:1. There are 23 video clips in the training set and 12 video
clips in the validation set. Please note that few participants

have two video clips. The ground truth labels for the task of
pain intensity estimation has three classes; No pain, low pain
and high pain and the task of protective behaviour estimation
is a binary class problem. Given that the ground truth of
pain intensity, exercise type, and the existence of protective
behaviour are all frame-wise, the label distributions are as
reported in Table 2.

4.2 Data pre-processing

We perform the following pre-processing steps before train-
ing: as the pain recognition network needs to conduct an
exercise-wise protocol, we re-organize the movement dataset
based on the exercise types and ignore the unlabeled frames.
We split the data in segments of length n, where n is the num-
ber of frames in each segment (in our experiments, n = 180).
In total, there are 141 exercise instances in the training set
and 108 instances in the validation set. The dataset has frame
wise labels (Pain labels—O0: Healthy, 1: Low-level pain, 2:
High-level pain, -1: Not reported (only for the patients). Pro-
tective behavior labels—O0: Not protective, 1: Protective.) and
to label a segment, we compute majority voting over the
labels of the frames in the segment. Similar to Wang et al.
[11], only the motion capture data of the EmoPain dataset is
used. From the protective behaviour-experiments, a sliding
window of length=3s and overlapping ratio=75% is used
for each activity type in the data instance. Zero-padding is
applied, when the window is beyond the end of a given activ-
ity type. All of the activities are considered irrespective of
the pain level. Majority voting technique is applied to pool
the labels at the window level. If there is greater than 50%
voting belongs to a class, we assign the window label with
that.

Imbalanced data After the pre-processing of data, we
noticed that for exercise-wise segments, the label distribution
between classes is biased towards to non-CLBP subjects.

In the segment-level, 61 segments have no pain; 44 pain
level 1; 36 pain level 2 in the training set, and 73 pain level
0; 30 pain level 1; 5 pain level 2 in the validation set.

In the labels for protective behaviour, we have 10,370 non-
protective behaviour labels; 6280 protective behaviour labels
in the training set, and 5100 non-protective behaviour labels;
3517 protective behaviour labels in the validation set. Given
above, it is reasonable for us to choose evaluation metrics

Table2 Class-wise frame
distribution in Emopain Dataset
for training and validation set

Class-wise frame distribution

Pain intensity estimation

Protective behaviour

No Pain Low pain High pain Non protective Protective
Train (in %) 24.02 11.32 8.53 81.30 18.70
Validation (in %) 83.78 13.55 2.67 93.23 6.77

For pain intensity estimation, a large amount of frames (approx 56.13%) are not annotated
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that can reflect the network’s performance among all classes,
which we will introduce in the later section.

4.3 Experimental setup

For experimental purpose, we use the Keras deep learning
library with the TensorFlow backend. With the help of join
training, our networks’ ability to discriminate all training
samples gets enhanced. We performed the following exper-
iments on the pain data. (1) Basic LSTM, (2) bi-LSTM, (3)
Attention-LSTM, (4) LSTM-DNN, (5) Joint training of task
with respect to exercise performed, (6) Pain and Protective
Behaviour estimation as a anomaly detection task, (7) Hier-
archical pain intensity estimation, (8) Cascaded estimation
of protective behaviour and pain intensity estimation.

The comparison between joint training and single training
label for pain intensity estimation is reported in Table 4. All
trained networks’ performances are reported in Table 3.

4.4 Evaluation metric

In the network’s training process, we specified the exer-
cise type as an additional label. Next, we jointly trained
the PLAAN network with pain level label for pain inten-
sity estimation, and protective behaviour label for protective
behaviour detection, respectively. Even so, we only evalu-
ated networks based on the output for either pain level or
protective behaviour.

In this work, we use accuracy to evaluate networks’ overall
performance. Additionally, given that the dataset is imbal-
anced and our PLAAN network effectively discriminate the
difference between control subjects and people with CLBP,
we also implement F1 score and Matthews Correlation Coef-
ficient (MCC) in measuring the predictive results among all
classes.

4.5 Implementation details

Training the basic LSTM network During experiments,
different network’s output were recorded to analyze gradual
improvements. We first used traditional LSTM with only one
hidden layer, however the result was not significant. Then two
more LSTM layers were added to create a stacked LSTM.
An LSTM layer can return a sequence output then pipe it to
the next LSTM layer. With more hidden layers, an in-depth
abstraction of the learned representation can be achieved as
stated by Hermans et al. [40]. Besides, we used Adam opti-
mizer [41] with a learning rate of 0.001 instead of SGD[42].
Adam optimization algorithm as the improved combination
of RMSprop [43] and Momentum optimization algorithm
[44] is less affected when the gradient is re-scaling. We have
used categorical cross-entropy as loss function for this clas-

sification problem. Furthermore, we trained the network for
100 epochs with batch size 128.

Training the bidirectional LSTM network Similar to the
basic LSTM network, we used Adam optimizer with a learn-
ing rate of 0.001 and also used categorical cross-entropy as
loss function. We trained the network for 100 epochs with
batch size 128. To improve the performance of basic LSTM
network, bi-LSTM layers are used.

Training the attention-LSTM network For training attention-
LSTM, we use SGD optimizer with learning rate 0.01 with
momentum 0.9 and learning rate decay le—6 per epoch. We
used categorical cross-entropy as loss function. We trained
the network for 100 epochs with batch size=32.

Training the LSTM-DNN network Similar to the attention-
LSTM network, we use the SGD optimizer with learning rate
0.01 with momentum 0.9 and learning rate decay le—6 per
epoch. We used the categorical cross-entropy as loss func-
tion. We trained the network for 100 epochs having batch
size 32. We implemented LSTM-DNN network architecture
(Fig. 2) for both pain recognition and protective behaviour
classification.

5 Results
5.1 Network performance

(1) Experiment with LSTM Variants We experimented with
different variants of LSTM network architectures to get an
overview of the performance. For pain estimation task, we
achieved 67.6%, 70.36% and 80.00% accuracy on the valida-
tion set for LSTM, bi-LSTM and LSTM-DNN respectively.
bi-LSTM improved the performance by approximately 3%.
Further with LSTM-DNN network the accuracy improved
from 70.36 to 80.00%.

Similarly, for protective behaviour estimation, we achieved
92.77%, 93.33% and 94.08% accuracy on the validation
set for LSTM, Attention-LSTM and LSTM-DNN respec-
tively. Attention-LSTM improved the LSTM’s performance
approximately 1%. Further with LSTM-DNN network the
accuracy is improved slightly from 93.33 to 94.08%. LSTM-
DNN attained an accuracy of 80.00% in the former task and
the accuracy of 94.08% in the later task. The relative per-
formance comparison of different networks for both tasks is
depicted in Fig. 3 and Table 3.

(2) Performance on test set The results on the test set
indicate that our network is biased toward healthy patients.
For pain intensity estimation, the test accuracy is 45.45%
(F1 score of healthy, low pain and high pain patients are
0.64, 0 and O respectively) which indicates that the presented
network needs to address the unbalance in the data. Our net-
works perform better than the given baselines 35% with KNN
and 7% with SVM. On the other hand, the accuracy for pro-
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Table 4 Comparison of the task

. .. N Pain estimation
specific training with joint

Protective behaviour

training in terms of accuracy and ~ LSTM Accuracy (in %) MCC LSTM Accuracy (in %) MCC
matthews correlation coefficient
Pain 64.82 0.45 Protective 89.00 0.83
Pain + Exercise 67.59 0.51 Protective + Exercise 92.77 0.86
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Fig.3 ROC curves of DNN-LSTM networks for pain intensity (left) and protective behaviour estimation (right), respectively

tective behaviour estimation with the proposed network is
89.18% (F1 score of non-protective and protective classes
are 0.94 and 0.0053 respectively). Our network performs bet-
ter than the baseline network 82.80% with stacked-LSTM.
Please note that we can not estimate the test results of the
anomaly detection framework as the submission protocol is
different. In test phase, our anomaly detection framework
follow the following steps: we train an LSTM-DNN based
encoder-decoder module with MSE as reconstruction loss
and cross entropy for joint training. For test results, we
compute the MSE between the original and reconstructed
features.

(3) Data balancing techniques As the data is largely biased
on negative classes, we experimented with two data sampling
techniques: k-mean clustering based SMOTE and manual
data under-sampling.

In case of k-mean based SMOTE [46], the minor class
data interpolation is performed on the basis of three steps:
clustering, filtering, and oversampling. In the clustering step,
k-means clustering is performed to identify different classes.
The filtering step selects the classes for which oversampling
is required. In the next step, the synthetic samples are gener-
ated and sparsely distributed throughout the selected region.
The other technique that we experimented with was under-
sampling the major class by random sampling method.

We observe that the results of the minority classes slightly
improve for pain intensity estimation. However, since the val-
idation set lacks protective behaviour instances, the balancing
techniques do not work as expected in protective behaviour

detection. The results are shown in Table 3.

(4) Multiple instance learning Further, to get the advan-
tage of both skewed and balanced data-trained networks, we

@ Springer

conduct an experiment with a three channels based multiple
instance learning framework. Each of the three channels con-
sist of a LSTM-DNN network trained on positively skewed,
negatively skewed and balanced data. We generate positive
and negative labeled data by organizing the positive and nega-
tive class ratio 3:1 (both cases). We use the SMOTE technique
to balance the data. Further, these three channel features are
concatenated to get the overall performance. The results are
shown in Table 3. From the table, it is observed that the overall
accuracy increases but class-wise F1 score does not improve
significantly.

(5) Anomaly detection The main problem with the pain
estimation and protective behaviour estimation tasks are
imbalanced data. Although we attempted to remove this
issue via MIL and dataset balancing techniques, the results
improved slightly. Thus, we use anomaly detection frame-
work to handle the issue. The results are shown in Table 3.
Figure 4 provide the probability distribution of the anomaly
detection network where the red part represents the outliers.
Further, one way ANOVA test is performed on the models
is to calculate the statistical significance of the models. The
p-values of the LSTM-DNN anomaly detection models for
pain level and protective behaviour estimation are 0.003 and
0.001, respectively. The p-values of the models are <0.05,
which indicates that the results are statistically significant.

(6) Hierarchical classification We estimate pain intensity
of a patient via hierarchical classification. In the first stage,
we estimate whether the participant have pain or not. In the
second stage, we estimate the low or high pain corresponding
to the ‘pain’ participants (detected in first stage). The results
are shown in Table 3.
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Table 5 Performance comparison with state-of-the-art methods for
pain intensity estimation

Pain intensity estimation

Method Accuracy (in %)  F1-NP  FI-LP  F1-HP
Baseline [39] 7.00 0.00 0.14 0.00
Yuan et al. [30] 45.61 0.40 0.00 0.00
Uddin et al. [29] 95.00 1.00 0.87 0.49
Haider et al. [45]  43.00 0.45 0.41 0.42
PLAAN 85.26 0.89 0.41 0.29

Here, F1-NP, F1-LP and F1-HP refer to F1 score corresponding to the
no pain, low pain and high pain categories, respectively

Table6 Performance comparison with state-of-the-art methods for pro-
tective behaviour estimation

Protective behaviour estimation

Method Accuracy (in %) F1-nP F1-P
Baseline [39] 46.36 0.96 -

Uddin et al. [29] 93.00 0.96 0.48
Yuan et al. [30] 85.00 091 0.26
Haider et al. [45] 61.21 0.96 0.25
PLAAN 87.00 0.93 0.50

Here, F1-nP and F1-P refer to F1 score corresponding to the non pro-
tective and protective behaviour respectively

Table7 Theresults of Leave One Subject Out protocol on the validation
set

Validation accuracy (in %)

Method
LOSO

KNN [39]
37.00

SVM [39]
44.00

Ours
54.60

(7) Leave one subject out We also computed the results
with leave one subject out cross validation protocol to further
validate the proposed method. Segment-wise average score
for each subjects were computed. The LOSO method gives
54.6% validation accuracy for pain estimation as compared
to the SVM (44%) and KNN (37%). The results are compared
in Table 7.

(8) Comparison with state-of-the-art method We compare
with state-of-the-art methods for pain intensity estimation
(Table 5) and protective behaviour (Table 6). From Tables 5
and 6, our method performs better than baseline [30,39].
With our PLAAN framework, class-wise F1-score improves
significantly. In these tables, we compare our results with
baseline [29,30,39]. For pain intensity estimation, the base-
line method [39] mainly use hand-crafted features(e.g. range
of joint angle, max/min/mean speed, and range of muscle
activity) to capture the dynamics of each data instances. Fur-
ther, these features are classified via a support vector machine
having gaussian kernel. Yuan et al. [30] uses data augmenta-
tion, including normalized gaussian noise and creating new
datainstances by random selection to balance the training set.
An autoencoder LSTM is used to decrease the dimension of
the raw data, while an attention mechanism is used to extract
more discriminative features for pain intensity estimation.
Uddin et al. [29] uses the protective behaviour probability
and the it’s feature set to estimate the pain level. This method
fuses three random forest-based models and two XGBoost of
different feature subsets at the decision stage to balance the
performance in three pain level classes. Our proposed model
performs better than baseline [30,39]. Our proposed method
have comparable performance with respect to [29] consider-
ing it’s model’s computational complexity. Five models are
fused to infer the pain intensity as compared to our anomaly
detection procedure. Additionally, the inference time for pain
behaviour prediction with PLAAN will be relatively lower as
compared to Uddin et al. [29].
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Table 8 Comparison of

.. Network Accuracy (in %) MCC F1 Score
performance when pain is
estimated as a consequence of No pain Low pain High pain
protective behaviour
LSTM-DNN 80.00 0.69 0.79 0.05 0.00
LSTM-DNN (Protective + Pain) 81.26 0.71 0.84 0.40 0.19

Table 9 Comparison of performance when different segment duration
is chosen

Segment length Accuracy(in %)
100 67.59
200 67.59
300 67.59
400 67.59
500 68.52
600 67.59
700 67.59
800 68.52
900 67.59
1000 67.59

5.2 Ablation study

(1) Input segment duration As the training is performed
segment-wise, we conduct an ablation study regarding the
trade-off between input segment duration and overall accu-
racy. For this experiment, we use the LSTM-DNN network
for pain intensity estimation on a subset of data to observe
the network performance. the results are depicted in Table 9.
From the Table 9, it is observed that segment duration does
not affect the performance except 500 and 800.

(2) Protective behaviour to pain estimation We also con-
ducted an experiment to observe the effect of protective
behaviour estimation followed by pain estimation. The ratio-
nale behind this is that—‘patients having chronic lower back
pain show protective behaviour’. For this study, we train a
LSTM-DNN network on the protective behaviour data and
use this as pain/no-pain classification. Quantitatively, 78.3%
frames having high / low pain are considered in this classifi-
cation. This indicates pain can be inferred from the protective
behaviour statistics. Further, we classified low and high pain
levels. The results are described in Table 8. We compared this
experiment with LSTM-DNN network trained on the pain
dataset. It is observed that the increment in overall accuracy
is 1.26%. However, both the MCC and class-wise F1 score
improved significantly.

(3) Visualization of loss values We plotted a boxplot
(Fig. 4) with the loss values where red line represents the
outlier frames. This boxplot indicates that we can treat this
problem as anomaly detection problem.

@ Springer

6 Conclusion and future work

This paper presents a deep learning-based approach for
chronic pain intensity and protective behaviour estimation
from movement data. We explore the use of joint training
with LSTM, Bi-LSTM, Attention-LSTM and LSTM-DNN
networks. The overall experimental outcomes indicate that
LSTM-DNN network performs better than the aforemen-
tioned networks. The baseline accuracy of pain intensity
estimation provided by Egede et al. [39] is 37% based
on leave-one-subject-out cross-validation and for protective
behaviour classification, the baseline accuracy is 46.36%
based on the hold-out validation. Our experiments show
large improvement over the baseline methods and outper-
form the baseline on the validation set by an accuracy
gap of 35.00% for pain intensity estimation and 47.72%
for protective behaviour estimation, respectively. A possible
future work would be experimenting with transfer learning
techniques for sharing subject movements through neural
network weights from MOCAP datasets to EmoPain dataset.
The features are extracted from the body sensors which have
inherent fixed structure due to the kinematics constraints of
the human body. Therefore, it would be interesting to explore
graph convolution network for the task.
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