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Abstract For an artifact such as a robot or a virtual agent
to respond appropriately to human social touch behavior, it
should be able to automatically detect and recognize touch.
This paper describes the data collection of CoST: Corpus of
Social Touch, a data set containing 7805 captures of 14 differ-
ent social touch gestures. All touch gestures were performed
in three variants: gentle, normal and rough on a pressure
sensor grid wrapped around a mannequin arm. Recognition
of these 14 gesture classes using various classifiers yielded
accuracies up to 60%;moreover, gentle gestures proved to be
harder to classify than normal and rough gestures.We further
investigated how different classifiers, interpersonal differ-
ences, gesture confusions and gesture variants affected the
recognition accuracy. Finally, we present directions for fur-
ther research to ensure proper transfer of the touch modality
from interpersonal interaction to areas such as human–robot
interaction (HRI).
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1 Introduction

Touch gestures can be used in social interaction to communi-
cate and express different emotions [14]. For example, love
can be communicated by hugging and stroking while anger
can be expressed by pushing and shaking [15]. The sense of
touch can also be used to explore our environment andmanip-
ulate objects such as tools, which can be highly functional
[13]. As opposed to functional touch, Haans and IJsselsteijn
[13] described social touch as all instances of interpersonal
touch, whether this is accidental (e.g. bumping into some-
one on the street) or conscious (e.g. comforting someone
who is upset). Here, we broaden this definition to include
social touch interaction between humans and artifacts such
as robots and virtual agents.

Extending social touch interaction to include interaction
between humans and artifacts can result inmore natural inter-
action, providing opportunities for various applications such
as training medical students to use appropriate social touch
behavior in a health care scenario involving a virtual patient
[28]. Also, the addition of tactile interaction can benefit robot
therapy in which robots are used to comfort people in stress-
ful environments, for instance, children in hospitals [19] and
elderly people in nursing homes [37].

We speak of social touch intelligence when an artifact, for
example a robot, is able to understand the social meaning of
human touch and is able to use touch in a socially appro-
priate way (see Fig. 1). In humans, receptors in the skin,
muscles, joints and tendons register touch [11,34]. Equip-
ping an artifact with touch sensors is the first step towards
touch interaction based on human touch input. Once the sen-
sor registers the touch, we need to recognize the type of touch
and interpret its meaning. A robust touch recognition system
should be perceived as working in real time. Also, gesture
recognition should be subject independent to avoid training
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Fig. 1 Interaction cycle for a robot with social intelligence to respond
to human touch. The steps that are the focus of this work are highlighted

sessions for new users. Some promising attempts have been
made to recognize different sets of touch gestures (e.g. stroke,
poke, and hit) recorded on various interfaces. As recognition
rates vary depending on the degree of similarity between the
touch gestures it is difficult to judge the relative strengths of
one approach over the other.

To work towards reliable touch gesture recognition we
have recorded a corpus of social touch hand gestures to char-
acterize various touch gestures. We focus on the recognition
of a list of relevant social touch gestures. The interpre-
tation of the social meaning of these touch gestures is
beyond the scope of this work. To the best of our knowledge
there are no publicly available datasets on social touch for
research and benchmarking. The contribution of this paper
is three-fold: first, we will give a systematic overview of
the characteristics of available studies on the recognition
of social touch; second, we will give additional informa-
tion about the Corpus of Social Touch (CoST); third, we
will compare the performance of different classifiers to
provide a baseline for touch gesture recognition within
CoST and evaluate the factors that influence the recognition
accuracy.

The remainder of the paper is organized as follows: the
next section will discuss related work on the recognition
of social touch, Sect. 3 will describe CoST. Touch gesture
recognition results will be presented and discussed in Sects. 4
and 5, respectively. The paper will conclude in Sect. 6.

2 Related work on social touch recognition

There have been a number of studies on social touch recog-
nition. These studies differ in their characteristics, which we
will briefly discuss. A summary of previous studies is pre-
sented in Table 1. Please note that we have only considered
the studies that reported details on classification and studies
published up to August 2015.

2.1 Touch surface and sensors

In these studies, touch was performed on various surfaces
such as robots (e.g. [26]), sensor sheets (e.g. [30]) or human
body parts such as arms [32]. Physical appearances of inter-
faces for touch interaction included robotic animals (e.g.
[39]), full body humanoid robots (e.g. [26]), partial embod-
iments such as a mannequin arm (e.g. [33]) and a balloon
interface [29]. Several techniques were used for the sensing
of touch, each having its own advantages and drawbacks for
example, low cost vs. large hysteresis in force sensing resis-
tors [8]. These sensing techniques were implemented in the
form of artificial robot skins (e.g. [32]) or by following a
modular approach using sensor tiles (e.g. [20]) or individ-
ual sensors to cover the robot’s body (e.g. [5]). Designing
an artificial skin entails extra requirements such as flexibil-
ity and stretchability to cover curved surfaces and moving
joints [31,34] but has the advantage of providing equal sen-
sor density for detection across the entire surface which can
be hard to achieve using individual sensors [5]. The approach
of using computer vision to register touch is noteworthy [7].

2.2 Touch recognition

Previous research on the recognition of touch has included
hand gestures (e.g. stroke [23]), full body gestures (e.g. hug
[6]), emotions (e.g. happiness [33]), and socialmessages (e.g.
affection [33]).Datawas gathered froma single subject to test
a proof of concept (e.g. [5]) or frommultiple subjects to allow
for the training of a subject independent model (e.g. [33]).
Classification results seem to show that it is harder to recog-
nize emotions or social messages than the touch itself. This
can be explained by the nontrivial nature of mapping touch
to an emotional state or an intention for example, a single
touch gesture can be used to communicate various emo-
tions [15,39]. Also, as expected, results of a within-subjects
design were better than classification between-subjects (e.g.
[1]) meaning that there was a larger inter-person variance
than intra-person variance. Human classification of touch
out-performed automatic classification (e.g. [31]). However,
when touch was mediated by technology, human perfor-
mance decreased, Bailenson et al. [2] found that emotions
were better recognized by participants when performing a
real hand shake with another person compared to when the
handshake with the other person was mediated through a
force-feedback joystick. Classification was mostly offline
however, some promising attempts have been made with
real-time classification, which is a prerequisite for real-time
touch interaction (e.g. [26]). Real-time systems come with
extra requirements such as gesture segmentation and ensur-
ing adequate processing speed. Combining computer vision
with touch sensing yielded better touch recognition results
than relying on a single modality [7].
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Fig. 2 Participant performing the instructed touch gesture on the pres-
sure sensor (the black fabric) wrapped around the mannequin arm

Direct comparison of touch recognition between studies
based on reported accuracies is difficult because of differ-
ences in the number and nature of touch classes, sensors, and
classification protocols. Furthermore, some reported accura-
cies were the result of a best-case scenario intending to be
a proof of concept (e.g. [5]). Some studies focused on the
location of the touch rather than the touch gesture, such as
distinguishing between ‘head-pat’ and ‘foot-rub’ [27].While
information on body location can enhance touch recognition,
Silvera-Tawil et al. showed that comparable accuracies can
be achieved by limiting the touch location to a single arm
[32].

3 CoST: corpus of social touch

To address the need for social touch datasets, we recorded a
corpus of social touch gestures (CoST)whichwas introduced
in [23]. This data set is publicly available [25].

3.1 Touch gestures

CoST consists of the pressure sensor data of 14 different
touch gestures performed on a sensor grid wrapped around a
mannequin arm (see Fig. 2). The touch gestures (see Table 2)
included in the data collection were chosen from a touch dic-
tionary composed by [39] based on the literature on touch
interaction between humans and between humans and ani-
mals. The list of gestures was adapted to suit interaction with
a mannequin arm. Touch gestures involving physical move-
ment of the arm itself such as lift, push and swing, were
omitted because the movement of the mannequin arm could
not be sensed by the pressure sensors. All touch gestures
were performed in three variants: gentle, normal and rough
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Table 2 Touch dictionary, adapted from Yohanan and MacLean [39]

Gesture label Gesture definition

Grab Grasp or seize the arm suddenly and roughly

Hit Deliver a forcible blow to the arm with either a
closed fist or the side or back of your hand

Massage Rub or knead the arm with your hands

Pat Gently and quickly touch the arm with the flat of
your hand

Pinch Tightly and sharply grip the arm between your
fingers and thumb

Poke Jab or prod the arm with your finger

Press Exert a steady force on the arm with your flattened
fingers or hand

Rub Move your hand repeatedly back and forth on the
arm with firm pressure

Scratch Rub the arm with your fingernails

Slap Quickly and sharply strike the arm with your open
hand

Squeeze Firmly press the arm between your fingers or both
hands

Stroke Move your hand with gentle pressure over arm, often
repeatedly

Tap Strike the arm with a quick light blow or blows using
one or more fingers

Tickle Touch the arm with light finger movements

to increase the variety of ways a gesture could be performed
by each individual.

3.2 Pressure sensor grid

For the sensing of the gestures, an 8 × 8 pressure sen-
sor grid (PW088-8x8/HIGHDYNfrom plug-and-wear1)was
connected to a Teensy 3.0 USB Development Board (by
PJRC2). The sensor was made of textile consisting of five
layers. The two outer layers were protective layers made
of felt. Each outer layer was attached to a layer containing
eight strips of conductive fabric separated by non-conductive
strips. Between the two conductive layers was the middle
layer which comprised a sheet of piezoresistivematerial. The
conductive layers were positioned orthogonally so that they
formed an 8 by 8 matrix. The sensor area was 160× 160 mm
with a thickness of 4 mm and a spatial resolution of 20 mm.

One of the conductive layers was attached to the power
supply while the other was attached to the A/D converter of
the Teensy board. After A/D conversion, the sensor values
of the 64 channels ranged from 0 to 1023 (i.e., 10 bits). Fig-
ure 3 displays the relationship between the sensor values and
the pressure in kg/cm2 for both the whole range (0–1023)

1 www.plugandwear.com.
2 www.pjrc.com.

and the range used in the data collection (0–990). Pressure
used during human touch interaction typically ranges from
30 to 1000 g/cm2 [34], which corresponds to sensor values
between 25 and 800. From the plots it can be seen that the
sensor’s resolution is accurate within this range but decreases
at higher pressure levels. Sensor data was sampled at 135 Hz.

Our sensor meets the requirements set by Silvera-Tawil
et al. [34] for optimal touch sensing in social human–robot
interaction as the spatial resolution falls within the recom-
mend range of 10–40 mm and the sample rate exceeds the
required minimum (20 Hz). However, the human somatosen-
sory system is more complex than this sensor as receptors in
the skin register not only pressure but also pain and tem-
perature and receptors in the muscles, joints and tendons
register body motion [11,34]. The sensor grid produces arti-
facts in the signal such as crosstalk, wear out and hysteresis
(i.e., the influence of the previous and current input, which
is discussed in Sect. 3.4). For demonstration purposes, we
illustrated the sensor’s crosstalk by pushing down with the
back of a pencil perpendicular to the sensor grid to create
a concentrated load (see Fig. 4). The sensor was wrapped
around the mannequin arm to create a setup similar to the
one used for the data collection. We did not compensate for
the artifacts in the data.

3.3 Data acquisition

3.3.1 Setup

The sensor was attached to the forearm of a full size rigid
mannequin arm consisting of the left hand and the arm up to
the shoulder (see Fig. 2). The arm was chosen as the contact
surface because this is one of the body parts where emotions
can be communicated [15]. Also, the arm is one of the least
invasive body areas on which to be touched [16] and presum-
ably a neutral body location to touch others. The mannequin
arm was fastened to the right side of the table to prevent it
from slipping. Instructions for which gesture to perform had
been scripted using PsychoPy3 and were displayed to the
participants on a computer monitor. Video recordings were
made during the data collection as verification of the sensor
data and the instructions given.

3.3.2 Procedure

Upon entering the experimenter room, the participant was
welcomed and was asked to read and sign an informed
consent form. After filling in demographic information, the
participant was provided with a written explanation of the
data collection procedure. Participants were instructed to use
their right hand to perform the touchgestures anduse their left

3 A module written for Python, see www.psychopy.org.
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Fig. 3 Plot of the relationship between the sensor output after A/D conversion and pressure in kg/cm2 for both the whole range (left) and the range
used (right)
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Fig. 4 Crosstalk visualization showing the sensor data of a single
frame, a pencil was pressed down on the sensor grid (light pressure
point) effecting the pressure level of adjacent channels

hand on the keyboard. Then an instruction video was shown
of a person performing all 14 gestures on the mannequin
arm based on the definitions from Table 2. Participants were
instructed to repeat every gesture from the video to practice.
No video examples were shown during the actual data collec-
tion. Thereafter example instructions were given to perform
a stroke gesture in all three variants (i.e., gentle, normal and
rough). After each gesture the participant could press the
spacebar to continue to the next gesture or backspace to
retry the current gesture. Once everything was clear to the
participant the data collection started.

During the data collection each participant was prompted
with 14 different touch gestures 6 times in 3 variants resulting
in 252 gesture captures. In the instructions of the gesture to
perform, the participants were shown only the gesture variant
combined with the name of the gesture (e.g. ‘gentle grab’),
not the definition from Table 2. The order of instructions
was pseudo-randomized into three blocks. Each instruction
was given two times per block but the same instruction was
not given twice in consecutive order. A single fixed list of
instructions was constructed using these criteria. This list
and the reversed order of the list were used as instructions
in a counterbalanced design. After each block, there was a

break and the participant was asked to report any difficulty in
performing the instructions. Finally, participants were asked
to give their own definitions of the gestures and manners.
The entire procedure took approximately 40minutes for each
participant.

3.3.3 Participants

A total of 32 people volunteered to participate in the data
collection. Data of one participant was omitted due to tech-
nical difficulties. The remaining participants, 24 male and
7 female, all studied or worked at the University of Twente
in the Netherlands. Most (26) had the Dutch nationality (1
British/Dutch), others were Ecuadorean, Egyptian, German
(2×) and Italian. The age of the participants ranged from 21
to 62 years (M = 34, SD = 12) and 29 were right-handed.

3.4 Data preprocessing

The raw data was segmented into gesture captures based
on the key strokes of the participants marking the end of
a gesture. Segmentation between keystrokes still contained
many additional frames from before and after the gesture
was performed. Removing these additional frames is espe-
cially important to reduce noise in the calculation of features
that contain a time component, such as features that average
over frames in time. See Fig. 5 for an example of a gesture
capture of ‘normal tap’ as segmented between keystrokes,
further segmentation is indicated by dashed lines. This plot
also illustrates that the sensor values remain non-zero (the
absolute minimum) when the sensor was not touched and
that hysteresis occurs, in this case the sensor values are higher
after the touch gesture is performed compared to before.

Further segmentation of the gesture captures was based
on the change in the gesture’s intensity (i.e., the summed
pressure over all 64 channels) over time using a sliding win-
dow approach. The first window starts at the beginning of
the gesture capture and includes the number of frames cor-
responding to the window size parameter. The next window
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Fig. 5 Gesture capture of ‘normal tap’ as segmented between key-
strokes, further segmentation based on pressure difference is indicated
by the dashed lines

remains the same size but is shifted a number of frames cor-
responding to the step size parameter. The pressure intensity
of each window is compared to that of the previous window.
This procedure continues till the end of the gesture capture.
Parameters (i.e., threshold of minimal pressure difference,
step size, window size and offset) were optimized by visual
inspection to ensure that all gestures were captured within
the segmented part. The optimized parameters were fixed for
all recordings.

After visual inspection it turned out that six gesture
captures could not be automatically segmented because dif-
ferences in pressure were too small (i.e., below the threshold
parameter). The video recordings revealed that the gestures
were either skipped or were performed too fast to be distin-
guishable from the sensor’s noise. One other gesture capture
was of notably longer duration (over a minute) than all
other instances because the instructions were unclear at first.
These seven gesture captures were instances of the vari-
ants ‘gentle massage’, ‘gentle pat’, ‘gentle stroke’, ‘normal
squeeze’, ‘normal tickle’, ‘rough rub’, and ‘rough stroke’.
The instances of these gesture variants were removed from
the dataset. The remaining dataset consists of 7805 touch
gesture captures in total: 2601 gentle, 2602 normal and 2602
rough gesture captures.

3.5 Descriptive statistics

To get an idea of the differences between touch gestures and
the variants, descriptive statistics were calculated on three
important characteristics of touch: intensity (g/cm2), contact

area (% of sensor area) and gesture duration (ms). Pressure
intensity was calculated as the mean pressure of all chan-
nels averaged over time and the maximum channel value of
the gesture over all channels. Contact area was calculated for
the framewith the highest summed pressure over all channels
(corresponds to feature 21). Means and standard deviations
of the touch data after segmentation are displayed for each
variant and in total in Table 3 and per gesture in Table 4. It is
notable that themean andmaximumpressure used per variant
follow the expected pattern: gentle variants< normal variant
< rough variants, indicating that participants used pressure to
distinguish between the different variants. Figure 6 illustrates
that there was a lot of overlap in duration between the differ-
ent gestures (e.g. between hit and slap) and a lot of variance
within each gesture, especially within massage and tickle.
The tables and figure illustrate that the challenge of touch
gesture recognition is complex and that it is not possible to
distinguish between these different touch gestures using only
these descriptive statistics. Table 5 shows the touch charac-
teristics for males and females separately. Based on these
characteristics there seems to be no significant differences
between male and female touch gestures.

3.6 Self reports

In the self reports the most common difficulties (mentioned
by at least 5 out of 31 participants) of distinguishing between
gestures (disregarding the variants) were reported on pat
vs. tap (12), grab vs. squeeze (10), rub vs. stroke (7), hit
vs. slap (5) and pinch vs. squeeze (5). Furthermore, some
combinations of gestures with variants were perceived as
less logical. The most commonly mentioned gesture variants
were: rough tickle (4), gentle hit (3) and gentle slap (3). Also,
three participants raised concerns about breaking the setup
when performing gestures too roughly.

At the end of the experiment participants were asked to
provide their own definitions. The most common keywords
used to define the gentle variant were: soft (mentioned by 8
participants), slow (6), less force (6), less pressure (5), and
light (3) while the rough variant was defined as: more force
(12), hard (7), more pressure (4), and fast (3), energetic (3).
‘Normal’ was defined as: the default/ regular (7), without
thinking (4) and neutral (3).

Table 3 Mean and standard
deviation (in parentheses) of the
duration, mean and maximum
pressure and contact area per
touch variant and for all data

Variant Gentle Normal Rough All

Mean pressure (g/cm2) 115 (61) 136 (82) 189 (157) 147 (112)

Max pressure (g/cm2) 894 (511) 1260 (629) 1983 (813) 1379 (802)

Contact area (% of sensor) .21 (.16) .22 (.18) .26 (.21) .23 (.19)

Duration (ms) 1385 (1303) 1377 (1257) 1500 (1351) 1421 (1305)
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6) 4 Recognition of social touch gestures

In this section we will present the performance results of
several classifiers for the recognition of touch gestures in
CoST. To establish the benchmark performance for CoSTwe
compared the performance of four different commonly used
classifiers. Two simple classifiers were chosen: a statistical
model (Bayesian classifier) and a decision tree which allows
for more insight into the classification process (e.g. which
features are most important). Furthermore, we chose two
more complex classifiers: a Support Vector Machine (SVM)
which uses a single decision boundary and a neural network
which allows for more complex decision boundaries.

4.1 Feature extraction

The data from the pressure sensor consists of a pressure value
(i.e., the intensity) per channel (i.e., the location) at 135 fps.
From the recorded sensor data, features were extracted for
every gesture capture. The majority of features were based
on the literature. The first features (1–28) were taken from
previous work on this data set [22,23] which were based
on social touch recognition literature, differences are indi-
cated. Features used for video classification can be applied
to this data because the data of CoST is a grid of pressure
values that are updated at a fixed rate which is similar to a
low-resolution gray scale video. Features 29–43 were slight
adaptations of the features used in [38] which were based on
video classification literature. Feature numbers are indicated
in parentheses.

– Mean pressure is the mean over channels and time (1).
– Maximum pressure is the maximum value over channels
and time (2).

– Pressure variability is themean over time of the sum over
channels of the absolute value of difference between two
consecutive frames (3).

– Meanpressure per row is themeanover columns and time
resulting in one feature per rowwhich are in the direction
of the mannequin arm’s length (from top to bottom, 4–
11).

– Mean pressure per column is the mean over rows and
time resulting in one feature per column which are in
the direction of the mannequin arm’s width (from left to
right, 12–19).

– Contact area per frame is the fraction of channels with a
value above 50 % of the maximum value. Mean contact
area is the mean over time of contact area (20) and the
maximum pressure contact area is the contact area of the
frame with the highest mean pressure over channels (21).
The size of the contact area indicated whether the whole
hand was used for a touch gesture, as would be expected
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Fig. 6 Boxplot of the duration (ms) for all data per touch gesture

Table 5 Mean and standard
deviation (in parentheses) of the
duration, mean and maximum
pressure and contact area per
touch variant and for all data for
male and female subjects

Variant Gentle Normal Rough All

Male

Mean pressure (g/cm2) 117 (63) 137 (85) 193 (163) 149 (117)

Max pressure (g/cm2) 885 (518) 1245 (629) 1981 (828) 1370 (811)

Contact area (% of sensor) .21 (.16) .22 (.18) .27 (.22) .23 (.19)

Duration (ms) 1358 (1296) 1349 (1249) 1491 (1357) 1399 (1303)

Female

Mean pressure (g/cm2) 112 (50) 130 (72) 175 (133) 139 (96)

Max pressure (g/cm2) 925 (485) 1310 (624) 1990 (763) 1409 (772)

Contact area (% of sensor) .20 (.15) .21 (.17) .24 (.20) .21 (.17)

Duration (ms) 1477 (1325) 1476 (1281) 1528 (1330) 1494 (1312)

for grab, or for example only one finger, as would be
expected for a poke.

– Temporal peak count indicated howmany times therewas
a significant increase in pressure level that is, whether a
touch gesture consisted of continuous touch contact as
would be expected for grab or alternating pressure levels
which would be expected for a tickle. One feature counts
the number of frames for which the average pressure of a
frame was larger than that of its neighboring frames (22).
(This feature replaced the previous version of features
22 from [22,23]). The other feature was calculated as
the number of positive crossings of the threshold. The
thresholdwas themean over time of the pressure summed
over all channels (23).

– Traveled distance (previously called ‘displacement’ in
[22,23]) indicated the amount of movement of the hand
across the contact area. For example, for a squeeze less
movement across the sensor grid would be expected than
for a stroke. Center of mass (i.e., the average channel
weighted by pressure) was used to calculate the move-
ment on the contact surface in both the row and column
direction. Two features were calculated in the row direc-
tion: the mean traveled distance of the center of mass

over time (24) and the summed absolute difference of the
center of mass over time (25). The same features were
calculated for the column direction (26–27).

– Duration of the gesture measured in frames (28).
– Pressuredistribution (previously called ‘histogram-based
features’ in [38]) is the normalized histogram over all
channels and time of the pressure values. The histogram
contains eight bins equally spaced between 0 and 1023
(29–36).

– Spatial peaks (previously called ‘motion-based features’
in [38]). Spatial peaks A spatial peak in a frame is a local
maximum with a value higher than 0.75 of the the max-
imum pressure (see feature 2). The following features
were derived from the local peaks; the mean (37) and
variance (38) over time of the number of spatial peaks
per frame. Also the mean over all spatial peaks and time
of the distance of the spatial peak to the center of mass
is a feature (39). The last feature based on spatial peaks
is the mean over time and spatial peaks of the chance in
distance of each peak w.r.t. the center of mass (40).

– Derivatives were calculated as the mean absolute pres-
sure differences within the rows and columns between
frames. Features were derived from the mean over time
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and rows or columns of the above values (41–42). Also
the mean absolute pressure difference for all channels
was calculated. The last feature was based on the mean
over time and channels (43).

– Variance over channels and time (44).
– Direction of movement indicated the angle in which the
center of mass was moving between frames. These angle
valueswere divided into quadrants of 90◦ each. For exam-
ple, if the hand moves from the middle of the sensor grid
to the upper right corner of the sensor grid, the center of
mass moves at a 45◦ angle which falls within the upper
right quadrant (i.e., the first quadrant). To deal with vec-
tors that were close to the edge of two quadrants two
points around the vector were evaluated, each weighting
0.5. A histogram represented the percentage of frames
that fell into each quadrant (45–48).

– Magnitude of movement indicated the amount of move-
ment of the center of mass. Statistics on the magnitude
were calculated per gesture consisting of the mean, stan-
dard deviation, sum, and the range (49–52).

– Periodicitywas the frequency with the highest amplitude
in the frequency spectrum of the movement of the center
of mass in the row and column direction, respectively
(53–54).

4.2 Classification experiments

The extracted features were used for classification in
MATLAB® (release 2013a). We performed two classifica-
tion experiments: (1) classification of the touch gestures from
the total dataset based on the gestures’ class, thereby dis-
regarding the variant (e.g. ‘gentle grab’ and ‘normal grab’
both belong to the same class: ‘grab’); (2) classification of
the touch gestures within each variant, splitting the data into
three subsets: normal, gentle and rough. Due to their more
pronounced nature, rough gesture variants were expected to
have a more favorable signal-to-noise ratio compared to the
softer variants.

For both classification experiments the data was split into
a train/ validation set and test set using leave-one-subject-
out cross-validation (31 folds) to train a user-independent
model (i.e., data from each subject was only part of either
the train set or the test set). Hyperparameters were optimized
on the train/validation set using leave-one-subject-out cross-
validation (30 folds). Classification results were evaluated
using the best performing hyper parameters found from the
30 folds (i.e., training/validation set only) to classify the test
set. This procedure was repeated for all 31 folds. Note that
each fold can have different optimized parameter values. The
baseline of classifying a sample into the correct class based
on random guessing is 1/14 ≈ 7 % for both experiments.
We will discuss details of each of the classifiers individually.

4.2.1 Bayesian classifier

The Gaussian Bayesian classifier has no hyperparameters to
optimize. The mean and covariance for the features per class
were calculated from the training data. These parameters for
themultivariate normal distributionwere used to calculate the
posterior probability of a test sample belonging to the given
class. Samples were assigned to the class with the maximum
posterior probability.

4.2.2 Decision tree

Decision trees were trained using the CART learning algo-
rithm with Gini’s diversity index as splitting method. First
a full tree was grown after which the tree was pruned. A
parameter search for the optimal pruning level, using cross-
validation as described above, was performed using a range
of 5–30 in increments of 5.

4.2.3 Support vector machine

SVMs were trained using the LIBSVM software library [4],
both with a linear kernel (hyper parameter C) and with a
Radial Basis Function (RBF) kernel (hyper parameters C
and γ ). We chose to test two kernels due to their different
approaches, the linear kernel separates the classes globally
while the RBF kernel allows for a local division of two
classes. The hyperparameters were optimized, using cross-
validation as described above. A (grid)search was conducted
for optimal parameters by growing the sequences of the para-
meter values exponentially (C = 2−5, 2−3, . . . , 215; γ =
2−15, 2−13, . . . , 23) as proposed by [17]. Before training,
features were rescaled to the range of [0, 1] by subtracting the
minimum feature value from all feature values and dividing
the result by the range of the feature values. Scaling prevents
features with greater numeric ranges from dominating those
with smaller numeric ranges [17].

4.2.4 Neural network

A feedforward neural network was trained using Levenberg–
Marquardt optimization. Stopping criteria were set to a
maximum of 1000 training iterations or six subsequent
increases of the error on the validation set. The neural net-
work toolbox in MATLAB automatically maps the range of
the original input features to the range of [−1, 1]. Because
of memory constraints the architecture was set to two lay-
ers of 54 and 27 neurons, respectively to get results in a
timely fashion. Leave-one-subject-out cross-validation was
used, the data from the remaining 30 subjects was split into
a train set (70 %) and a validation set (30 %). The best per-
forming network on the validation set of five runs was used to
evaluate the test set (i.e., the samples of the left-out subject).
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Table 6 Overall accuracies of leave-one-subject-out cross-validation
for the variants per classifier, standard deviations in parentheses

Variant

All Normal Gentle Rough

Classifier

Bayesian .57 (.11) .59 (.13) .52 (.14) .58 (.12)

Decision tree .48 (.10) .49 (.13) .43 (.10) .52 (.10)

SVM linear .59 (.11) .60 (.11) .54 (.13) .62 (.13)

SVM RBF .60 (.11) .60 (.11) .54 (.13) .62 (.12)

Neural network .59 (.12) .58 (.13) .52 (.13) .59 (.13)

4.3 Results

Table 6 provides an overview of the overall accuracies for the
whole data set and per variant for different classifiers. Classi-
fication of 14 gesture classes independent of variants resulted
in an overall accuracy of up to 60 % using SVMs with the
RBF kernel, which is more than 8 times higher than classi-
fication by random guessing (≈7 %). SVMs with the RBF
kernel performed slightly better than theBayesian classifiers,
the SVMs with the linear kernel and the neural networks.
Decision trees performed worse than the other classifiers.

Classification within each gesture variant showed that the
accuracies for the rough variants (up to 62 %) were higher
than for the normal variants (up to 60 %), which were higher
than those for the gentle variants (up to 54%). The exception
was the Bayesian classifier. In this case the normal variants
performed slightly better than the rough variants. The SVM
classifiers (both kernels) performed slightly better than the
Bayesian classifier and neural network. Again, decision trees
performed worse than the other classifiers.

5 Discussion

In this section we will discuss the touch gesture recognition
results in depth, looking into accuracy differences between
subjects and between different classifiers, the interaction
between gestures and the different variants and confusions
between touch gestures. Also, we will reflect critically on the
collection of the touch gesture data.

5.1 Classification results and touch gesture confusion

From the classification results in Table 6 it can be seen that
the more complex classifiers (i.e., SVM and neural network)
performed better than the simpler decision tree. However,
the performance of the simpler Bayesian classifier was only
slightly lower than those of the SVM and neural network.

This indicates that recognition rates are reasonably robust
across different classification methods.

The subject independent model generalized well for some
subjects but not for others as shown by the large individual
differences in accuracy for the total data set in Table 7.Differ-
ences in accuracy between subjects ranged from 44% for the
Bayesian classifiers and the decision trees to 50% for the lin-
ear SVMs and neural networks. These individual differences
make it harder to build a reliable subject independent model
for touch gesture recognition. Depending on the application
a trade-off can be made to build subject-dependent models
which could increase accuracy at the expense of the need for
training sessions. Between classifiers, results per subject dif-
fered on average 13%. These differences were largely due to
the overall lower decision tree results, per subject the accura-
cies for the other four classifiers differed on average 6 %. As
expected, gentle gestures were considerably harder to clas-
sify which can be due to the lower pressure levels used for
this gesture variant (see Table 3), resulting in a lower signal-
to-noise ratio.

To gain insight into the interaction between gestures
and their variants, we classified the gesture variants (i.e., 3
classes) and the combination of gestures and their variants
(i.e., 42 classes) using the Bayesian classifier as a baseline
due to its simplicity. Classification of the gesture variants
using leave-one-subject-out cross-validation yielded accura-
cies ranging from 39 to 64 % (M = 50 %, SD = 6 %).
Over participants the correct rate for the classification of
all gestures dependent on variant ranged from 15 to 47 %
(M = 32 %, SD = 9 %). Misclassification was most com-
mon between the gestures’ variants which is in line with the
low accuracy for the classification of the gesture variants.
Confusions between gestures were similar to those found for
classification independent of gesture variant. For example:
‘gentle grab’ was correctly classified in 36 % of the samples
and was most often misclassified as ‘normal grab’ (24 %),
‘gentle squeeze’ (16 %), ‘normal squeeze’ (8 %) and ‘rough
grab’ (5 %).

Misclassification was mostly due to confusions between
similar touch gestures. Table 8 shows the confusion matrix
for the SVMwith the RFB kernel of the whole data set as this
classifier yielded the best results. The five most frequently
confused gesture pairs were: grab and squeeze (sum of 294
confused samples); pat and tap (280); rub and stroke (223);
scratch and tickle (219); hit and slap (154). Within gesture
variants the rankings of most confused pairs were similar to
those of the combined variants. Also, confusions between
touch gestures depicted in Table 8 largely matched the touch
gesture pairs that were reported to be difficult for the par-
ticipants in Sect. 3.6. However, some small differences were
observed: although ‘pinch vs. squeeze’ was in the top five
most often reported difficulties in the confusion matrix this
was not one of the most frequently confused gesture pairs
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(sum of 104 confused samples). Conversely, ‘scratch vs.
tickle’ was one of the five most confused gesture pairs but
was not among the most often mentioned difficulties (men-
tioned by three participants).

Recognizing a large set of different touch gestures can
reduce the classification accuracy, especially when ges-
tures show many overlapping characteristics. Therefore, it
is important to find the right balance for each application.
To illustrate this trade-off we composed a subset of gestures
by starting with the original 14 gestures and removing one
of the gestures for each of the five most commonly con-
fused gesture pairs, the subset consisted of nine gestures:
grab, massage, pinch, poke, press, slap, stroke, tap and tickle.
Classification of this gesture subset independent of vari-
ant using a Bayesian classifier with leave-one-subject-out
cross-validation yielded accuracies ranging from 45 to 94%
(M = 75 %, SD = 12 %). The performance increased by
18 % for the recognition of nine touch gestures compared
to the results with fourteen touch gestures using the same
classifier. However, at the cost of the ability to distinguish
between more classes.

To get an indication of the most important features, the
top five features for each optimized decision tree using leave-
one-subject-out cross-validationwere listed (i.e., the first five
splits). Table 9 shows the top features ranked on frequency.
While it is possible for features to appear multiple times
in the top 5 with different cut-off values this was not the
case for the features displayed here. Therefore, the maxi-
mum frequency for the features listed is equal to the number
of cross-validation folds (=31). These five highest frequency
features were among the most important features for most
trained decision trees indicating that these features are rea-
sonably robust. Mean pressure of the 7th sensor row was
found to be an important feature for all trees. The 7th sen-
sor row was positioned on the side of the mannequin arm
facing away from the participant. When the hand was (par-
tially) folded around the arm it is supposed that the fingers
pressed down on this sensor area. A possible explanation for
the importance of this feature is that the level of pressure
in this sensor area can indicate whether the hand is folded
around the arm as would be expected for gestures such as
grab and squeeze.

No gender differenceswere observed based on basic touch
gesture characteristics (see Table 5). To look for more subtle
differences we classified the touch gestures based on gen-
der using a Bayesian classifier and 10-fold cross-validation.
Accuracies ranged from 75 to 78 % (M = 76 %, SD =
0.01%), which is similar to the baseline accuracy when clas-
sifying every sample as ‘male’ (24/31 ≈ 77 %). Based on
our findings we have no reason to assume that gender differ-
ences play a significant role in touch gesture classification.
However, it should be noted that our sample size does not
allow us to rule out possible differences.
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Table 8 Confusion matrix of leave-one-subject-out cross-validation using SVMs with RBF kernel for all data (overall accuracy = 60 %)

Actual class

Grab Hit Massage Pat Pinch Poke Press Rub Scratch Slap Squeeze Stroke Tap Tickle

Predicted class

Grab 397 0 17 1 11 1 31 4 4 0 177 2 0 0

Hit 1 317 0 45 1 15 1 0 0 77 3 1 45 0

Massage 4 0 386 2 1 1 0 63 26 1 14 11 1 26

Pat 8 58 1 268 1 2 4 1 22 59 0 12 149 18

Pinch 3 4 6 1 398 27 25 8 8 0 66 1 6 3

Poke 1 27 0 11 68 438 50 0 2 4 3 1 40 5

Press 19 4 0 7 30 25 374 17 1 7 23 6 8 2

Rub 0 0 78 2 1 0 8 239 56 0 2 98 0 40

Scratch 6 0 7 5 0 0 2 50 274 0 0 12 0 92

Slap 0 77 0 70 2 0 0 2 1 358 0 14 44 1

Squeeze 117 0 15 0 38 0 50 1 2 0 268 1 0 0

Stroke 0 1 28 8 1 0 2 125 34 3 0 383 4 15

Tap 0 68 0 131 6 46 11 2 1 48 0 2 248 16

Tickle 2 2 19 6 0 3 0 45 127 1 1 12 13 339

Sum 558 558 557 557 558 558 558 557 558 558 557 556 558 557

Legend–classification of touch gesture captures into a class: ≥10 %, ≥ 50 %

Table 9 Features that were most frequently ranked within the top 5 for
decision tree classification using 31-fold cross-validation

Feature (no.) Frequency

Mean pressure of the 7th sensor row (10) 31

Summed traveled in column direction (27) 30

Average spatial peak distance to center off mass (39) 30

Overall mean pressure difference between frames (43) 30

Highest pressure contact area (21) 27

Accuracies reported in this work were higher than the
accuracy of 53 % that was previously reported for the CoST
data set using a Bayesian classifier [23]. This indicated that
the additional features and the use of more complex clas-
sification methods with hyperparameter optimization have
improved the accuracy. Results reported in this paper fall
within the range of 26–61 % accuracy that was reported for
a data challenge using the CoST data set [3,12,18,36]. Our
results are comparable to those reported in the work of Gaus
et al. and Ta et al. who reported accuracies up to 59 and
61 %, respectively using random forest [12,36]. However it
should be noted that the data challenge contained a subset of
CoST (i.e., gentle and normal variants) and that the train and
test data division was different from the leave-one-subject-
out cross-validation results reported in this paper [24]. For
an overview of the data challenge and the challenge protocol
the reader is refereed to [24].

5.2 Considerations regarding the data collection

The instructions during the data collection were given in
English to include non-native Dutch speakers. However,
this could have resulted in translation discrepancies between
the English language and the participants’ native language.
Silvera-Tawil et al. [32] gave the example of the back-
translation of the word ‘pat’ from Spanish to English which
can be either translated to ‘pat’ or ‘tap’. Based on observa-
tions in a pilot test we opted to include visual examples of
the different touch gestures rather than providing participants
with the definitions in Table 2 to reduce the language bar-
rier. The use of visual examples instead of giving text-based
definitions could however have reduced the interpersonal
differences as participants might have tried to mimic the
examples.

To minimize the influence on the participants’ natural
touch behavior we opted for not restricting the time taken
for every touch gesture. Also, there were no constraints on
the number of instances of a touch gesture that could be part
of a single capture. A consequence of this decision is that a
single tap and three taps are both treated as a single touch
gesture. This raises the question whether a single tap has a
different meaning than three consecutive taps. Furthermore,
as featureswere calculated from the segmented data, segmen-
tation has an influence on features that cover gesture duration
(e.g. gesture duration in frames).

The sensor data was labeled according to the instructions
(i.e., if the participant was instructed to perform a ‘gentle

123



J Multimodal User Interfaces (2017) 11:81–96 95

grab’, the corresponding sensor data was labeled as such).
During segmentation some touch gesture captures were fil-
tered out based on minimal change in gesture intensity,
successfully removing skipped touch gestures. However, this
procedure does not control for all possible mistakes, which
makes it probable that the dataset contains incorrect labels.
Manual annotation of the video recordings could help filter
out mistakes such as cases where a touch gesture was per-
formed that was different from the one that was instructed.

The inclusion of touch gesture variants seemed to have
increased the diversity of the ways in which the touch ges-
tures were performed. Descriptive statistics confirmed that
participants used pressure to distinguish between the gesture
variants, using less than normal pressure for the gentle vari-
ants and more than normal pressure for the rough variants.
The definitions of the gentle variant and the rough variant
given by the participants also indicated that the amount of
pressure is an important way to distinguish between the two
for example by the use of the keywords ‘soft’ and ‘hard’.
Although speed is also used to differentiate between gentle
and rough as indicated by the use of the keywords ‘slow’
and ‘fast’, respectively. The downside is that the reliance on
pressure to distinguish between both the gestures and the dif-
ferent variants of the same gestures has probably increased
the difficulty of the touch gesture recognition. Notably, in the
definitions from Table 2 the use of words such as ‘forcible’,
‘gently’ and ‘firmly’ again point to the importance of force/
pressure and also temporal component are mentioned (e.g.
‘quickly’, ‘repeatedly’). As these characteristics seem to be
inherent to some of the touch gestures, one may argue that
a roughly performed pat, which should generally be ‘gently
and quickly’, would resemble more of a slap, which should
generally be ‘quickly and sharply’. The claim that some ges-
tures do not lend themselves as easily for variants is further
supported by the self reports of the participants.

6 Conclusion and future work

To study automatic touch recognition we collected CoST,
a data set containing 7805 gesture captures of 14 differ-
ent touch gestures each performed in three variants: gentle,
normal and rough. The data showed similarities between ges-
tures and large differences in the way these gestures were
performedwhichwas increased by the inclusion of the differ-
ent gesture variants. From the different classifiers that were
compared, the best results were obtained using SVMs with
the RBF kernel while the decision tree yielded the worst per-
formance.Classificationof the 14 touchgestures independent
of the gesture’s variant yielded an average accuracy of up to
60 %. The subject independent model generalized well for
some individuals but not for others. Gentle gesture variants
proved to be harder to classify than the normal and rough

variants. Misclassification was most common between touch
gestures with similar characteristics.

Further research into highly discriminating features using
feature selection or dimension reduction can be beneficial for
applications that require (on-board) real-time touch classifi-
cation in which computational power is costly. Also, at this
moment it is unclear what the minimum requirements are
regarding touch recognition performance in order to have a
meaningful touch interaction.

Furthermore, to behave socially intelligently, an artifact
such as a robot, should not only be able to sense and recognize
touch gestures but should also be able to interpret those touch
gestures in order to respond in a socially appropriate manner
as illustrate in Fig. 1. As most studies, including the work
presented here, focus on parts of the interaction, future work
should tie together the full interaction cycle.

In the current setup we have studied touch recognition
in a controlled lab setting with specific instructions, lacking
social context which could help to recognize touch gestures
and their inferred meaning. According to Hertenstein et al.
the complexity of the tactile system allows for the same touch
gesture to have different meanings as touch can also vary in
its intensity, velocity, abruptness, temperature, location and
duration [15]. The meaning of touch is also dependent on
factors such as concurrent verbal and nonverbal behavior, the
type of interpersonal relationship and the situation in which
the touch takes place [16,21].

As touch is only one of the modalities that plays a role
in social interaction, social signals from other modalities can
provide valuable information as well. Currently we arework-
ing on a study on the interpretation of touch behavior within
a social context. Human interaction with a robot pet compan-
ion is observed by looking at touch behavior as well as other
social behaviors such as speech and gaze and the role of these
behaviors in touch interaction. To further close the interaction
loop we are also looking into appropriate responses.
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