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Abstract We present and evaluate a new Visual Voice
Activity Detection method based on Spatiotemporal Gabor
filters (STem-VVAD). Since Spatiotemporal Gabor filters
are dynamic, they offer an attractive method to separate
speech from non-speech frames in video, even though they
have not been used for this purpose before. We evaluate
our method on two datasets, which differ in the ratio of
speech to non-speech frames (high versus low), as well as
in the head orientation of the speakers (frontal versus pro-
file). We compare models on different regions (applied to
the mouth, the head or the entire video frame), and do so
both for speaker-dependent, individual models and speaker-
independent, generic models. In general, best performances
are obtained for speaker-dependent STem-VVAD applied to
the mouth region, and combining information from different
speeds. In all these cases, the system outperforms two refer-
ence systems, relying on frame differencing and static Gabor
filters respectively, showing that Spatiotemporal Gabor filters
indeed are beneficial for visual voice detection.
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1 Introduction

Human speech comprises two modalities: the auditory and
the visual one. Many researchers have emphasized the close
connection between the two (e.g., [26,38]). A speaker can-
not produce auditory speech without also displaying visual
cues such as lip, head or eyebrow movements, and these
may provide additional information to various applications
involving speech, ranging from speech recognition to speaker
identification. For many of these applications it is impor-
tant to be able to detect when a person is speaking. Voice
Activity Detection (VAD) is usually defined as a technique
that automatically detects human speech in an auditory sig-
nal. Using VAD enables speech processing techniques to
focus on the speech parts in the signal, thereby reducing the
required processing power. This is, for example, applied in
digital speech transmission techniques (e.g., GSM or VoIP),
where VAD helps to transmit speech and not silence segments
[2,22].

Auditory voice activity detection Arguably, the straight-
forward approach to VAD would be to look into the auditory
channel to see when speech starts. This is indeed what vari-
ous researchers have done, and what is required for situations
in which only the auditory signal is available [4,12,31,37].
However, this approach suffers from a number of compli-
cations. For instance, when background noise is present it
becomes more difficult to differentiate between noise and
speech, because they are entwined in one signal. Moreover,
when multiple speakers are present, recognizing speech also
becomes more difficult (because of overlapping speech).
Even though solutions for these problems have been pro-
posed (e.g, [11,19,32]), various researchers have argued
that taking the visual signal into account (if available) can
help in addressing these issues, e.g. because the presence
or absence of lip movements can help in distinguishing

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s12193-015-0187-2&domain=pdf

184

J Multimodal User Interfaces (2015) 9:183-193

noise from speech [35], and because visual cues can help
for speech segmentation. Moreover, importantly, visual cues
such as mouth and head movements typically precede the
actual onset of speech [40], allowing for an earlier detec-
tion of speech events, which in turn may be beneficial for
the robustness of speech recognition systems. For this rea-
son, various researchers have concentrated on Visual Voice
Activity Detection (VVAD).

Visual voice activity detection Previously proposed
VVAD methods mostly relied on lip tracking [1,24,36].
While these approaches have been successful, both in detect-
ing voice activity based on visual cues and in combination
with auditory VAD approaches, we know that there are more
visual cues during speech in the face beyond the movement
of the lips [21]. Besides, evidently (extracting features from)
lip tracking is challenging when a speaker turns their head
sideways. In their overview on audiovisual automatic speech
recognition, Potamianos et al. [30] point out that robust visual
features for speech recognition should be able to handle
changing speaker, pose, camera and environment conditions,
and they have identified three types of visual features that
apply to VVAD as well: (1) appearance based features using
pixel information extracted from a region of interest (typ-
ically the mouth region), (2) shape based features derived
from tracking or extracting the lips, and (3) a combination of
the aforementioned types of features. Potamianos et al. [30]
note that extensive research comparing these features is still
missing.

Our approach Since many VVAD studies acknowledge
the importance of modeling movement during speech, we
choose to explicitly examine movement information at an
early stage, an approach called Early Temporal Integration
[41], by designing a VVAD that incorporates features that
represent spatiotemporal information. In this paper, we pro-
pose an appearance based approach to VVAD, representing
images in terms of movement, without explicitly tracking
the lips. Our novel method, which we call STem-VVAD
(STem abbreviates Spatiotemporal, but also happens to mean
“voice” in Dutch) is based on Spatiotemporal Gabor filters
(SGF), a type of filter which is sensitive to movement at a
certain direction and speed [29], which have, to the best of the
authors knowledge, never been applied to VVAD. Intuitively,
lip movements during speech have a specific spatiotemporal
signature which may be different from those associated with
non-speech (e.g., couching, laughing). In a similar vein, the
orientation of movements may show different patterns for
speech and non-speech, facilitating VAD.

Spatial two-dimensional (2D) Gabor filters have been
frequently used for automatic visual tasks, ranging from tex-
ture segmentation [15] to coding of facial expressions (e.g.,
[23,25]) and automatic speech recognition [20]. The use of
2D Gabor filters in computer vision is inspired by biological
findings on the neural responses of cells in the primary visual
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cortex (e.g., [6,9,16]), as the 2D Gabor function is able to
model these responses. This makes them biologically plau-
sible for use in automatic vision systems. Moreover, Lyons
and Akamatsu [25] argue that the use of Gabor filters for
facial expression recognition is also psychologically plausi-
ble, since the properties of the neurons that they are modeled
on allow neurons in the higher visual cortex to be able to
distinguish between different facial expressions.

Spatiotemporal Gabor filters are the dynamic variants
of their spatial counterparts. Whereas spatial Gabor filters
respond to visual contours or bars of a certain orientation
and thickness, Spatiotemporal Gabor filters respond to mov-
ing visual contours or bars. The responses of motion-sensitive
cells in primary visual cortex can be modeled by Spatiotem-
poral Gabor filters and have been shown to be the independent
components of natural image sequences [13]. In this paper,
we apply Spatiotemperal Gabor filters to Visual VAD, in our
STem-VVAD approach.

Data and evaluation procedure To examine the extent to
which our approach is successful in detecting voice activity,
we have conducted a series of experiments on two differ-
ent datasets, i.e., the CUAVE dataset [28], and our LIVER
dataset [17]. The CUAVE dataset contains multiple speak-
ers uttering digits, with frontal as well as profile recordings,
whereas our LIVER dataset consists of frontally recorded
speakers each with a single speech event, i.e., the uttering
of the Dutch word for “liver”. In the CUAVE set, the ratio
between speech and non-speech is approximately balanced,
this in contrast to the LIVER set where the majority of frames
is non-speech.

For each dataset we assess the voice activity detection
capabilities of our STem-VVAD method as well as for two
reference VVADs: a VVAD based on frame differencing and
a static, “standard” Gabor filter based method. In addition,
we determine the contribution of various visual speeds to
VVAD performance, to determine if certain speeds of, for
instance, lip motion contribute more to VVAD than others.
As a third evaluation, three regions in the clips are exam-
ined, to determine if zooming in on the mouth region leads
to better VVAD performance, or that other dynamic facial
characteristics contribute as well to the performance as sug-
gested by [21].

Since human speech is inextricably connected to the idio-
syncratic characteristics of its speaker [7] and, moreover,
since the location with respect to the camera varies among
the subjects, we will evaluate STem-VVAD on a speaker-
dependent and a speaker-independent basis. By using these
two evaluations we focus on the applicability of SGF in
VVAD (speaker dependent) versus the generalizability of
our method (speaker independent). In the area of speech
recognition, systems tailored towards one specific speaker
generally outperform systems that are able to handle mul-
tiple speakers. We therefore expect to see better results
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with our speaker-dependent scheme than with our speaker-
independent scheme. It will be interesting to see how this
distinction affects our different VVADs.

2 Related work

Previous work on VVAD methods can be distinguished into
two classes of models: lip-based approaches and appearance-
based approaches. Below, we review examples of each of
these classes.

2.1 Lip-based approaches

Lip-based approaches employ geometrical models based on
the lips. The geometrical models typically consist of a flexi-
ble mesh formed by landmarks, or connected fiducial points
surrounding the lips, flexible active contours that are auto-
matically fitted to the lip region. In what follows, we describe
three examples of lip-based approaches and the features
extracted to perform VVAD.

Aubrey et al. [1] employed a geometrical lip model for
VVAD that consisted of landmarks. Given a video sequence
of a speaking and silent person, the task was to distinguish
speech from non-speech. Their landmarks (constituting the
lip model) were fitted to the video data of a speaking per-
son by means of an Active Appearance Model (AAM) [5].
For each frame, the two standard geometric features, i.e., the
width and height of the mouth, were extracted from the posi-
tions of the landmarks and submitted to a Hidden Markov
Model.

Using an Active Contour Model [18], also called “snakes”,
Liu et al. [24] computed the two standard geometric features
as well an appearance feature, i.e., the mean pixel values
of a rectangular patch aligned with the lip corners and cen-
tered at the center of the mouth. For each frame, these three
features form the basis of their classification vector, which
is extended with dynamic features. To classify a frame as
VOICE or SILENT, AdaBoost [10] was used, a technique that
incrementally builds a (stronger) classifier by adding a new
feature from the classification vector to the previous classifier
at each consecutive step of the training process. The snake-
based VVAD method was evaluated on a selected YouTube
video of a single speaker.

The Sodoyer et al. [36] study relied on segmented lips,
which were obtained by painting the lips of recorded speak-
ers in order to be able to extract them from the rest of the
face (like in the chroma key technique used in movies). In
their study, they employed the chroma key technique to build
a 40 min long audiovisual corpus of two speakers, each in a
separate room, having a spontaneous conversation. In spon-
taneous conversation speech events are generally followed
up by silence or non-speech audible events such as laughing

and coughing. Such events are characterized by specific lip
motion (even in silence parts). The aim of the study was to
find a relationship between lip movements during speech and
non-speech audible events on the one hand and silence on the
other. The two standard geometrical features were extracted
from the segmented lips of both speakers and used to define
a single dynamic feature based on the sum of their absolute
partial derivatives.

2.2 Appearance-based approaches

Appearance based VVAD approaches go beyond the lips by
taking into consideration the surrounding visual information.
We describe three examples of appearance-based method,
each of which emphasizes another visual feature: color, tex-
ture, and optical flow.

Scott et al. [34] propose a VVAD that relies on a com-
parison of the pixel colors of the mouth region and the skin
regions just below the eyes. They defined a mouth openness
measure, which corresponds to the proportion of non-skin
pixels in the mouth region. The regions were extracted
with automatic face-detection and facial geometry heuris-
tics. Their manually annotated VVAD dataset consisted of
three videos.

Navarathna et al. [27] measured textural patterns in the
mouth region using the Discrete Cosine Transform (DCT).
Their dataset consisted of frontal and profile faces of the
CUAVE dataset [28]. They classified the DCT coefficients
by means of a Gaussian Mixture Model using speaker-
independent models. This was realized by training and testing
on different subsets of groups of speakers.

Tiawongsombat et al. [39] measured the optical flow in
the mouth region using the Pyramidal Lucas-Kanade algo-
rithm [3]. They recorded 21 image sequences of 7 speakers
to evaluate and 7 individual mouth image sequences to train
their method. Classification was done using a two-layered
HMM that considers the states moving and stationary lips at
the lower level and speaking and non-speaking at the higher
level simultaneously.

2.3 Evaluation of existing approaches

Directly comparing results between the different studies is
complex, since they all vary in certain dimensions, e.g., the
datasets used differ in size and complexity, different evalua-
tion metrics are employed, and generalizability is often not
tested (i.e., evaluations tend to be speaker-dependent). With
the exception of the CUAVE dataset, there are no publicly
available datasets to enable a comparison across different
situations and speakers. However, in general these methods
all perform well in comparison to their specific task and in
a comparable range. Typically, scores between 70 and 90 %
are reported.
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Fig. 1 Visualisation of 2D Gabor filter. a Low spatial frequency, diagonal orientation. b High spatial frequency, vertical orientation

In the next sections, we present our own appearance based
method (STem-VVAD), which is inspired by the biological
example of early spatial-temporal integration in the brain. In
addition, to get a better understanding of the problem, and in
view of the complex, difficult to compare pattern of results
in related work, here we systematically compare analyses of
the mouth area with full facial analyses as well as analyses
of the entire frame, and we look at different speeds of move-
ment, both in isolation and combined into one feature vector.
We evaluate the method on two different datasets (includ-
ing CUAVE [28]), and look at both speaker-dependent and
speaker-independent models.

3 The Spatiotemporal visual voice activity
detection method (STem-VVAD)

The Spatiotemporal visual voice activity detection (STem-
VVAD) method is based on two stages: (1) the preprocessing
stage consisting of Spatiotemporal Gabor filters to determine
the energy values at certain speeds, and (2) the aggregation
and classification stage employing summation and a classifier
to summarize and map the aggregated energy values onto the
binary classes SPEECH and NON- SPEECH.

3.1 Preprocessing sage

The preprocessing stage transforms video sequences with
Spatiotemporal Gabor Filters (SGFs) into a so-called energy
representation [14,29,41]. The Spatiotemporal Gabor filters
may be considered to be dynamic templates, i.e., oriented
bars or gratings of a certain thickness that move with a certain
speed and in a certain direction. The actual shapes of Gabor
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filters are illustrated in Fig. 1. The examples shown differ in
two parameters: orientation and spatial frequency. The trans-
formation of a video sequence by means of SGFs proceeds
by means of convolution, in which each SGF (dynamic tem-
plate) is compared with the contents of the video sequence at
all pixel locations and at all frames. The presence of a mov-
ing elongated object in the video that matches the SGF in
terms of orientation, thickness, speed and direction, results
in a large “energy value” at the location and time of the elon-
gated object. A better match results in a larger energy value.
Each SGF results in one energy value for each pixel per frame
of the video. Hence, the result of convolving a video sequence
with a single filter, yields an energy representation that can be
interpreted as an “energy video sequence” in which the pixel
values represent energies. Large energy values indicate the
presence of the filter’s template at the spatial and temporal
location of the value.

In order to capture all possible orientations, thicknesses
(spatial frequencies), speeds and directions, a Spatiotemporal
Gabor filter bank is used which consists of filters whose para-
meters (orientation, spatial frequency, speed and direction)
are evenly distributed over the relevant part of the parameter
space. Each of these filters generates an “energy movie” and
hence convolving a video sequence with a filter bank gives
rise to an enormous expansion of the data. Given a video of
F frames and N pixels per frame, convolution with a filter
bank of G filters results in G x F x N energy values. The
number of filters, G, is determined by the range and number
of parameter values selected. In the STem-VVAD method the
direction of movement is always perpendicular to the orienta-
tion. Hence, the number of filters is definedas G = k xd x s,
where k is the number of spatial frequencies, d the number
of orientations and s the number of speeds.
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3.2 Aggregation and classification stage

The applied filter bank of G filters (that vary in three dimen-
sions of parameter space, i.e., spatial frequency, speed and
orientation) result in G energy videos obtained from the con-
volution in the preprocessing stage. Representing the energy
value for Gabor feature g, frame f, and pixel n by E¢(f, n),
the aggregated features Ag(f) are computed by summat-
ing the energy values for feature g for each frame, which
resultsin, Ag(f) = Z,/l\;] E.(f, n). The aggregation gener-
ates one G-dimensional vector A( f) per frame, the elements
of which signal the presence of a filter-like visual pattern in
the video frame under consideration. Since the G filters rep-
resent different combinations of spatial frequencies, speeds
and orientations, the summated energy values signal the pres-
ence of moving contours with these frequencies, speeds and
orientations.

4 Experimental evaluation of the STem-VVAD
method

As stated in the introduction, the experimental evaluation
of the STem-VVAD method consist of three parts. First, its
performance is evaluated on two video datasets. Second, it
is compared to two reference VVADs: (1) to determine the
contribution of using a sophisticated spatiotemporal filtering
method, the STem-VVAD method’s performance is com-
pared to the simplest method of change detection called frame
differencing, and (2) to assess the contribution of dynamic
information, a comparison is made with a version of the
method in which the speed is set to zero, thereby effectively
creating static Gabor filters. Third, the VVAD performances
obtained for three spatial regions or visual regions of analysis
are compared. These regions are: the entire frame, the face,
and the mouth.

4.1 Datasets

As stated in the introduction, the two datasets used to eval-
uate the VVAD method are the publicly available CUAVE
dataset! [28] and our own LIVER dataset. [17] Both datasets
were recorded for different purposes and have different char-
acteristics.

CUAVE

The CUAVE dataset is an audio-visual speech corpus of more
than 7000 utterances. It was created to facilitate multimodal

! http://www.clemson.edu/ces/speech/cuave. html.

2 The dataset was created by our colleague prof. Swerts, and is available
upon request.

speech recognition research and consists of video recorded
speakers uttering digits. The dataset contains both individ-
ual speaker recordings and speaker-pair recordings. We used
the individual speaker recordings only. The set contains 36
different speaker video recordings (19 male and 17 female)
in MPEG-2, 5000 kbps, 44 KHz stereo, 720 x 480 pixels, at
29.97 fps. All speech parts are annotated at millisecond pre-
cision. The speakers vary in appearance, skin tones, accents,
glasses, facial hair and therefore represent a diverse sample.
Speakers were recorded under four conditions of which we
used the following two: stationary frontal view and station-
ary profile view. In both cases speakers were successively
pronouncing the digits. In these clips, the frontal face videos
have an average length of 52 s (sd = 14 s) compared to 24 s
(sd = 6 s) for the profile videos.

LIVER

Our LIVER dataset was constructed in the context of a sur-
prise elicitation experiment [17]. This experiment yielded a
dataset of 54 video sequences of 28 participants (7 male and
21 female) uttering the Dutch word for liver (“lever”) in aneu-
tral and in a surprised situation resulting in two recordings
per person. The participants all sit in front of the camera but
are allowed to move their heads and upper body freely. The
videos are in WMV format, 7000 kbps, 48 KHz stereo, 29.97
fps, at 640 by 480 pixels and were automatically annotated
for speech using a VAD based solely on the audio channel.
By means of visual inspection we checked the correctness of
annotations. The recordings are cropped at approximately 4
s (i.e. around 120 frames) and start when the participants are
about to speak. Contrary to in the CUAVE database, where
speakers produce speech about half of the time, speakers in
the LIVER dataset produce just one word in a 4 s interval,
resulting in a dataset that is unbalanced for speech and non-
speech frames (1053-6524, respectively).

4.2 Implementation details

For the preprocessing stage of the STem-VVAD method,
we used the SGF implementation of Petkov and Subra-
manian [29].3 We created a filter bank of G = 6 x 8 x 2 filters
sensitive to 6 different speeds (v = {0.5, 1, 1.5, 2, 2.5, 3}
pixels per frame), 8 orientations (8 = {0, 0.25x, 0.507,
0.75m, ..., 1.75m} radians) covering the range of speeds
and orientations in our datasets, and two spatial frequencies,
defined by the parameter )Lgl , where )\61 = {1/2,1/4}. The
dimensionality of the resulting STem-VVAD feature vector
forframe f, A(f),isequal to GsTem-vvap =6 X 8 x 2 = 96.
A separate version with the same parameters, but with v = 0

3 http://www.cs.rug.nl/~imaging/spatiotemporal_Gabor_function/
GaborApp.html.
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was used for comparison. In this version, the dimensionality
of feature vector A(f) is equal to Gero-speed = 2 X 8 = 16.
This is the same dimensionality as the STem-VVADs where
we take only one speed into consideration. We implemented
frame differencing by taking the absolute differences of the
pixel intensities of two consecutive frames and computing
their sum, average and standard deviation, yielding three val-
ues per frame.

The video sequences in the datasets were convolved with
the SGFs. The resulting energy values were aggregated as
specified in Sect. 3.2. For the three regions of analysis, i.e.,
frame, face, and mouth, the aggregation was performed over
the entire frame, the rectangle enclosing the face, and the
rectangle enclosing the lower half of the face, respectively.
The lower half of the face was defined as the half of the
bounding box enclosing the face region. The face region
was detected automatically using the OpenCV implemen-
tation of the Viola-Jones face detector with Local Binary
Pattern features. Since we used face detection in each frame
instead of face tracking, we had to deal with false positives
and frames in which the detector failed to find a face. By
manually ascertaining that the face in the first frame of each
video sequence was correctly detected by the face detector,
we could automatically remove false positives in subsequent
frames by stipulating that a bounding box’ size and loca-
tion should not differ more than a fixed number of pixels,
50 pixels in our setup, from the face detected in the pre-
vious frame. We used a simple heuristic to account for the
missing detections by interpolating between the previous and
upcoming detected face’s bounding boxes. Visual inspection
of the detected face regions throughout the video sequences
confirmed that this procedure worked for almost all videos.
Eight video sequences in total (i.e., two in the CUAVE frontal
condition, one in the CUAVE profile condition, and five in
the LIVER dataset) yielded too little face detections and were
excluded from the experiments. This amounts to 5 % of the
total data, which suggests that any biases introduced by face
detection failures are minimal.

A support vector machine was used to classify each frame
as SPEECH or NON- SPEECH using feature vectors of the aggre-
gated values as input. Feature vectors were classified with a
linear Support Vector Machine, for which we used the LIB-
LINEAR SVM library [8].

4.3 Evaluation procedure

The generalization performance is an estimate of how well
the VVAD performs on unseen videos. To estimate the gen-
eralization performance we used two validation procedures:
10 fold cross validation for the speaker-dependent evaluation
and Leaving One Speaker Out (LOSO) cross validation for
the speaker-independent evaluation. The LOSO cross valida-
tion measures the performance on speakers not included in
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the training set. The resulting generalization performances
obtained for (1) frame differencing, (2) the zero-speed ver-
sion, (3) separate speed versions, and (4) the full-fledged
STem-VVAD, are reported in terms of Fl-scores. The F1-
score, which originates from Information Retrieval, is the
harmonic mean of precision and recall [33]. The use of F1-
scores is motivated by the unequal distributions of our two
datasets (i.e., the CUAVE dataset is approximately balanced,
while the liver dataset contains more non-speech frames than
speech frames). In contrast to accuracy, the F1-score is insen-
sitive to the unbalance of the two classes. In our tables and
figures in the next section we also report the Fl-score of
the chance classifier, i.e., the classifier that randomly picks
between the classes SPEECH and NON- SPEECH. The final F1-
score at chance level is the average F1-score between all folds
for the specific evaluation procedure.

5 Results

Our results are divided over two sections, i.e., speaker-de-
pendent results, and speaker-independent results. In each
section we start by presenting the results of the frontal-view
speakers in both the CUAVE and the LIVER dataset, fol-
lowed by the results of the profile-view speakers, obtained
only on the CUAVE dataset.

Speaker-dependent results

The upper part of Table 1 summarizes the overall results
obtained on the frontal faces of the CUAVE dataset. Inspec-
tion of this table reveals that, as expected, the best results (for
all three detector types, FD, zero-speed and STem-VVAD)
are obtained for the mouth region. Looking closer at the
results for the mouth region, we can see that, importantly,
the STem-VVADs outperform the two reference methods
(FD and zero-speed). Of the six nonzero speeds examined,
the STem-VVAD with 0.5 pixels per frame performs best,
with an Fl-score of 0.7, which is almost 0.15 above the
reference methods. Performance of the single-speed STem-
VVADs decreases slightly with increasing speed. The best
result is obtained for the full-fledged STem-VVAD in which
all speeds are combined: an F1-score of 0.78. This result is
comprised of a precision of 0.76 and a recall of 0.79.
Figure 2 visualizes the distributions over speakers of the
results for the mouth region with box-whisker-plots as a func-
tion of VVAD. Each plot visualizes the distribution of the
mean F1-scores per speaker. The horizontal line in the mid-
dle of each box represents the median of the data, while
the top and bottom horizontal lines of the box represents
the upper and lower quartile of the data, respectively. The
upper whisker depicts the largest data value which is smaller
than the upper quartile plus 1.5x inter-quartile-range (i.e.,
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;I]?e};llfei- d/:;;zziit Fl-scores Dataset Region  References STem-VVADs All
obtained on all three datasets FD 0 0.5 1 1.5 2 25 3
CUAVE frontal ~ Frame 0.5 0.5 0.67 0.64 0.6 058 058 057  0.72
Head 0.51 0.53 0.67 0.66 0.64 0.63 062 062 075
Mouth 056 0.5 0.7 068 067 066 0.65 0.65 0.78
LIVER Frame 034 055 0.51 043 041 042 044 044 07
Head 0.4 0.56 0.63 056 0.1 054 055 053 08
Mouth 0.4 0.57 0.68 058 0.57 0.6 0.62 0.6 0.86
CUAVE profile ~ Frame 048  0.53 0.63  0.61 058 056 055 054 071
Head 052 059 0.66 0.66 0.64 0.62 0.61 0.61 0.78
Mouth 054  0.63 0.7 069 068 065 065 0.64 0.8

The left part of the table shows the results for the frame differencing (FD) and the zero-speed (0) version
VVAD:s and the right part of the table lists the F1-scores for the STem-VVAD method. The columns labeled
0.5-3 contain the scores of the associated speeds, the rightmost column labeled A/l lists the result for the
full-fledged STem-VVAD in which all speeds are included. The three rows for each dataset show the results
for the three regions of analysis: frame, face, and mouth. The best scores are printed in bold-face. Chance
level F1-scores for the three datasets are 0.47, 0.23 and 0.49 respectively. All scores are significantly
different from chance level scores as determined by a two-sample Kolmogorov-Smirnov test at the 1 %

significance level
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Fig. 2 Boxplots of speaker-dependent Fl-scores obtained on the
CUAVE frontal dataset. The boxes correspond to the Mouth results
in the upper part of Table 1. The left part of the figure shows the distri-
bution for the frame differencing (FD) and the zero-speed (0) version
VVADs and the right part of the Figure displays box plots of F1-scores
for the STem-VVAD method. The boxes labeled 0.5-3 represent the F1-
scores of the associated speeds, the rightmost box labeled All, shows
the F1-scores for the full-fledged STem-VVAD in which all speeds are
included. The dashed line indicates performance at chance level

absolute difference between upper and lower quartile). The
reverse holds for the lower whisker, i.e., the smallest data
value larger than the lower quartile minus 1.5 x inter-quartile-
range. Any data larger or smaller than the upper and lower
whisker respectively is considered an outlier and is depicted
by a dot. The spread of the STem-VVADs is considerably
smaller than those of the reference methods, implicating a
more robust detection performance for the STem-VVADs.

The positions of the box plots’ medians are in line with the
mean values reported on the last line of the upper part of
Table 1, showing a gradual descent for increasing speeds and
a best performance when combining all speeds.

The results of our VVADs on the LIVER dataset eval-
uated with ten-fold CV are summarized in the middle part
of Table 1. The overall pattern of results is similar to those
obtained on the CUAVE dataset. The performances improve
with smaller regions, with the best performance obtained
for the mouth region. For the mouth region, the single-
speed STem-VVADs outperform the reference methods (best
single-speed performance is obtained for speed 0.5 (0.68).
Again, the full-fledged STem-VVAD yields the best over-
all performance on all three regions of analysis (0.86 on the
mouth region). When we zoom in on this result, we see that
the recall here is higher, i.e., 0.93, than the precision, which
is 0.8.

The corresponding box-whisker plots for the mouth region
in Fig. 3 show a similar pattern of results as obtained for
the CUAVE dataset. The most striking result is the superior
performance obtained for the STem-VVAD.

The lower part of Table 1 shows the speaker-dependent
results obtained on the subset of profile faces in the CUAVE
dataset. A comparison with the results obtained for the frontal
faces in the upper part of Table 1, reveals that the STem-
VVAD method can deal with profile faces very well. The
mouth-region results are displayed in Fig. 4.

Speaker-independent results

The upper part of Table 2 gives the results for the CUAVE
database with the Leave One Speaker Out validation method,
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Fig. 3 Boxplots of speaker-dependent Fl-scores obtained on the
LIVER dataset. The boxes correspond to the Mouth results in the middle
part of Table 1. For explanation see Fig. 2
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Fig. 4 Boxplots of speaker-dependent Fl-scores obtained on the
CUAVE profile dataset. The boxes correspond to the Mouth results in
the lower part of Table 1. For explanation see Fig. 2

which tests the generalizability of our VVAD methods across
speakers. Inspection of this table reveals a similar pattern
of results as in the upper part of Table 1, although with a
lower overall performance. In particular, results for the mouth
region are generally better overall than those for the head and
the mouth region. Moreover, the best performing individual
method is the STem-VVAD with speed 0.5 pixels per frame,
although the difference with the FD reference VVAD is much
less pronounced than in the ten-fold cross validation results
in the upper part of Table 1. Interestingly to remark here is
the performance of the FD reference method (0.53 %) for the
entire frame compared to all the other detectors applied to the
same region, since it is the best performing VVAD. Moreover,
this VVAD also has a higher score than it’s equivalent applied
to the head region. In general the FD’s performances here are
only slightly below the best performing VVADs, i.e., the 0.5
pixels per frame and the combined speeds, whereas the zero-
speed’s performance here is considerably less.

Again, we zoomed in on the results for the mouth region
and visualized them using a box-whisker-plot, as depicted
in Fig. 5. Compared to Fig. 2 the boxes generated from the
LOSO experiment are less compressed, corresponding to a
wider spread of the individual results, it does however, show
roughly the same pattern of performance as the previous plot
when comparing them individually.

The middle part of Table 2 shows the speaker-independent
results of our VVADs applied to the LIVER dataset, using a
Leave One Speaker Out CV. The speaker-independent results
are clearly inferior to the speaker-dependent results listed in
the middle part of Table 1. Interestingly, simple frame differ-
encing often outperforms single-speed STem-VVADs. The
full-fledged STem-VVAD shows the best performance at all
three regions of analysis with the best result (0.55) obtained
for the mouth region. The box plots in Fig. 6 illustrate the
corresponding results for the mouth region.

Table 2 Speaker-independent

Fl-scores obtained on all three Dataset Region  References STem-VVADs All
datasets FD 0 0.5 1 1.5 2 2.5 3
CUAVE frontal ~ Frame 053 038 051 045 044 045 045 042 05
Head 051  0.39 051 05 049 0.5 052 051 053
Mouth 053 038 055 054 054 053 051 05 0.58
LIVER Frame 038 0.34 036 029 027 03 031 029 046
Head 037 031 043 038 03 0.3 032 034 044
Mouth 0.4 0.22 0.4 038 035 035 033 032 055
CUAVE profile ~ Frame 049 042 041 042 041 042 04 039 042
Head 0.5 0.49 049 051 051 0.51 05 049 053
Mouth 0.51 053 052 055 056 055 054 054 056

For explanation, see table 1. Chance level F1-scores are 0.48, 0.24 and 0.49 respectively. Values in bold-face
are the best scores. Italic values indicate F1-scores which or not significantly different from the chance level
F1-scores as determined by a two-sample Kolmogorov-Smirnov test at the 1 % significance level
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Fig. 5 Boxplots of speaker-independent Fl-scores obtained on the
CUAVE frontal dataset. The boxes correspond to the Mouth results
in the upper part of Table 2. For explanation see Fig. 2
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Fig. 6 Boxplots of speaker-independent Fl-scores obtained on the
LIVER dataset. The boxes correspond to the Mouth results in the middle
part of Table 2. For explanation see Fig. 2

The lower part of Table 2 lists our VVAD results obtained
on the profile faces of CUAVE dataset. Compared to the lower
part of Table 1 the full-fledged STem-VVADs here do not
show a clear prevailing performance. Although the perfor-
mance tends to improve when zooming in from frame to
head to mouth, at each level the results for all VVADs are
very similar. This little difference in results is visualized by
Fig. 7 which contain the results for the mouth area.

6 General discussion and conclusion

In this paper, we studied whether it is possible to detect voice
activity based on facial movements, which has various poten-
tial applications when auditory voice detection is difficult
(e.g., when there is background noise or when there are multi-
ple speakers). Obviously, movement is an essential ingredient

Speaker Independent CUAVE Profile
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References

Fig. 7 Boxplots of speaker-independent Fl-scores obtained on the
CUAVE profile dataset. The boxes correspond to the Mouth results in
the lower part of Table 2. For explanation see Fig. 2

of visual voice activity detection (VVAD), and hence we
studied whether Spatiotemporal Gabor filters could be used
successfully for this task. Our set-up was as follows: we com-
pared the performance of Spatiotemporal Gabor filters in our
Stem-VVAD approach with two reference methods, namely
a straightforward frame differencing method and a static
Gabor filter method (i.e., zero-speed STem-VVAD), allowing
us to capture the added value of both Spatial and Temporal
information. We compared results on two different datasets
(representing two extremes in the speech to silence ratio,
which is low in the LIVER and high in the CUAVE dataset).
We looked at both frontal and profile recorded faces, and
compared performance at three levels of granularity (entire
frame, entire face, mouth only). Finally, we evaluated the per-
formance of the VVADs with both speaker-dependent models
(where each speaker is used both for training and testing) and
speaker-independent models (where we train and test on sep-
arate speakers).

The results present a clear picture. In almost all compar-
isons, the STem-VVAD (combining all speeds) yields the
best performance, outperforming both the two baseline sys-
tems (and the chance performance level), sometimes by a
wide margin.

Our STem-VVAD does not suffer from unbalanced train-
ing and test data. The results obtained from the LIVER
dataset appear to be slightly better than those obtained on
the CUAVE dataset for both individual and generic mod-
els. This suggests that the information extracted from this
single-speech event data is informative enough to distinguish
between speech and non-speech, even though the model is
trained with an abundance of non-speech frames. As we
pointed out above, the LIVER dataset was originally col-
lected to study verbal and non-verbal expressions of surprise.
It is interesting to point out that apparently the facial move-
ments associated with speech differ from the ones associated
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with surprise, since our STem-VVAD approach picks up on
the former but not the latter.

Given the similar results obtained on the frontal and pro-
file conditions of the CUAVE dataset we argue that our
STem-VVAD is robust to turning faces (most notably in the
speaker-dependent version). STem-VVAD does not rely on
advanced lip models, which makes it potentially well suited
for automatic speech detection in conference systems, where
speakers tend to move their heads freely.

VVAD performance increases when focusing on the
mouth; for all three techniques (FD, zero-speed, STem-
VVAD), better results are usually obtained when taking only
the head into account rather than considering the entire
frame, and better results still when zooming in on just the
mouth. Even though it has been argued that information
from the upper part of the face (e.g., eyebrows) can be a
useful cue for VVAD, this turned out not to help for the
techniques we studied, perhaps because when considering
a larger region of interest the chance of picking up speech
irrelevant movements increase, and the movement cues that
could be informative are more likely to be lost in the noise.

In addition, the speaker-dependent models (10-fold) per-
form (substantially) better than the generic models (LOSO),
even though all three methods usually perform better than
chance. This is perhaps not surprising because the speaker-
dependent models capture some of the idiosyncratic proper-
ties of each speaker, which is not case for the generic models.

Perhaps more importantly for our current purposes, we
find that adding temporal information, as we do in the Spa-
tiotemporal Gabor filters, does pay off for VVAD. Zooming
in on the mouth (where VVAD works best in our set-up)
the best performing STem-VVAD, which combines different
speeds, outperforms both reference VVADs, in both datasets,
both frontal and profile, and in both individual models as well
as for the generic LIVER models. Although the full-fledged
mouth results for the generic CUAVE models are better than
the reference methods, the differences are negligible.

Looking at the experimental data for the mouth region
we can see that our STem-VVAD approach with all speeds
could be a valuable addition to traditional auditory VAD
systems, especially in the speaker-dependent case were a
system is trained on an individual speaker basis. Achiev-
ing average F1-scores of 0.78, 0.86 and 0.8, respectively for
the three datasets, a reasonable performance by itself. In the
speaker-independent case the average F1-scores obtained for
the mouth region of our full fledged STem-VVAD appear to
be inaccurate enough for useful VVAD applications.

Various possibilities for future research exist. For exam-
ple, we found that performance on the entire face was
generally worse compared to performance on just the mouth
region, even though others have claimed that other parts of
the face may contain useful information as well. It would
be interesting to see whether, say, trying to detect movement
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of just the eyebrows (possibly in combination with mouth
movements) does lead to an improvement in VVAD. Another
possibility would be to further integrate temporal informa-
tion. Instead of looking at frames in isolation and trying to
classify them, a window of frames or a dynamical model (e.g.
a Hidden Markov Model) could improve results.

Our current method does not generalize very well, looking
at the considerable differences between the speaker-de-
pendent and the speaker-independent results. Apparently,
idiosyncratic speech characteristics are prevailing over gen-
eral speech patterns, considering the high Fl-scores in the
speaker dependent case. Another possibility could be the
non-linearity of the feature space, to which we applied a
linear SVM. In [41] the authors used Spatiotemporal Gabor
filters to classify facial expressions. Although they report that
using a non-linear SVM instead of a linear SVM yielded no
significant performance increase, they state that their con-
siderably large feature space (i.e., more than 2.2 M per video
sequence) generated by the non-linear Spatiotemporal Gabor
filter responses might have made their problem linearly sep-
arable. In our case the dimensionality of the feature space
was never greater than 96. Not being able to generalize very
well is a disadvantage for practical application where you
would want to use these techniques out-of-the box, for new
speakers. It is conceivable that better results for the generic
model can be obtained when more data from more different
speakers become available. In addition, in future work we
plan to experiment with techniques that have the potential to
make our STem-VVAD method generalize better to unseen
speakers. For instance by scaling the mouth’s bounding box
to a fixed size, or by taking the complete (normalized) SGF
transformed mouth area (after dimensionality reduction) as
input to a classifier.

In general, we can conclude that SGFs offer a promising
account for visual voice activity detection. In particular, we
have shown that adding temporal information to the widely
used spatial Gabor filters yields substantially better results,
than can be obtained with Frame Differencing or “standard”
Gabor filters, since SGFs make better use of the inherent
visual dynamics of speech production.
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