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Abstract Bacterial type II toxin—antitoxins (TAs) are two-
component systems that modulate growth in response to spe-
cific stress conditions, thus promoting adaptation and persis-
tence. The major human pathogen Mycobacterium
tuberculosis potentially encodes 75 TAs and it has been pro-
posed that persistence induced by active toxins might be
relevant for its pathogenesis. In this work, we focus on the
newly discovered toxin—antitoxin—chaperone (TAC) system
of M. tuberculosis, an atypical stress-responsive TA system
tightly controlled by a molecular chaperone that shows simi-
larity to the canonical SecB chaperone involved in Sec-
dependent protein export in Gram-negative bacteria. We per-
formed a large-scale genome screening to reconstruct the
evolutionary history of TAC systems and found that TAC is
not restricted to mycobacteria and seems to have disseminated
in diverse taxonomic groups by horizontal gene transfer. Our
results suggest that TAC chaperones are evolutionary related
to the solitary chaperone SecB and have diverged to become
specialized toward their cognate antitoxins.
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Abbreviations

TA Toxin—antitoxin

TAC Toxin—antitoxin—chaperone

AC Antitoxin—chaperone

IPTG  Isopropyl (3-D-1-thiogalactopyranoside

MTBC  Mycobacterium tuberculosis complex
MCL  Markov clustering

HTH Helix—turn—helix

Introduction

The human pathogen Mycobacterium tuberculosis encodes 75
putative type II toxin—antitoxin (TA) systems and it has been
proposed that activated toxins could contribute to its patho-
genesis (Ramage et al. 2009; Sala et al. 2013). Bacterial TA
systems are stress-responsive elements generally composed of
a stable toxin that forms an inactive complex with its less
stable cognate antitoxin (Yamaguchi et al. 2011). Both part-
ners are encoded within an operon autoregulated by the anti-
toxin, which usually carries a DNA-binding domain
(Yamaguchi et al. 2011). In response to specific stress con-
ditions, the antitoxin is degraded by stress proteases and the
free active toxin subsequently targets important cellular pro-
cesses such as DNA replication or protein synthesis. It is
believed that such a TA-dependant growth control facilitates
adaptation to stress and persistence (Makarova et al. 2009;
Van Melderen 2010; Yamaguchi et al. 2011).

The HigB(Rv1955)-HigA(Rv1956) toxin—antitoxin sys-
tem of M. tuberculosis is atypical in that its activation is
specifically controlled by the SecB-like chaperone Rv1957
encoded by the same operon (Bordes et al. 2011; Sala et al.
2013; Smollett et al. 2009) (Fig. 1a). In this case, the
chaperone directly interacts with the HigA antitoxin and
protects it from both aggregation and degradation, thus
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facilitating its folding and subsequent interaction with the
HigB toxin (Bordes et al. 2011). Such tripartite toxin—antitox-
in—chaperone system (TAC), is significantly induced in re-
sponse to relevant stresses such as heat shock (Stewart et al.
2002), hypoxia (Ramage et al. 2009), nutrient starvation
(Betts et al. 2002), and persistence (Keren et al. 2011), sug-
gesting a role for TAC in M. tuberculosis stress-adaptive
response. The higBA toxin—antitoxin pair from TAC resem-
bles the previously identified “chaperone-less” gp49-gp48
locus of the Escherichia coli N15 prophage, which consists
of a toxin located upstream of an antitoxin that contains a
conserved helix—turn—helix (HTH) Xre domain (Gerdes et al.
2005; Makarova et al. 2009). The mycobacterial HigB toxin
belongs to the RelE-like superfamily of toxins that generally
inhibit translation by cleaving processing mRNAs on ribo-
somes (Gerdes et al. 2005). Remarkably, overexpression of
HigB severely inhibits growth of M. tuberculosis,
Mycobacterium smegmatis, and E. coli, suggesting that
HigB recognition motifs in mRNA are widespread or that its
specific targets are well conserved among bacteria (Fivian-
Hughes and Davis 2010; Gupta 2009; Ramage et al. 2009;
Sala et al. 2013). In agreement with the severe toxicity of
HigB, the higA antitoxin gene from M. tuberculosis TAC
cannot be deleted in the presence of endogenous HigB
(Fivian-Hughes and Davis 2010), while under the same con-
dition, deletion of the chaperone exhibits a slow growth
phenotype most likely due to a reduced antitoxin activity
(Sassetti et al. 2003).

As stated above, the Rv1957 chaperone is related to the
well-characterized chaperone SecB from E. coli (Bordes et
al. 2011). SecB is a homotetrameric chaperone of 69 kDa
(Dekker et al. 2003) that binds nonnative precursor proteins
co- or posttranslationally and specifically addresses them to
the SecA motor component of the Sec translocon at the
inner membrane, thus facilitating their export (Bechtluft et

Fig. 1 a To-scale
representation of the M.
tuberculosis TAC encoding P

A

al. 2010; Randall and Hardy 2002). Rv1957 (~20 kDa) and
SecB (~17 kDa) from E. coli share 19 % sequence identity
and 31 % similarity at the amino acid level, with several key
residues involved in SecB oligomerization, substrate bind-
ing, or interaction with SecA being conserved (Bordes et al.
2011). Although the tridimensional structure of Rv1957 is
not known, preliminary biochemical analyses revealed that
as observed for SecB, Rv1957 purifies as a homotetrameric
chaperone, thus reinforcing the fact that both chaperones
might be evolutionarily related (Bordes et al. 2011).

Due to its major function during protein export, SecB is
generally considered a proteobacterial invention associated
with the presence of an outer membrane and outer mem-
brane proteins (van der Sluis and Driessen 2006). In agree-
ment with such a view, SecB chaperones are present in
almost all species of -, (3-, and y-proteobacteria (van der
Sluis and Driessen 2006). Nevertheless, some SecB-like
genes can also be found sporadically in Gram-positive bac-
teria, but to date, no functional SecB-dependent secretion
has been described in these cases (Bohnsack and Schleiff
2010). The fact that M. tuberculosis possesses an unusual
cell wall with a well-defined outer membrane and outer
membrane proteins suggests that this pathogen could use
such SecB chaperone functions under certain conditions
(Mah et al. 2010; Zuber et al. 2008). Supporting such a
hypothesis, it was recently shown that in addition to its
specific role in controlling the antitoxin of TAC, Rv1957
can efficiently replace the E. coli SecB chaperone both in
vivo and in vitro (Bordes et al. 2011). Reciprocally, over-
expression of the E. coli SecB stimulates inhibition of the
HigB toxin by HigA, albeit less efficiently than Rv1957
(Bordes et al. 2011). Yet, the nature of the interaction of
Rv1957 with its substrate(s) is unknown and it remains to be
determined whether substrates wrap around Rv1957 tet-
ramers, interacting with multiple subsites on the chaperone,
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as it has been shown for SecB (Lilly et al. 2009; Randall and
Hardy 2002). Together, these data suggest that the TAC
chaperone could represent an intimate link between protein
export and activation of a stress-responsive toxin—antitoxin
system.

TAC genes are conserved in the genomes of all
members of the M. tuberculosis complex (MTBC). In
order to study the evolutionary history of these systems and to
specify their relationship with the SecB export chaperone, we
searched for homologous systems in sequenced bacterial
genomes.

Distribution of TAC/AC systems in bacterial phylogeny

The M. tuberculosis TAC chaperone sequence was used in
PSI-BLAST searches and neighborhood of the significant
hits was analyzed in order to detect putative toxin and
antitoxin pairs presenting a conserved gene organization
when compared to the original TAC system, but not neces-
sarily sharing sequence similarities with HigBA (Fig. 1a).
Using this approach, we have now identified 49 complete
TAC systems (Table S1). In addition, we found 11 toxin-less
TAC systems, named antitoxin—chaperone (AC), which
could either neutralize toxins located elsewhere on the ge-
nome or result from the loss of the toxin (Yang et al. 2010).
Note that nine putative antitoxin—chaperone pairs from these
AC systems do have one or more homologous pairs among
the complete TAC identified in this work and thus retain the
same genetic organization as TAC, except for the apparent
lack of toxin. In two cases, the antitoxin—chaperone pairs
from AC do not have homologous pair in complete TAC but
their respective antitoxins do possess a putative DNA-
binding domain, named HTH-like in this study. Moreover,
these two AC retain a similar genetic organization as TAC,
i.e., the antitoxin and the downstream SecB-like chaperone
are present on the same operon with the two genes over-
lapping by few nucleotides (four nucleotides in both cases),
and are localized either on a prophage region (Msme) or on
a plasmid (RopA), in agreement with the proposed acquisi-
tion of TAC by horizontal gene transfer (HGT; see section
below). Such criteria might be sufficient to distinguish be-
tween unrelated transcriptional regulators upstream of a
solitary SecB and bona fide antitoxins among the toxin-
less AC systems and thus minimize the annotation of false
positives.

Bacterial phylogenetic distribution of TAC/AC systems
was analyzed and compared to that of solitary SecB chap-
erones using a tree of bacterial species based on the NCBI
taxonomy (Fig. 1b). Solitary SecB was defined as a se-
quence (a) which possesses the Pfam02556 domain that
characterizes SecB chaperones (http://pfam.sanger.ac.uk/)
and (b) which is not part of TAC or AC systems identified

in this work. Accordingly, 25 Pfam02556 SecB sequences
that were in fact putative TAC/AC chaperones were dis-
carded from the 1256 Pfam02556 SecB sequences available.
As expected, our search revealed that solitary SecB is con-
served in almost all species of «-, 3-, and y-proteobacteria
and that some SecB sequences are found sporadically in
unexpected groups such as the Gram-positive Firmicutes
phylum. A remarkable example is the presence of solitary
SecB in all the sequenced genomes of the human pathogen
Streptococcus pneumoniae. The occurrence of SecB in bac-
teria lacking outer membrane proteins is intriguing and
suggests that in these cases, the chaperone might function
as a specialized chaperone involved in the secretion or
folding of one (or more) specific protein(s), or alternatively,
as a generic chaperone needed under certain stress condi-
tions. However, these sequences are very distant from the E.
coli SecB and it remains to be determined whether they
indeed correspond to functional SecB chaperone in these
bacteria.

TAC/AC systems present a wide and sparse distribution
across the taxonomy, being found in seven phyla but only in
a few species of each phylum except in Thermotogae.
Remarkably, among the Gamma- and Betaproteobacteria, all
the species possessing a TAC also have a solitary SecB chap-
erone. In Actinobacteria, Thermotogae, Verrucomicrobia, and
Deinococcus-Thermus all the identified SecB-like sequences
are part of TAC or AC systems. Interestingly, the firmicute
Caldicellulosiruptor saccharolyticus presents two other SecB
homologs in addition to its TAC chaperone, all of them being
part of the Pfam02556 group. We observed 2 strains containing
one TAC and one AC system, 1 strain containing two TAC, 1
being on a plasmid, and 11 containing two SecB paralogs in
their genomes.

The distribution profile of TAC/AC systems could hardly
be explained by vertical transfer and loss events, but rather
suggested HGT. Thus, we analyzed the 52 complete
genomes containing TAC/AC systems with the software
Alien Hunter (Vernikos and Parkhill 2006), which identifies
regions with a compositional bias, and searched for other
HGT signatures on TAC/AC neighborhood. Thirty-four
TAC/AC systems were located in an alien region (Table
S2), and potential HGT signatures were found for six addi-
tional systems. Moreover, consistent with TA-addictive
properties (Van Melderen 2010), five TAC/AC systems are
plasmid-borne (Table S1). Thus, at least 75 % of the ana-
lyzed systems seem to have been acquired by HGT.

Relationships between TAC/AC and solitary SecB
chaperones

Despite the low sequence conservation, a multiple align-
ment performed on the chaperone sequences with MAFFT
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(Katoh et al. 2002) highlights a conserved motif present in
all the solitary and TAC/AC SecB sequences (Fig. S1). This
motif is located in a region corresponding to the large «-
helix1 of the E. coli SecB structure, mainly involved in
tetramerization (Dekker et al. 2003). As no reliable phylo-
genetic trees could be computed (due to the low sequence
conservation), we investigated the relationships between
TAC/AC and solitary SecB chaperones through a graph
partitioning approach. A graph was built, in which nodes
correspond to proteins and weighted edges reflect the sim-
ilarity between a pair of proteins. Graph partitioning—de-
tection of communities of highly connected nodes—was
performed using the Markov clustering (MCL) program
(Fig. 2). Four communities were identified, one containing
almost all solitary SecB plus 14 TAC/AC chaperones and
the three others containing mostly TAC/AC chaperones.
SecB solitary sequences form a highly connected core that
also includes five TAC chaperones, reinforcing the idea that
TAC/AC and solitary SecB chaperones are evolutionarily
related. MTBC TAC chaperones are found in a community
comprising chaperones from diverse taxonomic groups and
interestingly the solitary SecB of the Clostridium difficile
phage ®CD119. The presence of a solitary SecB in #CD119
suggests that this community of TAC chaperones could arise
from such a phage-encoded SecB and further supports the
involvement of phages in TAC/AC evolutionary history.

SecB-like chaperones associate with diverse TA pairs

For all the TAC systems identified so far, the antitoxin is
located downstream of the toxin gene, an organization
thought to be unfavorable to the formation of the inactive
complex because the more stable toxin is synthesized before
the labile protease-sensitive antitoxin (Yamaguchi et al.
2011). The additional presence of a dedicated SecB-like
chaperone could thus facilitate the co-translational assembly
of an inactive toxin—antitoxin (or toxin—antitoxin—chaper-
one) complex by interacting with the antitoxin early during
its synthesis. In this case, sensible variations in chaperone
availability could rapidly trigger toxin activation in response
to specific stress.

Although the genetic organization of TAC systems is
conserved, inspection of the toxin—antitoxin pairs from
TAC revealed that the presence of a SecB-like chaperone
is not restricted to the HigBA TA family. Indeed, analysis of
the TAC/AC antitoxin sequences with MCL revealed five
distinct communities of antitoxins associated with a chaper-
one, corresponding to three canonical antitoxin families,
namely HigA, MgsA, and HicB, and two other unclassified,
one that we named MqsA-like because of the presence of a
partial MgsA conserved domain and one that we named
HTH-like because of the presence of a putative HTH
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Fig. 2 a MCL analysis of 60 TAC/AC chaperone sequences and 112
solitary SecB chaperone sequences corresponding to the seed sample
of the Pfam02256-conserved domain (see Table S1 for abbreviations).
The circles (proteins) are colored according to the four communities
defined by the program. The links between proteins reflect a BLAST
hit with an e-value less than or equal to 10 >. Abbreviations
corresponding to plasmid-borne systems are underlined. b Antitoxin
and toxin families found associated with SecB-like chaperones

domain (Fig. S2). All the HicB antitoxins identified present
a ribbon—helix—helix DNA-binding domain. In E. coli, the
HicB antitoxin neutralizes the HicA toxin known as a
ribosome-independent ribonuclease induced by nutritional
stress (Jorgensen et al. 2009). The MqgsR toxin of E. coli is
also a ribosome-independent ribonuclease that cleaves
mRNA at GCU sites and is antagonized by the MgsA
antitoxin known to modulate the general stress response
via rpoS§ transcription regulation (Wang et al. 2011). The
TAC antitoxins belonging to the MgsA family are well
conserved and most of them present the two CXXCG motifs
responsible for zinc binding, additionally to a HTH Xre
domain (Papadopoulos et al. 2012).

Globally, for each class of antitoxin, we observed vari-
ability in the type of chaperone and toxin partners (Fig. S2).
In fact, the antitoxin genes were either (a) associated with a
toxin of the corresponding family, (b) toxin less, or (c)
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associated with an ORF of unknown function, but being part
of an MCL community together with other putative TAC
toxins (Fig. 2b). In this case, the latest class could thus
represent new TA families. Such diversity in TA families
within TAC systems suggests that several independent
events of association of a TA system with a SecB-like
chaperone might have occurred during evolution. These
results also suggest that the control of TA systems by
molecular chaperones might represent a more commonly
used mechanism to modulate toxin activation in response
to environmental insults. In support of such an hypothesis,
four well-characterized antitoxins present in E. coli, namely
MazE, RelB, MgsA, and DinJ, have been isolated as bona
fide substrates of the DnaK (Hsp70) stress chaperone in
vivo (Calloni et al. 2012). In addition, it was recently shown
that mild overexpression of the HipA toxin of the HipAB
type II TA system efficiently suppresses the severe bacterial
growth and protein folding defects exhibited in the absence
of the two major E. coli chaperones Trigger Factor and
DnaK, by presumably restoring the coupling between pro-
tein synthesis and the downstream folding capacity of the
cell (Bruel et al. 2013). Further studies are clearly needed to
elucidate such a fundamental link between stress chaperones
and TA activation.

SecB-like chaperone from AC in M. smegmatis

Our analysis of TAC systems revealed that the nonpatho-
genic bacterium M. smegmatis, which is closely related to
M. tuberculosis, possesses an AC system in its genome.
While TAC from M. tuberculosis is located in a large ge-
nomic island of approximately 81 kb, together with nine
other TA systems and potential pathogenicity determinants
(Ramage et al. 2009; Sala et al. 2013; Stinear et al. 2008),
the AC system of M. smegmatis is part of a shorter genomic
island of approximately 15 kb, which is not present in M.
tuberculosis (Fig. 3a). Despite the fact that M. smegmatis
and M. tuberculosis genomes are very close (95 % identity
between 16S rRNA genes), their TAC/AC chaperones are
largely distant (Fig. 2a). Primary amino acid sequence com-
parison of the M. smegmatis SecB-like chaperone, thereafter
referred to as SmegB (M. smegmatis SecB-like chaperone
SmegB), with E. coli SecB and Rv1957 reveals that SmegB
is even closer to the E. coli SecB, with 37 % similarity
against 31 % for Rv1957 (Fig. S3).

The fact that these two closely related mycobacteria
retain independently acquired SecB-like chaperones in their
genomes is intriguing and suggests that both proteins could
also function as generic chaperones in their respective hosts.
The gene encoding SmegB was cloned on a plasmid and
tested for its ability to replace the solitary SecB chaperone
from E. coli in vivo (Bordes et al. 2011; Sakr et al. 2010;
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Fig. 3 The M. smegmatis SecB-like chaperone. a To-scale represen-
tation of the genomic island of approximately 15 kb containing the M.
smegmatis AC (Msmeg2144-SmegB) genes identified by Alien Hunt-
er. Presence of Che9c phage and transposase genes is indicated. b
SmegB replaces SecB in E. coli. Transformants of W3110 AsecB
containing pSE (vector), pSE-SecB, pSE-Rv1957, or pSE-SmegB
were grown to midlog phase, serially diluted and spotted on lysogeny
broth (LB)—ampicillin with or without isopropyl (3-D-1-thiogalactopyr-
anoside (/P7G), and incubated at the indicated temperature. ¢ SmegB
does not replace Rv1957 in TAC control. Midlog phase cultures of
W3110 AsecB containing the pK6-HigBA1 plasmid and pSE (vector),
PSE-Rv1957, or pSE-SmegB were serially diluted and spotted on LB—
ampicillin—kanamycin agar plates with or without arabinose and IPTG
inducers as indicated. Plates were incubated at 37 °C overnight

Ullers et al. 2007). Note that the E. coli AsecB mutant presents
a strong cold-sensitive phenotype associated with a general
defect in protein secretion (Marani et al. 2006; Pogliano and
Beckwith 1993; Sakr et al. 2010; Ullers et al. 2004). As shown
in Fig. 3b, overexpression of SmegB fully complements the
cold-sensitive phenotype of the E. coli AsecB, in a manner
comparable to that of SecB and Rv1957, even at the stringent
temperature of 16 °C (Fig. 3b). This suggests that SmegB is
indeed capable of performing a generic chaperone function.
Since Rv1957 and SmegB are associated with antitoxins that
most likely belong to distinct groups (i.e., HigA and HTH-like,
respectively), we next asked whether SmegB could replace
Rv1957 in controlling the HigBA TA system form M. tuber-
culosis. To do so, we expressed both the toxin HigB and the
antitoxin HigA in the presence of overexpressed SmegB and
monitored the HigB-dependent growth inhibition as described
previously (Bordes et al. 2011). The results presented in Fig. 3¢
show that in contrast with Rv1957, co-expression of SmegB
and HigA in E. coli does not efficiently suppress the growth
inhibition mediated by HigB. In agreement with the bacterial
growth data and unlike Rv1957, the overexpression of SmegB
is not capable of protecting the antitoxin of M. tuberculosis
TAC from degradation in vivo (Fig. S3). Taken together, these
results suggest that although SmegB efficiently performs sol-
itary SecB chaperone function in E. coli, it does not replace
Rv1957 in the specific control of HigBA from M. tuberculosis.
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Concluding remarks

In this work, we have identified 60 systems in which a
SecB-like chaperone is associated with either a TA or an
isolated antitoxin, whose evolutionary history seems to be
complex and largely mediated by HGT. In addition, we
found that well-distinct TA pairs can be associated with
SecB-like chaperones, suggesting that independent events
of association might have occurred during evolution. The
observation that TAC chaperones from closely related
mycobacteria may not be interchangeable suggests a speci-
ficity of partnership with the antitoxins, whose determinants
remain to be identified. Nevertheless, the fact that the two
chaperones tested so far can efficiently replace SecB in E.
coli is intriguing and one of the main issues for future
investigations will be to determine whether these SecB-
like chaperones have conserved their ability to perform
generic chaperone functions in their natural hosts and
whether they are indeed capable of interacting with the
Sec translocon. In addition, more work will be needed to
shed light on the mechanism of activation of the toxin and
the precise role played by the SecB-like chaperone, and
possibly by stress-induced proteases, in this process.
Indeed, it is generally believed that activation of toxins from
type II TA systems relies on the degradation of their cognate
antitoxins by the stress proteases Lon and/or Clp (Gerdes et
al. 2005). Although it is not known yet whether proteases
participate in the HigB toxin activation cascade, the addi-
tional presence of a SecB-like chaperone that assists the
antitoxin in the case of TAC suggests a more competitive
mode of regulation. Finally, another challenging perspective
will be to identify the cellular processes targeted by HigB
and to examine its impact on M. tuberculosis physiology
and virulence.
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