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Abstract Themain aim of this paper is to study the effect of the environmental noises
in the asymptotic properties of a stochastic version of the classical SIRS epidemic
model. The model studied here include white noise and telegraph noise modeled by
Markovian switching. We obtained conditions for extinction both in probability one
and in pth moment. We also established the persistence of disease under different
conditions on the intensities of noises, the parameters of the model and the stationary
distribution of theMarkov chain. The highlight point of our work is that our conditions
are sufficient and almost necessary for extinction and persistence of the epidemic. The
presented results are demonstrated by numerical simulations.

Keywords Stochastic epidemicmodel ·Markovian switching ·Extinction ·Stochastic
persistence

1 Introduction

In recent years, mathematical models have been used increasingly to support pub-
lic health policy making in the field of infectious disease control. The first roots
of mathematical modeling date back to the eighteenth century, when Bernoulli [1]
used mathematical methods to estimate the impact of smallpox vaccination on life
expectancy. However, a rigorous mathematical framework was first worked out by
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102 A. Settati et al.

Kermack and Mckendrick [2]. Their model, nowadays best known as the SIR model,
has been the basis of all further modeling [3–6]. The SIR epidemic model, classifies
individuals as one of susceptible, infectious and removed with permanent acquired
immunity. In fact, some removed individuals lose immunity and return to the suscep-
tible compartment. This case can be modeled by SIRS epidemic model studied by
many scholars (see, e.g., [3,7] and the references cited therein). For a fixed population
size, let S(t) be the frequency of susceptible individuals, I (t) be the frequency of
infective individuals and R(t) be the frequency of removed individuals at time t . A
simple SIRS epidemic model is described by the following differential system:

⎧
⎪⎪⎨

⎪⎪⎩

dS(t) = [
μ − μS(t) − βS(t)I (t) + γ R(t)

]
dt,

d I (t) = [−(μ + λ)I (t) + βS(t)I (t)] dt,

dR(t) = [−(μ + γ )R(t) + λI (t)
]
dt,

(1)

The meaning of parameters is as follows: μ represents the birth and death rates, β is
the infection coefficient, λ is the recovery rate of the infective individuals, γ is the rate
at which recovered individuals lose immunity and return to the susceptible class. The
dynamics of system (1) has been discussed in [3] in terms of the basic reproduction
number R0 = β

μ+λ
. It is shown that if R0 ≤ 1, the free-disease equilibrium state

E0 (1, 0, 0) is globally asymptotically stable. whileR0 > 1, E0 becomes unstable and

there exists an endemic equilibrium state E∗
(

1
R0

,
(μ+λ)(μ+γ )(R0−1)

β(μ+λ+γ )
,

λ(μ+λ)(R0−1)
β(μ+λ+γ )

)

which is globally asymptotically stable.
In real situation, parameters involved with the model are not absolute constants and

always fluctuate randomly around some average value due to continuous fluctuation
in the environment. Hence equilibrium distributions obtained from the deterministic
analysis are not realistic rather they fluctuate randomly around some average value.
Lu [8] introduced stochasticity into the SIRS model (1) via the technique of parame-
ter perturbation. He replaced the infection coefficient β by β + σ dB

dt , where B is a
Brownian motion defined on the complete probability space (�,F , {Ft }t≥0,P) with
a filtration {Ft }t≥0 satisfying the usual conditions and σ is the intensity of the noise.
So, the stochastic version of the deterministic system (1) is

⎧
⎪⎪⎨

⎪⎪⎩

dS(t) = [
μ − μS(t) − βS(t)I (t) + γ R(t)

]
dt − σ S(t)I (t)dBt ,

d I (t) = [−(μ + λ)I (t) + βS(t)I (t)] dt + σ S(t)I (t)dBt ,

dR(t) = [−(μ + γ )R(t) + λI (t)
]
dt.

(2)

Lu [8] showed the local stability in probability of the disease-free equilibrium E0
under the condition

β − (μ + λ) + 1

2
σ 2 < 0. (3)
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Lahrouz et al. [9] improved the model (2) by supposing the saturated incidence rate
βSI
1+aI and disease-inflicted mortality. They proved the uniqueness and positivity of the
solution and showed that the condition (3) is sufficient for the global stability in prob-
ability of E0. they also established condition for the global stability in pthmoment of
E0. Recently, in [10], Lahrouz and Settati found the threshold between persistence and
extinction of the disease from the population. The technique of parameter perturbation
has been used by many scholars (see, e.g., [11–13] and the references cited therein).
However, this is not the only way to introduce stochasticity into the deterministic
model (2).

There is another type of environmental noise, namely color noise, say telegraph
noise [14–18]. Telegraph noise can be illustrated as a switching between two or more
regimes of environment, which differ by factors such as nutrition, climatic character-
istics or socio-cultural factorsfactors. The latter may cause the disease to spread faster
or slower. Frequently, the switching among different environments is memoryless and
the waiting time for the next switch is exponentially distributed. The regime-switching
can hence bemodeled by a finite-stateMarkov chain. Let r(t) beMarkov chain defined
in a finite state space S = {1, 2, . . . ,m} with the generator � = (θuv)1≤u,v≤m given,
for δ > 0, by

P (r(t + δ) = v|r(t) = u) =
{

θuvδ + o(δ), if u �= v,

1 + θuuδ + o(δ), if u = v.
(4)

Here, θuv is the transition rate from u to v while

θuu = −
∑

u �=v

θuv. (5)

In this paper, we set up a stochastic SIRS model in random environments using the
following stochastic differential equation under regime switching:

⎧
⎪⎪⎨

⎪⎪⎩

dS(t) = [
μr(t) − μr(t)S(t) − βr(t)S(t)I (t) + γr(t)R(t)

]
dt − σr(t)S(t)I (t)dBt ,

d I (t) = [−(μr(t) + λr(t))I (t) + βr(t)S(t)I (t)
]
dt + σr(t)S(t)I (t)dBt ,

dR(t) = [−(μr(t) + γr(t))R(t) + λr(t) I (t)
]
dt.

(6)

The mechanism of the SIRS epidemic model described by system (6) can be explained
as follows: Assume that initially, the Markov chain r(0) = i ∈ S, then the model (6)
satisfies

⎧
⎪⎨

⎪⎩

dS(t) = [
μi − μi S(t) − βi S(t)I (t) + γi R(t)

]
dt − σi S(t)I (t)dBt ,

d I (t) = [−(μi + λi )I (t) + βi S(t)I (t)] dt + σi S(t)I (t)dBt ,

dR(t) = [−(μi + γi )R(t) + λi I (t)
]
dt,

until r(t) jumps to another state, say, j ∈ S. Then the model obeys
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⎧
⎪⎨

⎪⎩

dS(t) = [
μ j − μ j S(t) − β j S(t)I (t) + γ j R(t)

]
dt − σ j S(t)I (t)dBt ,

d I (t) = [−(μ j + λ j )I (t) + β j S(t)I (t)
]
dt + σ j S(t)I (t)dBt ,

dR(t) = [−(μ j + γ j )R(t) + λ j I (t)
]
dt,

for a random amount of time until r(t) jumps to a new state again.
Since system (6) describes an epidemic model, it is critical to find out when the

epidemic die out from the population and when does not. As far as we know, there
are no persistent and extinction results for system (6). The aim of this work is to
investigate this problem. The remainder of the paper is organized as follows: In Sects.
2, 3 and 4, we study the extinction case of the SDE model (6) under different types
of convergence. In Sects. 5 and 6, we prove that the non-linear SDE (6) is persistent
under certain parametric conditions. In Sect. 7, we introduce numerical simulations
to illustrate the main results. Finally, we close the paper with conclusions and future
directions.

2 The global stability of the disease-free equilibrium state

In this section, we will discuss the extinction of SDE system (6) in order to provide
the threshold condition for disease control or eradication. We introduce the notation

R
3+ = {(x1, x2, x3)|xi > 0, i = 1, 2, 3} .

To begin the analysis of the model, define the subset


 =
{
x ∈ R

3+; x1 + x2 + x3 = 1
}

.

System (6) can be written as the following form:

dX (t) = f (X (t), r(t))dt + g(X (t), r(t))dBt , (7)

where X (t) = (S(t), I (t), R(t)), B is a Brownian motion defined on the complete
probability space (�,F , {Ft }t≥0,P) and (r(t))t≥0 is a right-continuousMarkov chain
defined on the same probability space, taking values in the finite state space S =
{1, 2, . . . ,m} and having the generator � = (θuv)1≤u,v≤m defined as in (4) and (5).
With the reference to Zhu and Yin [19], the diffusion matrix is defined, for each j ∈ S

by
G(X, j) = g(X, j)gT (X, j) (8)

For use in rest of this paper, we introduce the generator L associated with (7) as
follows. For each j ∈ S, and for any twice continuously differentiable V (y, j),

LV (X, j) = f T (X, j).∇V (y, j) + 1

2
Tr

(
gT (X, j).∇2V (y, j).g(X, j)

)

+�(y)V (y, .)( j),
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Dynamics of hybrid switching diffusions SIRS model 105

where
�(y)V (y, .)( j) =

∑

k �= j,k∈S
θ jk (V (y, k) − V (y, j)) .

To ensure that the model is well posed and thus biologically meaningful, we need to
prove that the solution remains in 
. By the similar proof of Theorem 2.1 in [20] or
Theorem 2 in [9], we have the following theorem:

Theorem 2.1 The set 
 is almost surely positively invariant by the system (6), that
is, if (S(0), I (0), R(0)) ∈ 
, then P ((S(t), I (t), R(t)) ∈ 
) = 1 for all t ≥ 0.

With reference toKhasminskii et al. [21] andYuan andMao [22],wehave the following
lemma giving sufficient condition for asymptotical stability in probability in term of
Lyapunov fuctions. We refer to Khasminskii et al. [21] for the precise meaning of
asymptotical stability in probability.

Lemma 2.1 Assume that that there are functions V ∈ C2 (R3 × S;R+) and w ∈
(
R
3;R+) vanishes only at E0 such that

LV (x, j) ≤ −w(x) ∀(x, j) ∈ R
3 × S, (9)

and
lim|x |→∞inf

j∈S
V (x, j) = ∞. (10)

Then the equilibrium E0 of the system (6) is globally asymptotically stable in proba-
bility.

In what follows, we shall give a condition for extinction of disease expressed in terms
of the parameters of the model. To begin with, let us define the following quantities.
For all x ∈ R and j ∈ S,

A j (x)=−1

2
σ 2
j x

2 + β j x − (μ j + α j ), and C j = A j (1)=β j − μ j − λ j − 1

2
σ 2
j .

(11)

Theorem 2.2 For any initial values (S0, I0, R0) ∈ 
. If β j ≥ σ 2
j for all j ∈ S, and

m∑

j=1

π jC j < 0, (12)

then the disease-free E0 of system (6) is globally asymptotically stable in probability.

Proof Let (S(0), I (0), R(0)) ∈ 
. Let us define the Lyapunov functions

V1(S, I, R, j) = ω1(1 − S)2 + (κ + a j )I
1
κ + ω2R

2, j ∈ S, (13)
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where ω1, κ , ω2 and a j are real positive constants to be chosen in the following. We
have

LV1 = −2ω1μ j (1 − S)2 + 2ω1β j S I (1 − S) − 2ω1γ j R(1 − S)

+ω1σ
2
j S

2 I 2 − 1

κ
(κ + a j )(μ j + λ j )I

1
κ + 1

κ
(κ + a j )β j S I

1
κ

+ 1

2κ

(
1

κ
− 1

)

(κ + a j )σ
2
j S

2 I
1
κ − 2ω2(μ j + γ j )R

2 + 2ω2λ j I R

+ I
1
κ

∑

k �= j,k∈S
θ jk(ak − a j ).

Since S, I ∈ (0, 1) and I ≤ 1 − S, we have, for all κ ≥ 1,

LV1 ≤ −2ω1μ j (1 − S)2 + 2ω1β j I
1
κ + ω1σ

2
j I

1
κ

− 1

κ
(κ + a j )(μ j + λ j )I

1
κ + 1

κ
(κ + a j )β j S I

1
κ

+ 1

2κ

(
1

κ
− 1

)

(κ + a j )σ
2
j S

2 I
1
κ − 2ω2(μ j + γ j )R

2

+ 2(ω2λ j − ω1γ j )I R + I
1
κ

∑

k �= j,k∈S
θ jk(ak − a j ).

Hence, by choosing ω2 < min j∈S
{

ω1γ j
λ j

}
, we get, for κ ≥ 1,

LV1 ≤ −2ω1μ j (1 − S)2 − 2ω2(μ j + γ j )R
2 + 1

κ
(κ + a j )I

1
κ

(
κω1

κ + a j
(2β j + σ 2

j )

+ 1

2κ
σ 2
j + A j (S) + κ

κ + a j

∑

k �= j,k∈S
θ jk

(
ak − a j

)
)

,

where the functions A j are defined in (11). One can easily show, that if β j ≥ σ 2
j then

the functions A j are all increasing on (0,1), which means A j (S) ≤ A j (1) and then

LV1 ≤ −2ω1μ j (1 − S)2 − 2ω2(μ j + γ j )R
2 + 1

κ
(κ + a j )I

1
κ

⎛

⎝
κω1

κ + a j
(2β j + σ 2

j )

+ 1

2κ
σ 2
j − a j

κ + a j

∑

k �= j,k∈S
θ jk

(
ak − a j

)+ C j +
∑

k �= j,k∈S
θ jk

(
ak − a j

)

⎞

⎠ ,

(14)

where C j = A j (1) is defined in (11). Since the generator matrix � is irreducible,
then for C = (C1, . . . ,Cm)T , there exists � = (a1, . . . , am)T solution of the Poisson
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system [21]

�� = −C +
⎛

⎝
m∑

j=1

π jC j

⎞

⎠ e, (15)

where e denotes the column vector with all its entries equal to 1. Inject (15) in (14),
we obtain

LV1 ≤ −2ω1μ j (1 − S)2 − 2ω2(μ j + γ j )R
2 + 1

κ
(κ + a j )I

1
κ

(
κω1

κ + a j
(2β j + σ 2

j )

+ 1

2κ
σ 2
j + a j

κ + a j

⎛

⎝C j −
m∑

j=1

π jC j

⎞

⎠+
m∑

j=1

π jC j

⎞

⎠

� −K 1
j (1 − S)2 − K 2

j R
2 − K 3

j I
1
κ . (16)

By (12), we can choose a sufficiently large κ0 such that

max
j∈S

⎧
⎨

⎩

1

2κ0
σ 2
j + a j

κ0 + a j

⎛

⎝C j −
m∑

j=1

π jC j

⎞

⎠+
m∑

j=1

π jC j

⎫
⎬

⎭
< 0.

Let us then choose κ and ω1 such that κ > max{−min j∈S{a j }, κ0, 1}, and

0 < ω1 < − κ + min j∈S{a j }
κ
(
2max j∈S{β j } + max j∈S{σ 2

j }
)

×max
j∈S

⎧
⎨

⎩

1

2κ
σ 2
j + a j

κ + a j

⎛

⎝C j −
m∑

j=1

π jC j

⎞

⎠+
m∑

j=1

π jC j

⎫
⎬

⎭
,

which means that the coefficients of (1 − S)2, I 2 and R2 in (16) are all negatives.
According to Lemma 2.1 the proof is completed. ��

3 Almost sure exponential stability

Theorem 3.1 For any initial values (S0, I0, R0) ∈ 
, the solution of the stochastic
differential equation (6) obeys

lim sup
t→∞

1

t
log (1 − S(t) + I (t) + R(t)) ≤

m∑

j=1

π j

(
β2
j − 2μ jσ

2
j

2σ 2
j

)

a.s., (17)
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108 A. Settati et al.

Moreover, if

m∑

j=1

π j

(
β2
j − 2μ jσ

2
j

2σ 2
j

)

< 0,

then the disease-free E0 is almost surely exponentially stable in 
. In other words,
the disease dies out with probability one.

Proof Let us define the functions V2(S, I, R, j) = log (1 − S + I + R) . By the Itô’s
formula, we have

dV2 = 1

1 − S + I + R
(−μr (1 − S) + 2βr S I − μr I − (μr + 2γr )R) dt

− 2σ 2
r

(
SI

1 − S + I + R

)2

dt + 2σr S I

1 − S + I + R
dB.

Since

1

1 − S + I + R
(−μr (1 − S) − μr I − (μr + 2γr )R) ≤ −μr ,

we can easily obtain

dV2 ≤
(

−2σ 2
r

(
SI

1 − S + I + R
− βr

2σ 2
r

)2

+ β2
r − 2μrσ

2
r

2σ 2
r

)

dt + 2σr S I

1 − S + I + R
dB

≤
(

β2
r − 2μrσ

2
r

2σ 2
r

)

dt + 2σr S I

1 − S + I + R
dB.

By integration, we get

V2(t) ≤ V2(0) +
∫ t

0

(
β2
r(s) − 2μr(s)σ

2
r(s)

2σ 2
r(s)

)

ds + Mt , (18)

where

Mt =
∫ t

0

2σr S(s)I (s)

1 − S(s) + I (s) + R(s)
dB(s).

We can easily show that the quadratic variation of Mt satisfies

[Mt , Mt ] =
∫ t

0

(
2σr S(s)I (s)

1 − S(s) + I (s) + R(s)

)2

ds ≤ 4(max
j∈S

σ 2
j )t.

Thus, by the large number theorem for martingales (see Mao [23]), we have

lim sup
t→∞

Mt

t
= 0 a.s, (19)
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and by the ergodic theory of the Markov chain

lim sup
t→∞

1

t

∫ t

0

(
β2
r(s) − 2μr(s)σ

2
r(s)

2σ 2
r(s)

)

ds =
m∑

j=1

π j

(
β2
j − 2μ jσ

2
j

2σ 2
j

)

a.s. (20)

From (18), (19) and (20) we obtain the desired asseration. ��

4 Moment exponential stability

Now, we present the following theorem which gives conditions for the moment expo-
nential stability of the free-disease equilibrium state of the stochastic model (6).

Theorem 4.1 For any initial values (S0, I0, R0) ∈ 
 and p > 0, the solution of the
stochastic differential equation (6) obeys

lim sup
t→∞

1

t
logE

[
(1 − S(t) + I (t) + R(t))p

] ≤ p
m∑

j=1

π j

((
β2
j − 2μ jσ

2
j

2σ 2
j

)

+ 2pσ 2
j

)

.

(21)

Moreover, if
m∑

j=1

π j

((
β2
j − 2μ jσ

2
j

2σ 2
j

)

+ 2pσ 2
j

)

< 0,

then the free-disease equilibrium state E0 is pth moment exponentially stable in 
.

Proof Let p > 0. From (18), we have

log((1 − S(t) + I (t) + R(t))p) ≤ log((1 − S0 + I0 + R0)
p) + pMt

+p
∫ t

0

(
β2
r(s) − 2μr(s)σ

2
r(s)

2σ 2
r(s)

)

ds. (22)

By the ergodic theory of Markov chain, we have, for all ε > 0 and for all t sufficiently
large

∫ t

0

(
β2
r(s) − 2μr(s)σ

2
r(s)

2σ 2
r(s)

)

ds ≤
⎛

⎝
m∑

j=1

π j

(
β2
j − 2μ jσ

2
j

2σ 2
j

)

+ ε

2p

⎞

⎠ t. (23)

Combining (22) and (23) and taking expectation yields

E

(
(1 − S(t) + I (t) + R(t))p

(1 − S0 + I0 + R0)p

)

≤ e
p

(
∑m

j=1 π j

(
β2j −2μ j σ

2
j

2σ2j

)

+ ε
2p

)

t

× EepMt , (24)
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where pMt is a real-valued continuous martingale, with pM0 = 0, having the
quadratic variation

[pMt ] = p2
∫ t

0

(
2σr S(s)I (s)

1 − S(s) + I (s) + R(s)

)2

ds ≤ 4p2
∫ t

0
σ 2
r(s)ds,

which implies, by using the ergodic propriety of r(t),

[pMt ] ≤ p2

⎛

⎝
m∑

j=1

4π jσ
2
j + ε

p2

⎞

⎠ t, for large t .

Hence, the associated exponential of pMt , that is epMt− 1
2 [pMt ], is martingale. So, for

t sufficiently large, we have

E

(
epMt

)
= E

(
e
1
2 [pMt ]

)
≤ e

1
2 p

2
(∑m

j=1 4π jσ
2
j + ε

p2

)
t
. (25)

Combining (24) and (25) yields

E

(
(1 − S(t) + I (t) + R(t))p

(1 − S0 + I0 + R0)p

)

≤ e
p
∑m

j=1

(

π j

((
β2j −2μ j σ

2
j

2σ2j

)

+2pσ 2
j

)

+ ε
p

)

t

.

Then

lim sup
t→∞

1

t
logE

[
(1 − S(t) + I (t) + R(t))p

]

≤ p
m∑

j=1

π j

((
β2
j − 2μ jσ

2
j

2σ 2
j

)

+ 2pσ 2
j

)

+ ε.

By letting ε → 0, we obtain the desired results. ��

5 Persistence of the disease

Firstly, let us begin with the following proposition which will be useful in our study
of the persistence of SDE model (6).

Proposition 5.1 Let X and Y be two positive processus with initial values X0 and Y0
and satisfying the differential equation

dX (t) = (−ar(t)X (t) + br(t)Y (t)
)
dt, for all t > 0, (26)
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where a j > 0 and b j > 0 are positives constants for all j ∈ S. Then, we have

lim sup
t→∞

X (t) ≤ max j∈S b j

min j∈S a j
lim sup
t→∞

Y (t), (27)

lim inf
t→∞ Y (t) ≤ max j∈S a j

min j∈S b j
lim inf
t→∞ X (t). (28)

Proof Let ε > 0 be sufficiently small. Then there exists t0 such that for all t ≥ t0,

Y (t) ≤ lim sup
t→∞

Y (t) + ε. (29)

From (26), we have

dX (t) + (min
j∈S

a j )X (t)dt ≤ (max
j∈S

b j )Y (t)dt.

By integration, we get

X (t) ≤ (max
j∈S

b j )

∫ t

t0
Y (s)e(min j∈S a j )(s−t)ds + X (t0)e

(min j∈S a j )(t0−t). (30)

From (29) and (30), we obtain

X (t) ≤ max j∈S b j

min j∈S a j

(

lim sup
t→∞

Y (t) + ε

)(
1 − e(min j∈S a j )(t0−t)

)

+X (t0)e
(min j∈S a j )(t0−t). (31)

By letting t → ∞ and ε → 0, we get the required assertion (27).
Similarly, from (26) we have for all sufficiently small ε > 0, there exists t ′0 such

that for all t ≥ t ′0,

X (t) ≥ min j∈S b j

max j∈S a j

(
lim inf
t→∞ Y (t) − ε

) (
1 − e(max j∈S a j )(t ′0−t)

)

+X (t0)e
(max j∈S a j )(t ′0−t), (32)

and by letting t → ∞ and ε → 0, we obtain th desired assertion (28). ��
Thereafter, we shall establish the persistence of disease under different conditions on
the intensities of noises and the parameters of the model. To begin with, let us define
the two sets J≥ = { j ∈ S, β j ≥ σ 2

j }, J< = { j ∈ S, β j < σ 2
j }, and recall the following

functions which will be used extensively in what follows,

A j (x) = −1

2
σ 2
j x

2 + β j x − (μ j + α j ), for all x ∈ (0, 1) and j ∈ S. (33)
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Theorem 5.1 For any initial values (S0, I0, R0) ∈ 
, if for any j ∈ J<

C j > 0 and
∑

j∈J≥
π jC j > 0, (34)

where the quantities C j are defined in (11), then the solution of SDE (6) obeys

(a) lim supt→∞ S(t) ≥ ν1, a.s.,
(b) lim inf t→∞ S(t) ≤ ν2, a.s,
(c) lim supt→∞ I (t) ≥ min j∈S(μ j+γ j )

min j∈S(μ j+γ j )+max j∈S λ j
(1 − ν2), a.s.,

(d) lim inf t→∞ I (t) ≤ max j∈S(μ j+γ j )

max j∈S(μ j+γ j )+min j∈S λ j
(1 − ν1) , a.s.,

(e) lim supt→∞ R(t) ≥ min j∈S λ j
max j∈S(μ j+γ j )+min j∈S λ j

(1 − ν2), a.s.,

(f) lim inf t→∞ R(t) ≤ max j∈S λ j
min j∈S(μ j+γ j )+max j∈S λ j

(1 − ν1) , a.s.,

where, for j ∈ J<, ξ j and ξ are, respectively the unique positives roots, on (0, 1), of

A j (x) = 0 and
∑

j∈J≥
π j A j (x) = 0,

and ν1 = min
{
ξ,min j∈J<{ξ j }

}
and ν2 = max

{
ξ,max j∈J<{ξ j }

}
.

Proof (a) By the Itô’s formula, we get from (6)

log(I (t)) = log(I (0)) +
∫ t

0
Ar(s)(S(s))ds +

∫ t

0
σr(s)S(s)dB(s). (35)

From (34), we have for any j ∈ J<,

A j (0) = −(μ j + α j ) < 0 and A j (1) = C j > 0. (36)

Then, for any j ∈ J<, the equation A j (x) = 0 admits a unique root ξ j ∈ (0, 1).
Moreover A j (x) is increasing on (0, ξ j ) and for all sufficiently small ε > 0, for any
j ∈ J< and all x such that 0 < x ≤ ξ j − ε, we have

A j (x) ≤ A j (ξ j − ε) < 0. (37)

Similarly, by (34), the equation
∑

j∈J≥ π j A j (x) = 0 admits a unique root ξ ∈ (0, 1).
So, one can easily show that, for all sufficiently small ε > 0, and x such that 0 < x ≤
ξ − ε, we have ∑

j∈J≥
π j A j (x) ≤

∑

j∈J≥
π j A j (ξ − ε) < 0. (38)

We now begin to prove assertion (a). If it is not true, then there is a sufficiently small
ε > 0 such that

P

(

lim sup
t→∞

S(t) ≤ min

{

ξ, min
j∈J<

{ξ j }
}

− 2ε

)

> 0.
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Let us put

�1 =
{

lim sup
t→∞

S(t) ≤ min

{

ξ, min
j∈J<

{ξ j }
}

− 2ε

}

. (39)

Hence, for every ω ∈ �1, there is a T (ω) > 0 such that

S(t) ≤ min

{

ξ, min
j∈J<

{ξ j }
}

− ε < 1 ∀ t ≥ T (ω), (40)

which means, for any s ≥ T (ω) such that r(s) ∈ J<, we have

0 ≤ S(s) ≤ ξr(s) − ε. (41)

Form (37) and (41) we have, for any s ≥ T (ω) such that r(s) ∈ J<

Ar(s)(S(s)) ≤ Ar(s)(ξr(s) − ε) < 0. (42)

On the other hand, for any j ∈ J≥, the function A j is increasing on (0, 1). This
implies, by (40), that

Ar(s)(S(s)) ≤ Ar(s)(ξ − ε) ∀ s ≥ T (ω), r(s) ∈ J≥. (43)

Moreover, by the large number theorem for martingales, there is a �2 ⊂ � with
P(�2) = 1 such that for every ω ∈ �2,

lim
t→∞

1

t

∫ t

0
σr(s)S(s)dB(s) = 0. (44)

Now, fix any ω ∈ �1 ∩�2. It then follows from (35), (42) and (43) that, for t ≥ T (ω)

log(I (t)) ≤ log(I (0)) +
∫ T (ω)

0
Ar(s)(S(s))ds +

∫ t

T (ω)

1{r(s)∈J≥}Ar(s)(ξ − ε)ds

+
∫ t

T (ω)

1{r(s)∈J<}Ar(s)(ξr(s) − ε)ds +
∫ t

0
σr(s)S(s)dB(s). (45)

By the ergodic theory of the Markov chain, we have,

lim sup
t→∞

1

t

∫ t

T (ω)

1{r(s)∈J≥}Ar(s)(ξ − ε)ds =
∑

j∈J≥
π j A j (ξ − ε), (46)

and

lim sup
t→∞

1

t

∫ t

T (ω)

1{r(s)∈J<}Ar(s)(ξr(s) − ε)ds =
∑

j∈J<

π j A j (ξ j − ε). (47)
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From (37), (38), (44), (45), (46) and (47), we get

lim sup
t→∞

1

t
log(I (t)) ≤

∑

j∈J≥
π j A j (ξ − ε) +

∑

j∈J<

π j A j (ξ j − ε) < 0. (48)

Whence limt→∞ I (t) = 0. On the other hand, form the third equation of (6) and (27),
wa have

lim sup
t→∞

R(t) ≤ max j∈S λ j

min j∈S(μ j + γ j )
lim sup
t→∞

I (t). (49)

Hence, limt→∞ R(t) = 0 and then limt→∞ S(t) = 1. But this contradicts (40). The
required assertion (a) must therefore hold.

(b) Similarly, if it were not true, we can then find an ε′ > 0 sufficiently small such
that P (�3) > 0, where

�3 =
{

lim inf
t→∞ S(t) ≥ max

{

ξ,max
j∈J<

{ξ j }
}

+ 2ε′
}

.

Hence, for every ω ∈ �3, there is a T ′(ω) > 0 such that

S(t) ≥ max

{

ξ,max
j∈J<

{ξ j }
}

+ ε′ ∀ t ≥ T ′(ω), (50)

As in (42) and (43), we can easily check, by choosing ε′ > 0 sufficiently small that

Ar(s)(S(s)) ≥ Ar(s)(ξr(s) + ε′) > 0 ∀ s ≥ T ′(ω), r(s) ∈ J<, (51)
∑

j∈J≥
π j A j (ξ + ε′) > 0 and Ar(s)(S(s)) ≥ Ar(s)(ξ + ε′) ∀ s ≥ T ′(ω), r(s) ∈ J≥.

(52)

By (51), (52) and similarly to (48), we obtain

lim sup
t→∞

1

t
log(I (t)) ≥

∑

j∈J≥
π j A j (ξ + ε′) +

∑

j∈J<

π j A j (ξ j + ε′) > 0.

Whence limt→∞ I (t) = ∞. This contradicts I (t) < 1. The proof of (b) is completed.
(d) By (a) and the fact that I + R = 1 − S, we have

lim inf
t→∞ I (t) + lim inf

t→∞ R(t) ≤ 1 − min

{

ξ, min
j∈J<

{ξ j }
}

, a.s. (53)

By the third equation of (6) and (28), wa have

lim inf
t→∞ I (t) ≤ max j∈S(μ j + γ j )

min j∈S λ j
lim inf
t→∞ R(t). (54)
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Combining (53) and (54) we get the required assertion (d).
(c) Similarly to (d) , it follows easily by (27), (b) and I + R = 1 − S.
(e)–(f) they follow immediately from R = 1 − S − I , (a), (b), (c) and (d). ��

Now, we make Theorem 5.1 more explicit in the tow following special cases.

Corollary 5.1 If for any j ∈ S,

β j ≥ σ 2
j and

∑

j∈S
π jC j > 0,

then the estimates (a)–(f) of Theorem 5.1 hold with ν1 = ν2 = ξ . Else if for any j ∈ S,

β j < σ 2
j and C j > 0,

then (a)–(f) hold with ν1 = min j∈S{ξ j } and ν2 = max j∈S{ξ j }.

6 Positive recurrence

In this section, we show the persistence of the disease in the population, but from
another point of view. Precisely, we find a domainD ⊂ R

2+ which is positive recurrent
for the process (S(t), I (t)). Generally, the process Xx

t where X0 = x is recurrent with
respect to D if, for any x /∈ D, P (τD < ∞) = 1, where τD is the hitting time of D
for the process Xx

t , that is

τD = inf
{
t > 0, Xx

t ∈ D} .

The process Xx
t is said to be positive recurrent with respect to D if E(τD) < ∞, for

any x /∈ D.

Theorem 6.1 Consider the stochastic system (6) with initial condition in 
. Assume
that

m∑

j=1

π jC j > 0, (55)

then there exists α > 0 such that (S(t), I (t)) is positive recurrent with respect to the
domain

D =
{

x ∈ R
2+; x1 + x2 ≤ 1,

1

α
< x1 < 1 − 1

α
,
1

α
< x2 < 1 − 1

α

}

.

Proof Consider the positive functions defined on (0, 1)2 × S by

ψ((x1, x2), j) =
(
1

η
+ � j

)

x−1
1 x−η

2 .
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Here, η is a positive number sufficiently small satisfying 1
η

> −min
j∈S

� j , where � =
(�1, . . . ,�m)T will be determined in the rest of the proof. The differential operator
L acting on the Lyapunov function ψ gives

Lψ((S, I ), j) = −η

(
1

η
+ � j

)

S−1 I−η−1 (−(μ j + λ j )I + β j S I
)

+ 1

2
η(1 + η)

(
1

η
+ � j

)

σ 2
j S I

−η + S−1 I−η
∑

k �= j,k∈S
θ jk(�k − � j )

−
(
1

η
+ � j

)

I−ηS−2 (μ j − μ j S − β j S I + γ j R
)

+ σ 2
j

(
1

η
+ � j

)

I−η+2S−1 + η

(
1

η
+ � j

)

σ 2
j I

−η+1

= (
1 + η� j

)
S−1 I−η

⎡

⎣
1

1 + η� j

∑

k �= j,k∈S
θ jk(�k − � j )

+ 1

2
(1 + η)σ 2

j S
2 + μ j + λ j − β j S

+ σ 2
j S I − S−1

η

(
μ j − μ j S − β j S I + γ j R − σ 2

j S I
2
)]

. (56)

Using S = 1 − I − R, we get, from (56),

Lψ((S, I ), j) = (
1 + η� j

)
S−1 I−η

⎡

⎣μ j + λ j − β j + 1

2
σ 2
j + 1

2
ησ 2

j +
∑

k �= j,k∈S
θ jk (�k − � j )+

− η� j

1 + η� j

∑

k �= j,k∈S
θ jk (�k − � j ) + β j I + β j R + σ 2

j S I

− S−1

η

(
μ j − μ j S − β j S I + γ j R − σ 2

j S I
2
)
]

= (
1 + η� j

)
S−1 I−η

⎡

⎣−C j +
∑

k �= j,k∈S
θ jk (�k − � j ) + β j I + β j R + σ 2

j S I

+ S−1

η

(
−μ j + μ j S + β j S I − γ j R + σ 2

j S I
2
)

+ O(η)

]

. (57)

Let S, I ∈ Dc, which implies by S + I < 1 that either S < 1
α
or I < 1

α
. Firstly, if

S < 1
α
then from I, R, I + R ∈ (0, 1) and (57), we have

Lψ((S, I ), j) ≤ (
1 + η� j

)
S−1 I−η

⎡

⎣−C j +
∑

k �= j,k∈S
θ jk(�k − � j ) + β j + σ 2

j

+ S−1

η

(

−μ j + μ j + β j + σ 2
j

α

)

+ O(η)

]

,
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therefore, for all α > max j∈S
{

μ j+β j+σ 2
j

μ j

}

and η sufficiently small, we have

Lψ((S, I ), j) ≤ (
1 + η� j

)
α

⎡

⎣−C j +
∑

k �= j,k∈S
θ jk(�k − � j ) + β j + σ 2

j

+ α

η

(

−μ j + μ j + β j + σ 2
j

α

)

+ O(η)

]

≤ −1. (58)

Secondly, if I < 1
α
, then, from −μ j + μ j S < 0 and (57), we have

Lψ((S, I ), j) ≤ (
1 + η� j

)
S−1 I−η

⎡

⎣−C j +
∑

k �= j,k∈S
θ jk(�k − � j ) + β j I + β j R + σ 2

j S I

+ S−1

η

(
β j S I − γ j R + σ 2

j S I
2
)

+ O(η)

⎤

⎦

≤ (
1 + η� j

)
S−1 I−η

⎡

⎣−C j +
∑

k �= j,k∈S
θ jk(�k − � j ) + β j

α
+

σ 2
j

α

+ R

(

β j − γ j

η

)

+ 1

αη

(

β j +
σ 2
j

α

)

+ O(η)

⎤

⎦ .

For η sufficiently small such that 1
η

> max j∈S
β j
γ j
, we have

(

β j − γ j

η

)

< 0, for all j ∈ S,

then

Lψ((S, I ), j) ≤ (
1 + η� j

)
S−1 I−η

⎡

⎣−C j +
∑

k �= j,k∈S
θ jk(�k − � j )

+ 1

αη

(

β j + σ 2
j

α

)

+ O
(
1

α

)

+ O(η)

]

. (59)

On the other hand, the generator matrix� is irreducible, then forC = (C1, . . . ,Cm)T

there exists � T = (�1, . . . ,�m)T solution of the Poisson system [21]

�� = C −
⎛

⎝
m∑

j=1

π jC j

⎞

⎠ e, (60)
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where e denotes the column vector with all its entries equal to 1. Substituting (60) in
(59) yields

Lψ((S, I ), j)

≤ (
1 + η� j

)
S−1 I−η

⎡

⎣−
m∑

j=1

π jC j + 1

αη

(

β j + σ 2
j

α

)

+ O
(
1

α

)

+ O(η)

⎤

⎦ .

(61)

One can easily verify that for η sufficiently small there existsα0 = α0(η,�1, . . . ,�m)

such that for all α > α0 we have

−
m∑

j=1

π jC j + 1

αη

(

β j + σ 2
j

α

)

+ O
(
1

α

)

+ O(η) < 0, (62)

which is allowed by the condition (55). Combining (61) and (62), we obtain in the
case when I < 1

α
such that η sufficiently small and α > α0

Lψ((S, I ), j) ≤ (
1 + η� j

)
αη

⎡

⎣−
m∑

j=1

π jC j + 1

αη

(

β j +
σ 2
j

α

)

+ O
(
1

α

)

+ O(η)

⎤

⎦

≤ −1. (63)

From (58) and (63), we have for η sufficiently small and α > max
(
α0,max j∈S{

μ j+β j+σ 2
j

μ j

})

,

Lψ((S, I ), j) ≤ −1, for all ((S, I ), j) ∈ Dc × S. (64)

Now, Let (S(0), I (0)) ∈ Dc. Thanks to the generalized Itô formula established by
Skorokhod [24] (Lemma 3, p.104) and using (64), we obtain

E [ψ ((S(τD), I (τD)) , r(τD))] − ψ ((S(0), I (0)) , r(0))

= E

∫ τD

0
Lψ((S(t), I (t)), r(t))dt

≤ E(τD).

Thus, by the positivity of ψ , one can deduce that

E(τD) ≤ ψ ((S(0), I (0)) , r(0)) .

The proof is complete. ��

123



Dynamics of hybrid switching diffusions SIRS model 119

7 Examples and computer simulations

Let (r(t))t≥0 be a right-continuous Markov chain taking values in S = {1, 2} with the
generator

� =
(−1 1

2 −2

)

.

Given a stepsize
 > 0, theMarkov chain can be simulated byComputing the one-step
transition probability matrix P = e
�. We refer the reader to Anderson [25] for more
details. Hence for 
 = 0.0001, the transition probability matrix and the stationary
distribution are given, respectively, by

P =
(
0.9999 0.0001
0.0002 0.9998

)

, (π1, π2) = (0.6667, 0.3333).

7.1 Extinction

Example 7.1 (C1 < 0 and C2 < 0). To illustrate the extinction case of Theorem 2.2,
firstly we set

(μ1, μ2) = (0.014, 0.015), (β1, β2) = (0.3, 0.31), (γ1, γ2) = (0.3, 0.301),

(λ1, λ2) = (0.4, 0.27), (σ1, σ2) = (0.1, 0.2).

This implies that π1C1 + π2C2 = 0.6667 × (−0.164) + 0.3333 × (−0.075) =
−0.1343 < 0. Hence, the extinction condition of Theorem 2.2 is satisfied. The com-
puter simulations in Fig. 1, using the Euler Maruyama method (see e.g., [26]), support
these results clearly.

Example 7.2 (C1 < 0 and C2 > 0.) Let us choose

(μ1, μ2) = (0.014, 0.01401), (β1, β2) = (0.3, 0.301), (γ1, γ2) = (0.3, 0.302),

(λ1, λ2) = (0.4, 0.09), (σ1, σ2) = (0.1, 0.2).

This givesπ1C1+π2C2 = 0.6667×(−0.1640)+0.3333×(0.0960) = −0.0773 < 0.
Then, the extinction condition of Theorem 2.2 is satisfied. The computer simulations
in Fig. 2 , illustrates these results.

7.2 Persistence

Example 7.3 (C1 < 0 and C2 > 0). Let us choose

(μ1, μ2) = (0.0142, 0.014), (β1, β2) = (0.302, 0.301), (γ1, γ2) = (0.3, 0.302),

(λ1, λ2) = (0.091, 0.4), (σ1, σ2) = (0.2, 0.11).
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Fig. 1 Computer simulation of a single path of (S(t), I (t), R(t)) for the SDE model (6) with initial con-
dition (0.975, 0.03, 0.02) and its corresponding Markov chain r(t) using the parameter values of Example
7.1
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Fig. 2 Computer simulation of a single path of (S(t), I (t), R(t)) for the SDE model (6) with initial con-
dition (0.975, 0.03, 0.02) and its corresponding Markov chain r(t) using the parameter values of Example
7.2

We compute π1C1 +π2C2 = 0.286 > 0 and β1σ1 >2, β2σ2 >2. Hence, on one hand,
the persistence condition of Corollary 5.1 is satisfied and the corresponding estimates
hold with ξ = 0.7168, that is, S(t) rises to or above the level ξs = ξ = 0.7168,

I ∈ [ξ imin = 0.2326, ξ imax = 0.0584] and R ∈ [ξ rmin = 0.2248, ξ rmax = 0.0506],

infinitely often with probability one, which is clearly illustrated by Fig. 3.
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Fig. 3 Results of one simulation run of SDE (6) with initial condition (0.975, 0.03, 0.02) and its corre-
sponding Markov chain r(t) using the parameter values of Example 7.3. Here, respectively, S(t), I (t) and
R(t) rises to or above 0.7168, [0.2326, 0.0584] and [0.2248, 0.0506] infinitely often with probability one

8 Conclusion

In this paper, we extended the classical SIRS epidemic model from a deterministic
framework to a stochastic one by incorporating both white and color environmental
noise. we have looked at the long-term behavior of our stochastic SIRS epidemic
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model. We established conditions for extinction and persistence of disease which are
close to necessary. We also proved that the SIRS model (6) has a unique stationary
distribution and the ergodic property.

The results show that The stationary distribution (π1, . . . , πm) of theMarkov chain
r(t)plays a very important role in determining extinction or persistence of the epidemic
in the population. That is, if r(t) spends enough time in the states whereC j is negative,
then the epidemic die out speedily from the population. If r(t) spends many time in
the states where C j is positive, then the epidemic will persists in the population if it
is initially present.

We have not been able to determine the nature of the epidemic model for the case
when

∑m
j=1 π jC j = 0, but the computer simulation shows that the disease would

die out after a long period of time, as we suspect. We have illustrated our theoretical
results with computer simulations. Finally, this paper is only a first step in introducing
switching regime into an epidemicmodel. In future investigations we plan to introduce
white and color noises into more realistic epidemic models such as the SEIRSmodels.
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