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Abstract
Combining theorems of Voisin and Marian, Shen, Yin and Zhao, we compute the dimen-
sions of the orbits under rational equivalence in the Mukai system of rank two and 
genus two. We produce several examples of algebraically coisotropic and constant cycle 
subvarieties.
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1 Introduction

By a theorem of Beauville and Voisin [4], any point lying on a rational curve in a K3 sur-
face S, determines the same zero cycle of degree one

called the Beauville–Voisin class. This class has the striking property that the image of the 
intersection product

and c2(S) are contained in ℤ ⋅ cS . Irreducible holomorphic symplectic manifolds are (one of 
the two classes of) higher dimensional analogs of K3 surfaces. It is expected that the Chow 
ring of an irreducible holomorphic symplectic manifold has a similar and particularly rich 
structure provided by the conjectural Bloch–Beilinson filtration and its conjectural splitting 

cS ∈ CH 0(S),

Pic (S)⊗ Pic (S) → CH 0(S)

Communicated by Herr Greb.

The author is supported by the SFB/TR 45 ‘Periods, Moduli Spaces and Arithmetic of Algebraic 
varieties’ of the DFG (German Research Foundation) and the Bonn International Graduate School.

 * Isabell Hellmann 
 igb@math.uni-bonn.de

1 Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s12188-021-00251-1&domain=pdf


200 I. Hellmann 

1 3

[5]. In this context, Voisin introduced in [32] the notion of an algebraically coisotropic sub-
variety, which is an generalization of Lagrangian subvariety.

The goal of this note is to investigate the Chow group of zero cycles for the Mukai sys-
tem of rank two and genus two. Specifically, we produce several examples of algebraically 
coisotropic subvarieties fibered into isotropic constant cycle subvarieties.

Let (S, H) be a polarized K3 surface of genus 2, that is a double covering � ∶ S → ℙ
2 

ramified over a sextic curve and H = �∗O(1) is primitive. We consider the moduli 
space M = MH(0, 2H, s) of H-Gieseker stable coherent sheaves on S with Mukai vector 
v = (0, 2H, s) where s ≡ 1 mod 2. This is an irreducible holomorphic symplectic variety, 
which is birational to the Hilbert scheme S[5] of five points on S. A point in MH(0, 2H, s) 
corresponds to a stable sheaf E on S such that E is pure of dimension one with support 
in the linear system |2H| and �(E) = s . Taking the (Fitting) support defines a Lagrangian 
fibration

known as the Mukai system of rank two and genus two [3, 23]. It enjoys many beautiful fea-
tures and is studied from various perspectives. For example, one can view it as a compacti-
fied relative Jacobian, as a generalisation of the Hitchin system [11] or as the birational 
model of S[5] admitting a Lagrangian fibration.

For any irreducible, holomorphic symplectic manifold X of dimension 2n, a brute 
force approach to finding constant cycle subvarieties (see Sect. 3.1 for the definition) is 
to consider the orbit under rational equivalence of a point x ∈ X . This is the countable 
union of algebraic subvarieties defined by

Then dimOx is defined to be the supremum over the dimensions of the components of Ox . 
In [32], Voisin defines an increasing filtration F0X ⊂ F1X ⊂ … ⊂ FnX = X on the points 
of X, where

is again a countable union of algebraic subvarieties. Our examples are based on the combi-
nation of two theorems. The first one is due to Voisin.

Theorem 1.1 [32, Theorem 1.3] We have dimFiX ≤ n + i and if Z ⊂ FiX is an irreducible 
component of dimension n + i. Then Z is algebraically coisotropic and the fibers of the iso-
tropic fibration are constant cycle subvarieties of dimension n − i.

The second theorem applies in the case that X = M�(v) is a smooth projective mod-
uli of Bridgeland stable objects in Db(S) and is due to Marian, Shen, Yin and Zhao. It 
establishes a link between rational equivalence in X and in S, which in particular results 
in a connection between Voisin’s filtration F∙X and O’Grady’s filtration S∙ CH 0(S) (see 
Sect. 3.1 for the definition).

f ∶ MH(0, 2H, s) ⟶ B∶=|2H| ≅ ℙ
5

Ox∶={x
� ∈ X ∣ [x] = [x�] ∈ CH 0(X)} ⊂ X.

FiX∶={x ∈ X ∣ dimOx ≥ n − i}
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Theorem 1.2 ([29, Theorem 0.5], [22, Theorem], Theorems 3.2, 3.5) 

 (i) Any two points E, E� ∈ M�(v) are rational equivalent in M�(v) if and only if 
ch 2(E

�) = ch 2(E) ∈ CH 0(S).

 (ii) Let E ∈ M�(v) such that ch 2(E) ∈ Si CH 0(S). Then E ∈ FiM�(v). If M�(v) is birational 
to the Hilbert scheme S[n], then also the converse implication holds true, i.e. in this case

We remark that both parts of the theorem can equally be formulated with c2 instead of ch 2.
This opens the door to finding infinitely many examples of constant cycle or algebrai-

cally coisotropic subvarieties in M = MH(0, 2H,−1) . For example, a straightforward appli-
cation yields.

Lemma 1.3 (Corollary 3.9) The fiber F = f −1(D) over D ∈ |2H| is a constant cycle Lagran-
gian if and only if D ⊂ S is a constant cycle curve.

Or one can prove, that given E ∈ M such that Supp (E) = D , then E ∈ Fg(D̃)M , where 
g(D̃) is the geometric genus of D. Here, the geometric genus of D is the genus of the nor-
malization of D (resp. of Dred ) and the sum over the genera of the normalizations of the 
irreducible components if D is reducible. This way, we find algebraically coisotropic sub-
varieties over singular curves. Precisely, for i = 0,… , 4 let

and set MVi
∶=f −1(Vi).

Proposition 1.4 (Proposition  4.4) The subvarieties MVi
 are equidimensional of codimen-

sion n − i and satisfy

In particular, they are algebraically coisotropic.

Actually, Vi is reducible due to reducible and non-reduced curves in the linear system 
|2H|. For every component we find the isotropic fibration and comment on the resulting 
constant cycle subvarieties. Most of them are rational. However, over the component of 
non-reduced curves Δ ⊂ V2 , we find three-dimensional constant cycle subvarieties that are 
not rational (cf. Proposition 4.7).

Another series of examples comes from Brill–Noether theory. Let B◦ ⊂ B be the 
locus of smooth curves and C◦ → B◦ the restricted universal curve. For any i, we have an 
isomorphism

where MH(0, 2H, i − 4)◦ is the preimage of B◦ under the support map MH(0, 2H, i − 4) → B . 
For i = 1,… 4 , we define

FiM�(v) = {E ∈ M�(v) ∣ ch 2(E) ∈ Si CH 0(S)}.

Vi∶={D ∈ |2H| ∣ g(D̃) ≤ i} ⊂ |2H|

MVi
⊂ FiM.

MH(0, 2H, i − 4)◦ ≅ Pic i

C◦∕B◦
,

BN 0
i
(B◦)∶={L ∈ MH(0, 2H, i − 4)◦ ∣ H0(S,L) ≠ 0} ⊂ MH(0, 2H, i − 4)◦.
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We consider the closures for odd i. Namely,

As MH(0, 2H,−3) and M are isomorphic (Lemma 2.1), Z1 can also be seen as subvarieties 
in M.

Proposition 1.5 (Proposition 4.1) The subvarieties Zi ⊂ M, i = 1, 3 have codimension 5 − i 
and satisfy

In particular, they are algebraically coisotropic.

1.1  Outline

In Sect. 2, we collect general results on the Mukai system and describe the nature of its 
fibers. This requires an analysis of the singular curves in |2H|. In Sect. 3, we state The-
orems  1.1 and 1.2 in more detail and apply them to M = MH(0, 2H,−1) . Section  4 is 
devoted to present explicit examples. These include the examples from Brill–Noether the-
ory (Sect. 4.1), the examples from singular curves together with their isotropic fibrations 
(Sect. 4.2) and a less conceptual mixture of examples of constant cycle Lagrangians and 
examples in S[5] (Sect. 4.3).

2  The Mukai system

Let (S,  H) be a polarized K3 surface of genus 2 such that the linear system |H| con-
tains a smooth irreducible curve, i.e. S is a double covering � ∶ S → ℙ

2 ramified over a 
smooth sextic curve R ⊂ ℙ

2 and H = �∗O
ℙ2 (1) is primitive. We consider the moduli 

space M = MH(0, 2H, s) of H-Gieseker stable coherent sheaves on S with Mukai vector 
v = (0, 2H, s) where s ≡ 1 mod 2. This is an irreducible holomorphic symplectic variety of 
dimension 10, which is birational to S[5] . A point in MH(0, 2H, s) corresponds to a stable 
sheaf E on S such that E is pure of dimension one with support in the linear system |2H| and 
�(E) = s . Taking the (Fitting) support defines a Lagrangian fibration

known as the Mukai system of rank two and genus two [3, 23].
As tensoring with OS(H) induces an isomorphism

it is immediate that the isomorphism class of MH(0, 2H, s) depends only on s modulo 4. 
The following lemma shows that actually the isomorphism class is the same for all odd s. If 
Pic (S) = ℤ ⋅ H one could also characterize MH(0, 2H, s) for odd s as the unique birational 
model of S[5] admitting a Lagrangian fibration.

Lemma 2.1 There is an isomorphism

Z1∶=BN 0
1
(B◦) ⊂ MH(0, 2H,−3) and Z3∶=BN 0

3
(B◦) ⊂ M∶=MH(0, 2H,−1).

Zi ⊂ FiM.

f ∶ MH(0, 2H, s) ⟶ B∶=|2H| ≅ ℙ
5

𝜏H ∶ MH(0, 2H, s) →̃ MH(0, 2H, s + 4),



203Constant cycle and co-isotropic subvarieties in a Mukai system  

1 3

In particular, all the moduli spaces MH(0, 2H, s) for odd s are isomorphic.

Proof Every E ∈ M(0, 2H, 1) is pure of dimension one. Therefore, Exti
OS

(E,OS) = 0 for 
i ≠ 1 and the natural map

is an isomorphism, [17, Proposition 1.1.10]. Finally, E∨ is again pure of dimension one and 
so is any subsheaf F ⊂ E

∨ . Any subsheaf F  that destabilizes E∨ would yield a destabilizing 
quotient of E ≅ E

∨∨ after dualizing. Hence, E∨ is again H-Gieseker stable.   ◻

In the following, we usually choose s = −1 and set

With this choice of s, a stable vector bundle of rank two and degree one on a smooth curve 
C ∈ |H| defines a point in M.

2.1  The linear systems |H| and |2H|

The geometry of the Mukai system is closely related to the structure of the curves 
in the linear systems |H| and |2H|, which we want to analyze in this section. A curve in 
the linear system |H| (resp. |2H|) has geometric genus 2 (resp. 5). We use the Segre map 
m ∶ |H| × |H| → |2H| to define the subloci

Then Σ ≅ Sym 2|H| is four-dimensional and its generic member is reduced and has two 
smooth irreducible components in the linear system |H| meeting transversally in two points. 
The subset Δ ≅ |H| ≅ ℙ

2 is the locus of non-reduced curves. If �(S) = 1 , then Σ is exactly 
the locus of non-integral curves.

Recall that � ∶ S → |H| ≅ ℙ
2 is a double covering, which is ramified along a smooth 

sextic curve R ⊂ ℙ
2 . We have

and so in particular

We conclude that every curve in |H| (resp. in |2H|) is the pullback of a line � (resp. a 
quadric Q) in ℙ2 . In particular, every curve in |H| (resp. in |2H|) has singularities depend-
ing on the intersection behavior of the ramification sextic R with � (resp. Q) and has 
at most two (resp. four) irreducible components. For example, let � ⊂ ℙ

2 be a line and 
C∶=�−1(�) ∈ |H| . Assume that C is reducible. Then C consists of two irreducible compo-
nents C1 and C2 , each isomorphic to ℙ1 with C1.C2 = 3 . This is only possible if �(S) ≥ 2 . If 
�(S) = 1 , then all curves C ∈ |H| are irreducible.

M(0, 2H, 1) ⟶ M(0, 2H,−1), E ↦ E
∨∶=Ext1

OS
(E,OS).

E →̃ E
∨∨ = Ext1

OS
(Ext1

OS
(E,OS),OS)

M∶=MH(0, 2H,−1).

(2.1)Δ∶=m(Δ|H|) ⊂ Σ∶= im (m) ⊂ |2H|.

H0(S,OS(kH)) ≅ H0(ℙ2,O
ℙ2 (k))⊕ H0(ℙ2,O

ℙ2 (k − 3)),

H0(S,OS(kH)) ≅ H0(ℙ2,O
ℙ2 (k)) if k = 1, 2.
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For an ample line bundle L on S and 0 ≤ i ≤
L2

2
+ 1 , we can consider the closed 

subvariety

which is called a (generalized) Severi variety. We have dimV(i, |L|) ≤ i and there are vari-
ous results about non-emptiness, irreducibility or smoothness of V(i,  |L|) in the literature, 
e.g. [9]. In our situation, one easily gets a description of V(i, |H|) using the geometry of the 
covering � ∶ S → ℙ

2.

Proposition 2.2 The varieties V(i, |H|) are non-empty of dimension i for i = 0, 1 . Moreover, 
V(1, |H|) is irreducible and the locus of nodal curves is dense in V(1, |H|). More precisely, 
any curve in V(1, |H|)⧵V(0, |H|) is irreducible and has exactly one node or one cusp as 
singularities. If (S, H) is general, then V(1, |H|) ⊂ |H| ≅ ℙ

2 is a curve of degree 30 and 
V(0, |H|) consists of 324 points. Moreover, any curve in V(0, |H|) has exactly two nodes as 
singularities.

Proof From the above discussion, we know that V(1, |H|) is parameterized by the tangents 
of R, i.e.

and for a smooth sextic R its dual curve R∨ has degree 30. A curve in V(1, |H|) is nodal if it 
corresponds to a tangent line that is tangent to R in exactly one point. Hence, this locus is 
dense. A general smooth sextic has exactly 324 bitangents [14, IV Exercise 2.3].   ◻

Next, we study the linear system |2H| and define

for i = 0,… , 5 . Recall that m ∶ |H| × |H| → |2H| was the map coming from the Segre 
embedding. We set

for 0 ≤ i ≤ j ≤ 2 and

i.e. Σ{i,j} ⊂ Σ is the locus of reducible curves, whose components have geometric genus 
bounded by i and j, respectively and Δ1 ⊂ Δ is the locus of non-reduced curves, with 
underlying singular curve. We keep writing Σ for Σ{2,2}.

Corollary 2.3 We have

Moreover, Σ{i,j} for i ≠ 0 and Δ1 are irreducible.

Finally, we let

(2.2)V(i, |L|)∶={D ∈ |L| ∣ g(D̃) ≤ i} ⊂ |L|,

V(1, |H|) ≅ R∨ ⊂ (ℙ2)∨ = |O
ℙ2 (1)|,

(2.3)Vi∶=V(i, |2H|)

Σ{i,j}∶=m(V(i, |H|) × V(j, |H|)) ⊂ Vi+j

Δ1∶=m(ΔV(1,|H|)) ⊂ V1,

dimΣ{i,j} = i + j and dimΔ1 = 1.
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for i = 0,… , 4 , which turn out to be irreducible for i ≠ 0.

Lemma 2.4 The varieties Λi are non-empty of dimension i for i = 0,… , 4. Moreover, if 
i ≠ 0, a general curve in Λi has exactly 5 − i nodes as its only singularities.

Proof We apply the analogous considerations as the for the linear system |H|. This is, in 
order to analyze the structure of Vi , we study the double coverings D → Q of irreducible 
quadrics Q ⊂ ℙ

2 that arise as pullback of � ∶ S → ℙ
2 . Note that any such quadric is iso-

morphic to ℙ1 . Assume that D is reducible, then as above, D is necessarily rational and 
this is only possible for �(S) ≥ 2 . If D is irreducible, its singularities can be read off the 
intersection of Q with the ramification sextic R, yielding the desired result. For example, 
assume D is integral with g(D̃) = 4 . Then, either Q ∩ R consists of 11 points all of which 
have multiplicity one except one point which has multiplicity two, or Q ∩ R consists of 10 
points all of which have multiplicity one except one point which has multiplicity three. 
This produces either one node or one cusp in D. The first case provides a codimension one 
locus in the linear system |O

ℙ2 (2)| ≅ ℙ
5 of quadrics in ℙ2 , the second case has codimen-

sion two.   ◻

We sum up our discussion in the following proposition.

Proposition 2.5 The Severi varieties Vi ⊂ |2H|, i = 0,… , 4 are non-empty of pure dimen-
sion i. For i ≠ 0, their irreducible components correspond to integral, reducible and non-
reduced curves, respectively. More precisely, we have

Here, all varieties occurring on the right hand side but Σ{0,2} and Σ{0,1} are irreducible.

Proof    ◻

Note that V4 = Λ4 ∪ Σ ⊂ |2H| ≅ ℙ
5 is the discriminant divisor of f. We compute the 

degree of its components.

Lemma 2.6 We have

In particular, the discriminant divisor of f has degree 45.

Proof The easiest way, to see that deg[Σ] = 3 is a geometric argu-
ment. Choose 4 points x1,… , x4 in general position and consider the line 
� = {D ∈ |2H| ∣ xi ∈ D for all i = 1,… 4} . There is a unique (resp. no) curve C ∈ |H| 
passing through two (resp. three) points in general position. Hence, degΣ = #(� ∩ Σ) = 3 , 
corresponding to the three possible partitions of x1,… , x4 into pairs of two points. 

Λi∶={D ∈ Vi ∣ D is integral} ⊂ Vi,

V4 = Λ4 ∪ Σ

V3 = Λ3 ∪ Σ{1,2}

V2 = Λ2 ∪ Σ{0,2} ∪ Σ{1,1} ∪ Δ

V1 = Λ1 ∪ Σ{0,1} ∪ Δ1.

deg[Σ] = 3 and deg[Λ4] = 42.
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Alternatively, after a choice of coordinates Σ ≅ Sym 2
ℙ
2 is embedded into ℙ5 via the map 

induced by

One checks that the image is cut out by the equation,

where the coordinates fi of ℙ5 are ordered as in (2.4).
To prove deg[Λ4] = 45 , we use the computation from [28, §5]. Let C� =

⋃
t∈ℙ1 Ct be 

a general pencil of curves in the linear system B = |2H| , i.e. C� = C ∩ (S × ℙ
1) , where 

C ⊂ S × B is the universal curve and ℙ1 ⊂ B a general line. Then C� ⊂ S × ℙ
1 is defined by a 

section s ∈ H0(S × ℙ
1,OS(2H)⊠O

ℙ1 (1)) and

is the union of the singular points of Ct , where ds ∈ H0(S × ℙ
1,ΩS(2H)⊠O

ℙ1 (1)) is the 
image of s under the natural morphism d⊠ id ∶ OS(2H)⊠O

ℙ1 (1) → ΩS(2H)⊠O
ℙ1 (1) . 

We compute

i.e. C′
sing

 consists of 48 points. As a general pencil contains three curves in Σ which have 
two singular points and a generic integral singular curve has exactly one nodal singularity, 
we conclude degΛ4 = 42 .   ◻

Remark 2.7 In [28, §5] the computation (2.5) serves as a demonstration for a formula of the 
degree of the discriminant locus of a Lagrangian fibration with ‘good singular fibers’. An 
example of such a fibration is the Beauville–Mukai system over a primitive curve class and 
the discriminant divisor is irreducible of degree 6(n + 3) , where n is the dimension of the 
base of the fibration. However, in our example the fibers over Δ are not ‘good singular fib-
ers’ and we find a different result.

2.2  Fibers of the Mukai morphism and structure of M

In this section, we collect some information on the fibers of the Mukai morphism.
The moduli space M = MH(0, 2H,−1) contains a dense open subset consisting of the 

sheaves that are line bundles on their support. The restriction of the Mukai morphism to 
this locus is smooth [20, Proposition 2.8] and the image of the restricted morphism is B⧵Δ 
[8, Lemma 3.5.3]. In particular, MΣ∶=f

−1(Σ) contains a dense open subset that parameter-
izes the push forwards of line bundles, but MΔ∶=f

−1(Δ) does not.
Following [8, Propositions 3.7.1 and 3.7.23], we can give a description of the fibers 

of the Mukai morphism. To this end, first assume that Pic (S) = ℤ ⋅ H . The fibers of the 
Mukai morphism f ∶ M → B have the following properties:

(2.4)

ℙ
2 × ℙ

2
→ ℙ

5

[x0 ∶ x1 ∶ x2], [y0 ∶ y1 ∶ y2] ↦ [x0y0 ∶ x1y1 ∶ x2y2 ∶ x0y1 + x1y0 ∶ x0y2 + x2y0 ∶ x1y2 + x2y1].

f0f
2
5
+ f1f

2
4
+ f2f

2
3
= 4f0f1f2 + f3f4f5,

C�
sing

∶=V(s⊕ ds) =
⋃
t∈ℙ1

(Ct)sing

(2.5)deg c3((OS(2H)⊠O
ℙ1 (1))⊕ (ΩS(2H)⊠O

ℙ1 (1))) = 48,
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Let us make this more precise for generic points:

• In the first case, let x ∈ B⧵Σ correspond to a smooth curve D, then f −1(x) ≅ Pic 3(D).
• In the second case, let x ∈ Σ⧵Δ correspond to the union D = D1 ∪ D2 of two smooth 

curves meeting transversally in two points. Then f −1(x) contains a dense open sub-
set parameterizing line bundles on D. Following [8, Lemma 3.3.2], the two irreduc-
ible components of f −1(x) correspond to line bundles with partial degree (2, 1) and 
(1, 2).

• In the third case, let x ∈ Δ correspond to a non-reduced curve with smooth underly-
ing curve C ∈ |H| . Then f −1(x) has two non-reduced irreducible components, which 
we denote as follows 

 The first component M0
2C

 consists of those sheaves, that are pushed forward from the 
reduced curve C. With its reduced structure it is isomorphic to the moduli space of 
stable vector bundles of rank two and degree one on C. The other component M1

2C
 is 

the closure of those sheaves that can not be endowed with an OC-module structure. All 
these sheaves fit into a short exact sequence 

 where i ∶ C ↪ S is the inclusion, and L ∈ Pic 1(C) is the torsionfree part of E|C and 
x ∈ C is the support of the torsion part of E|C . This extension is intrinsically associated 
to E , for details see [15]. Following, [8, Propositions 3.7.19 & 3.7.23], the decomposi-
tion (2.7) remains valid if the underlying curve C is irreducible with nodal or cuspidal 
singularities. (In particular, in the case that �(S) = 1 , it holds for every x ∈ Δ.)

In the case of a K3 surface of higher Picard rank, the general picture remains the 
same. But due to reducible curves in the linear system |H| or B⧵Σ , the fibers could 
exceptionally have more irreducible components. For example, if x ∈ B⧵Σ corresponds 
to a reducible curve with two smooth components, then f −1(x) still contains a dense 
open subset parameterizing line bundles. However, following de Cataldo et  al.  [8, 
Lemma 3.3.2] one finds, that the numerical restrictions imposed by the stability now 
allow partial degrees (5,−1), (4, 0), (3, 1), (2, 2), (1, 3), (0, 4), (−1, 5) . Thus, in this case 
f −1(x) has seven irreducible components.

The decomposition (2.7) also exists globally over the locus of curves D = 2C with 
C ∈ |H| smooth, which we denote by Δ◦ ⊂ Δ . Here, we have

where M0
Δ◦ is a relative moduli space of stable vector bundles and M1

Δ◦ the closure of its 
complement, [8, Proposition 3.7.23]. We set

(2.6)f −1(x) =

⎧
⎪⎨⎪⎩

is reduced and irreducible if x ∈ B⧵Σ

is reduced and has two irreducible components if x ∈ Σ⧵Δ

has two irreducible components with multiplicities if x ∈ Δ.

(2.7)M2C∶=f
−1(x)red = M0

2C
∪M1

2C
.

(2.8)0 → i∗(L(x)⊗𝜔−1
C
) → E → i∗L → 0,

MΔ◦ = f −1(Δ◦)red = M0
Δ◦ ∪M1

Δ◦ ,

(2.9)M0
Δ
= M0

Δ◦ and M
1
Δ
= M1

Δ◦ .
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3  Orbits under rational equivalence

Our strategy to find algebraically coisotropic subvarieties is to single out points whose 
orbit under rational equivalence has a high dimension. In this section, we explain how 
this can be done combining results of Voisin [31, 32], Shen–Yin–Zhao [29] and Mar-
ian–Zhao [22] (for the precise references, see below).

3.1  Preliminaries

We start by recalling some general definitions. Let (X, �) be an irreducible holomorphic 
symplectic manifold of dimension 2n. For a smooth subvariety Y ⊂ X , we let

where the first arrow is given by � . 

 (i) A subvariety Y ⊂ X is a constant cycle subvariety [18] if all its points are rationally 
equivalent in X. Note that this is the case, if Y contains a dense open subset U, such 
that all points in U are rationally equivalent in X. Mumford’s theorem [24] implies 
that a constant cycle subvariety Y ⊂ X is isotropic [32, Corollary 1.2], i.e. 

 where Yreg denotes the regular part of Y. In particular, dimY ≤ n and if dimY = n , 
then Y is a Lagrangian subvariety.

 (ii) A subvariety Z ⊂ X is algebraically coisotropic [32, Def. 0.6] if Z is coisotropic (i.e. 
T
⟂
Zreg

⊂ TZreg
 ) and the corresponding foliation is algebraically integrable. For a sub-

variety of codimension i, this is equivalent to the existence of a 2n − 2i-dimensional 
variety T and a rational surjective map � ∶ Z ⤏ T  such that 

 where Z◦ ⊂ Z is the open subset, where � is defined and smooth, or equivalently 

 Actually, T and � are unique up to birational equivalence. We call � the associated 
isotropic fibration.

 (iii) For a point x ∈ X , its orbit under rational equivalence is 

 which is a countable union of closed algebraic subvarieties [30, Lemma 10.7]. Its 
dimension is defined to be the supremum over the dimensions of its irreducible 
components.

Following Voisin1 [32, Def 0.2], we set

T⟂
Y
∶= ker(TX →̃ ΩX ↠ ΩY ),

TYreg
⊂ T⟂

Yreg
or equivalently 𝜎|Yreg = 0,

T⟂
Zreg

= ker(TZ◦ → �∗TT ) on Z
◦ ∩ Zreg,

�|Z = �∗�T for some (2, 0) form �T on T .

Ox∶={x
� ∈ X ∣ [x] = [x�] ∈ CH 0(X)} ⊂ X,

1 We reversed the numbering from Voisin [32].
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  for i = 0,… , n . This is again a countable union of closed algebraic subvarieties and 
defines a filtration on the points of X

From [32, Theorem 1.3] it is known that

and conjecturally [32, Conj 0.4] equality holds true. The following theorem says that a 
component of maximal dimension is algebraically coisotropic.

Theorem 3.1 [32, Theorem 0.7] Let Z ⊂ X be a subvariety of codimension n − i such that 
Z ⊂ FiX, then Z is algebraically coisotropic and the fibers of the associated isotropic fibra-
tion � ∶ Z ⤏ T  are constant cycle subvarieties of dimension n − i.

Now, let X = M�(v) be a smooth, projective moduli space of (Bridgeland-)stable 
objects in Db(S) . In this situation, we have the following beautiful criterion for rational 
equivalence.

Theorem 3.2 [22, Theorem], [29, Conj 0.3] Two points E, E� ∈ M�(v) satisfy

if and only if

Remark 3.3 As ch 2(E) =
1

2
c1(E)

2 − c2(E) , and c1(E) is fixed for all E ∈ M�(v) , one could 
also phrase the theorem using c2.

In particular, for E ∈ M�(v) we have

Using that the union of all constant cycle curves in S is Zariski dense and Theorem 3.2 
allow one to prove the following theorem.

Theorem 3.4 [29, Theorem 0.5(i)] For all 0 ≤ i ≤ n there is an algebraically coisotropic 
subvariety Z ⊂ M𝜎(v) of codimension i such that the isotropic fibration Z ⤏ T  has generi-
cally constant cycle fibers of dimension i. In particular,

i.e. (3.2) is actually an equality.

Next, one could ask how the filtration FiM�(v) interferes with the second Chern 
classes. The answer is to consider O’Grady’s filtration on CH 0(S) . Let us recall some 
results about CH 0(S).

FiX∶={x ∈ X ∣ dimOx ≥ n − i}.

(3.1)F0X ⊂ F1X ⊂ ⋯ ⊂ FnX = X.

(3.2)dimFiX ≤ n + i

[E] = [E�] ∈ CH 0(M�(v))

ch 2(E) = ch 2(E
�) ∈ CH 0(S).

OE = {E� ∈ M𝜎(v) ∣ ch 2(E
�) = ch 2(E) ∈ CH 0(S)} ⊂ M𝜎(v).

dimFiM�(v) = n + i,



210 I. Hellmann 

1 3

In [4], Beauville and Voisin prove that any point lying on a rational curve in S deter-
mines the same class

which has the property that the image of the intersection product Pic (S)⊗ Pic (S) → CH 0(S) 
is contained in ℤ ⋅ cS . In [27], building on this class, now called the Beauville–Voisin class, 
O’Grady introduces an increasing filtration S∙ on CH 0(S),

where Si CH 0(S) is the union of cycles of the form [z] + d ⋅ cS for some effective zero-cycle 
z of degree i and d ∈ ℤ . In particular, S0 CH 0(S) = ℤ ⋅ cS . O’Grady’s filtration S∙ CH 0(S) 
has several useful properties, [27, Corollary. 1.7 and Claim 0.2]: 

(1) The filtration is compatible with addition, i.e. if � ∈ Si CH 0(S) and � ∈ Sj CH 0(S) , then 
� + � ∈ Si+j CH 0(S).

(2) Each step of the filtration Si CH 0(S) is closed under multiplication with ℤ , i.e. if 
� ∈ Si CH 0(S) then m ⋅ � ∈ Si CH 0(S) for every m ∈ ℤ.

(3) If C is an irreducible, smooth projective curve and f ∶ C → S is a non-constant mor-
phism, then 

Theorem  3.5 [29, Theorem  0.5(ii)] Let M�(v) be a smooth projective moduli space 
of Bridgeland stable objects in Db(S) with dimM�(v) = 2n. If E ∈ M�(v) satisfies 
ch 2(E) ∈ Si CH 0(S), then E ∈ FiM�(v). Moreover, if M�(v) is birational to the Hilbert 
scheme S[n], then also the converse implication holds true, i.e. in this case

Note that c1(E)2 ∈ CH 0(S) . Hence, the theorem can equally be the formulated using c2 
instead of ch 2.

Proof We sketch the proof along the lines of Shen et al. [29, Proof of Theorem 0.5(ii)], 
where the first part of the theorem is proven. The case of S[n] , i.e. that for all � ∈ S[n]

is proven in [31, Theorem 1.4]. Note that only the implication from left to right needs a 
proof. The other implication follows because any point representing the Beauville–Voisin 
lies on a rational curve and hence if Supp (�) contains (n − i) ⋅ cS , we have dimO� ≥ n − i.

For the general case, let E ∈ M = M�(v) . By [29, Theorem 0.1], we can write

for some � ∈ S[n] and d ∈ ℤ depending on the degree of ch 2(E) , which is fixed. After know-
ing the result for S[n] , the theorem translates into the statement

cS ∈ CH 0(S),

S0 CH 0(S) ⊂ S1 CH 0(S) ⊂ … ⊂ Si CH 0(S) ⊂ … ⊂ CH 0(S),

f∗ CH 0(C) ⊂ Sg(C) CH 0(S).

FiM�(v) = {E ∈ M�(v) ∣ ch 2(E) ∈ Si CH 0(S)}.

dimO� ≥ n − i ⟺ [Supp (�)] ∈ Si CH 0(S)

ch 2(E) = [Supp (�)] + d ⋅ [cS] ∈ CH 0(S)

dimO� ≥ n − i ⇒ dimOE ≥ n − i (resp. dimO� ≥ n − i ⇔ dimOE ≥ n − i, if M ∼bir S
[n]).
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The two orbits can be compared by means of the incidence variety

which is a countable union of Zariski closed subsets in M × S[n] . There exists an irreduc-
ible component R0 ⊂ R which projects generically finite and surjective to both factors, and 
hence yields a correspondence between the two orbits (see [29, §2.3]). However, in order to 
compare their dimensions, one needs to know that the components of maximal dimension 
in every orbit under rational equivalence are dense. This is known for the Hilbert scheme, 
whence the inclusion SSYZ

i
CH 0(M) ⊂ SV

i
CH 0(M) always holds. The reverse inclusion is 

true if M is birational to S[n] but in general not known.   ◻

3.2  Orbits under rational equivalence in M

We turn back to our favorite example M = MH(0, 2H,−1) with the goal in mind, to give 
explicit constructions of constant cycle subvarieties in M. We remark that any moduli 
space of Gieseker-stable sheaves on a K3 surface S (with respect to a generic polariza-
tion) can be realized as a moduli space of Bridgeland-stable objects in Db(S) [7, Propo-
sition 14.2]. In particular, the above results can be applied to M.

The first step is to understand the orbits under rational equivalence in M and the 
filtration

Recall that M is birational to S[5] and thus by Theorem 3.5, we know

and

for 0 ≤ i ≤ 5 . The following lemma is a straightforward computation using the Groth-
endieck–Riemann–Roch theorem.

Lemma 3.6 Let i ∶ D ↪ S be a reduced curve and let F  be a vector bundle on D. 

 (i) Assume that D is irreducible and let 𝜈 ∶ D̃ → D be its normalization. Then

where mp = length (𝜈∗OD̃∕OD)p. In particular,

 (ii) Assume that D = D1 ∪ D2 has two irreducible components. Then

R = {(E, �) ∈ M × S[n] ∣ ch 2(E) = [ Supp (�)] + d ⋅ [cS] ∈ CH 0(S)},

F0M ⊂ F1M ⊂ … ⊂ F5M = M.

FiM = {E ∈ M ∣ dimOE ≥ 5 − i} = {E ∈ M ∣ ch 2(E) ∈ Si CH 0(S)}

dimFiM = 5 + i

(3.3)ch 2(i∗F) = i∗𝜈∗c1(𝜈
∗F) − rk (F)(

1

2
i∗𝜈∗c1(𝜔D̃) −

∑
p∈D

mp[p]) ∈ CH 0(S),

ch 2(i∗F) ∈ im (CH 0(D̃)
i∗𝜈∗
��������������→ CH 0(S)) ⊂ Sg(D̃) CH 0(S).

(3.4)ch 2(i∗F) = ch 2(i1∗F|D1
) + ch 2(i2∗F|D2

) − rk (F)(D1.D2)cS ∈ CH 0(S),
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were ik ∶ Dk ↪ S, k = 1, 2 are the inclusions of the components. In particular,

  ◻

Example 3.7 Using Lemma  3.6 we compute ch 2(E) for some cases of stable sheaves E 
occuring in M: 

 (i) Let E ∈ M such that D = Supp (E) is smooth, then E = i∗L , where i ∶ D ↪ S is the 
inclusion and L ∈ Pic 3(D) . We find 

 (ii) Let E ∈ M be the pushforward of a line bundle L on its support D = Supp E and 
assume that D = D1 ∪ D2 has two smooth and connected components. We write 
E = i∗L , then 

 where ik ∶ Dk ↪ C, k = 1, 2 are the inclusions.
 (iii) Let E ∈ M0

2C
 for a smooth curve C ∈ |H| , i.e. Supp (E) = 2C and E = i∗E0 , where 

i ∶ C ↪ S is the inclusion and E0 is a vector bundle of rank 2 and degree 1 on C. Then 

 (iv) Let E ∈ M1
2C
⧵M0

2C
 for a smooth curve C ∈ |H| , i.e. Supp (E) = 2C but E is not pushed 

forward along the inclusion i ∶ C ↪ S . However, E fits into a short exact sequence 

 for some L ∈ Pic 1(C) and x ∈ C . Hence 

Corollary 3.8 Let E ∈ M and let D = Supp (E). Assume either that D is reduced and E is 
locally free on D, or D is non-reduced and Dred is a smooth curve. Then

where g(D̃) is the geometric genus of D.   ◻

As before, the geometric genus of D is the genus the normalization of D (resp. of Dred ) 
and the sum over the genera of the normalizations of the irreducible components if D is 
reducible.

Corollary 3.9 Assume that �(S) = 1. The fiber F = f −1(D) over a curve D ∈ |2H| is a con-
stant cycle Lagrangian if and only if D is a constant cycle curve in S. If D ∈ Δ this means 
that the underlying reduced curve is constant cycle.

Proof It suffices to consider a dense open subset of F, in order to decide whether F is a 
constant cycle subvariety. First assume that i ∶ D ↪ S is reduced. Then F contains a dense 

ch 2(i∗F) ∈ Sg(D̃1)+g(D̃2)
CH 0(S).

(3.5)ch 2(E) = −4cS + i∗c1(L).

(3.6)ch 2(E) = −4cS + i1∗c1(L|D1
) + i2∗c1(L|D2

),

(3.7)ch 2(E) = −2cS + i∗c1(E0).

0 → i∗(L(x)⊗𝜔−1
C
) → E → i∗L → 0,

(3.8)ch 2(E) = ch 2(i∗(L(x)⊗𝜔−1
C
)) + ch 2(i∗L) = −4cS + [i(x)] + 2i∗c1(L).

ch 2(E) ∈ Fg(D̃)M,
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open subset parameterizing line bundles of fixed degree. In Lemma 3.6 we saw that the 
class of i∗L in CH 0(M) depends on

which is constant if D is a constant cycle curve. Conversely, assume that F ⊂ M is a con-
stant cycle subvariety. Then in particular,

and hence [x] = cS for all x ∈ D . (We use that CH 0(S) is torsionfree).
If D = 2C is non-reduced, we apply the same argument to the explicit description (2.7) 

of the fiber F. It is exclusively here, that we use �(S) = 1 .   ◻

Remark 3.10 We expect that a case by case analysis also proves Corollary  3.9 when 
𝜌(S) > 1 . In this case it is no longer true, that all curves C ∈ |H| are irreducible with at 
worst nodal or cuspidal singularities.

4  Algebraically coisotropic subvarieties in M

We give several examples of algebraically coisotropic subvarieties in M = MH(0, 2H,−1).

4.1  Horizontal examples from Brill–Noether loci

Brill–Noether theory allows one to produce examples of constant cycle subvarieties.
Let B◦ ⊂ B be the locus of smooth curves and C◦ → B◦ the restricted universal curve. 

For any k, we have an isomorphism

where MH(0, 2H, k − 4)◦ is the preimage of B◦ under the support map 
MH(0, 2H, k − 4) → B . For k = 1, 3 , we define

and consider the closures

One can show that Z3 is strictly contained in BN 0(M)∶={E ∈ M ∣ H0(S, E) ≠ 0} as 
BN 0(M) has an additional component over Δ.

Proposition 4.1 The subvarieties Zi ⊂ MH(0, 2H, i − 4) have codimension 5 − i for i = 1, 3 
and satisfy

In particular, they are algebraically coisotropic.

Pic k(D) → CH 0(S), L ↦ i∗c1(L),

i∗c1(OD(kx)) = ki∗[x] ∈ S0 CH 0(S)

MH(0, 2H, k − 4)◦ ≅ Pic k

C◦∕B◦
,

BN 0
k
(B◦)∶={L ∈ MH(0, 2H, k − 4)◦ ∣ H0(S,L) ≠ 0} ⊂ MH(0, 2H, k − 4)◦

(4.1)Z1∶=BN 0
1
(B◦) ⊂ MH(0, 2H,−3) and Z3∶=BN 0

3
(B◦) ⊂ M.

Zi ⊂ FiMH(0, 2H, i − 4).
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Proof A point in BN 0
i
(B◦) is of the form E = i∗OD(�) , where D ∈ B◦ and 𝜉 ⊂ D is an effec-

tive divisor of degree i. Hence

in CH 0(S) and we conclude ch 2(E) ∈ Si CH 0(S) , which in turn gives 
Zi ⊂ FiMH(0, 2H, i − 4) . By Theorem 3.2, this implies dimZi ≤ 5 + i , whereas the reverse 
inequality is known from Brill–Noether theory [1, IV Lemma 3.3].   ◻

Actually, Z1 is a projective bundle over S. Precisely, let D ∈ |2H| and L ∈ Z1 ∩ f −1(D) , i.e. 
L ∈ Pic 1(D) is effective and can uniquely be written as OD(x) for some x ∈ D . This way, Z1 
is isomorphic the universal curve C ⊂ |2H| × S , which is a ℙ4 bundle with respect to the sec-
ond projection. With the same arguments, we also prove that Z3 is generically a ℙ2-bundle over 
S[3] , which parameterizes the line bundles OD(�) over � ∈ S[3].

In the following, we will consider Z1 as a subvariety of M via the isomorphism

In particular, over a smooth curve D ∈ |2H| , we have

Lemma 4.2 We have

In particular, there is an inclusion

Proof It suffices to show the result over a smooth curve D ∈ |2H| . Let L ∈ Pic 1(D) such 
that H0(D,L) ≠ 0 . We want to show that dimH0(D,L∨ ⊗OS(H)|D) ≥ 2 . Write L = OD(x) 
for a point x ∈ D . On S, we have a short exact sequence

and the resulting long exact cohomology sequence proves the lemma.   ◻

Remark 4.3 One can also define Z1 directly as a subvariety of M. Namely, Z1 is the closure 
of the Brill–Noether locus

see [16]. Due to the non-primitivity of the linear system |2H|, unexpected things 
happen here. Namely, the smooth curves D ∈ |2H| are hyperelliptic and we have 
W1

3
(D) ≠ � for all irreducible curves D ∈ |2H| , even though the Brill–Noether number 

�(5, 1, 3) = 5 − 2(5 − 3 + 1) is negative.

ch 2(E) ≡ [Supp (�)] mod ℤ ⋅ cS

(4.2)MH(0, 2H,−3) → M, E ↦ Ext1(E,OS)⊗OS(−H).

Pic 1(D) → Pic 3(D), L ↦ L∨ ⊗OS(H)|D.

Z1 ⊂ {E ∈ M ∣ h0(E) ≥ 2}.

Z1 ⊂ Z3.

0 → OS(−H) → Ix(H) → OD(−x)⊗OS(H)|D → 0

BN 1
3
(B◦)∶={L ∈ M◦ ∣ h0(S,L) ≥ 2} ⊂ M,
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4.2  Vertical examples from singular curves

In this section, we give examples of algebraically coisotropic subvarieties, that arise as preim-
ages of subvarieties in B. In Corollary 3.9, we already treated the case of a fiber over a point 
D ∈ B . Namely, f −1(D) is a constant cycle Lagrangian, if and only if D is a constant cycle 
curve.

We set

where Vi∶={D ∈ |2H| ∣ g(D̃) ≤ i} for i = 1,… , 4 was defined in (2.3).

Proposition 4.4 The subvarieties MVi
 are equidimensional of codimension 5 − i for 

i = 1,… , 4 and satisfy

In particular, they are algebraically coisotropic.

Proof We saw in Proposition 2.5 that dimVi = i and in Corollary 3.8 that g(D̃) ≤ i implies 
that f −1(D) ⊂ FiM for every D ∈ |2H| .   ◻

In the following section, we find the isotropic fibrations for MVi
.

4.2.1  Isotropic fibrations

In order to understand the constant cycle subvarieties resulting from the above examples, 
we write down the isotropic fibration for MΣ ⊂ MV4

 and MΔ ⊂ MV2
 and MΛi

⊂ MVi
 for 

i = 1,… , 4.

Proposition 4.5 For every i = 1,… , 4, there is a quasi-projective scheme Ti of dimension 2i 
fitting into a diagram

The fibers of �i are rational constant cycle subvarieties of M of dimension 5 − i.

Proof A general point in MΛi
 is the pushforward of a line bundle on a singular curve in Λi . 

Its class in CH 0(M) however, depends only on the pullback of the line bundle to the nor-
malization (cf. Theorem 3.2 and Lemma 3.6). This is what MΛi

⤏ Ti encodes.
Consider the universal curve over |2H| and let Ci → Λi be its restriction to Λi ⊂ |2H| . By 

construction, the generic fiber of Ci is singular and so must be the total space Ci . Hence, the 
normalization

MVi
∶=f −1(Vi),

MVi
∶=f −1(Vi) ⊂ FiM.

MΛi

φi

f

Ti

Λi.
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generically parameterizes the normalization of the curves in Λi . We set

where Ui ⊂ Λi is the dense open subset such that C̃i has smooth fibers over Ui . Then pulling 
back along C̃i → Ci defines

and by Lemma 3.6(i) the fibers are constant cycle subvarieties of M. Over the open dense 
subset of curves in Λi , that have exactly 5 − i nodes as their only singularities, the fibers of 
�i are isomorphic to �5−i

m
 .   ◻

Proposition 4.6 There is an eight-dimensional quasi-projective scheme TΣ fitting into a 
diagram

The fibers of �Σ are rational constant cycle curves in M.

Proof A general point in MΣ is the pushforward of a line bundle on a reducible curve 
i ∶ D ↪ S and by the combination of Theorem  3.2 and Lemma  3.6(ii) the class 
[i∗L] ∈ CH 0(M) depends exactly on the restriction of L to each component. This is, what 
TΣ shall parameterize.

Let CΣ⧵Δ → Σ⧵Δ be the universal curve over Σ⧵Δ . Even though every fiber has two 
irreducible components, the total space CΣ⧵Δ is irreducible. However, after the base change

we have a decomposition C̃Σ⧵Δ = C̃
1

Σ⧵Δ
∪ C̃

2

Σ⧵Δ
 into two irreducible components, which 

are identified under the natural ℤ∕2ℤ-action. Note that the horizontal arrows are princi-
pal ℤ∕2ℤ-bundles and the vertical arrows are ℤ∕2ℤ-equivariant. On the level of Picard 
schemes, restricting to each component gives a ℤ∕2ℤ-equivariant map

Here, ℤ∕2ℤ = ⟨�⟩ acts on the right hand side via

C̃i → Ci

Ti∶= Pic 3

C̃i∕Ui

,

𝜙i ∶ MΛi
⊃ Pic 3

Ci∕Λi
⤏ Ti∶= Pic 3

C̃i∕Ui

MΣ
φΣ

f

TΣ

Σ.

C̃Σ\∆ CΣ\∆

P2 × P2 \∆ Σ \∆,

(4.3)Pic C̃Σ⧵Δ∕Σ⧵Δ
⟶ Pic

C̃
1

Σ⧵Δ
∕Σ⧵Δ

×Σ⧵Δ Pic
C̃
2

Σ⧵Δ
∕Σ⧵Δ

.

� ⋅ (L1,L2) = (�∗L2, �
∗L1).
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(By a slight abuse of notation, � also denotes the map identifying the isomorphic compo-
nents C̃1

Σ⧵Δ
 and C̃2

Σ⧵Δ
 ). The quotient

of (4.3) by � is what we are looking for, when restricted to the component, where the cor-
rect degree has been fixed. More precisely, we set

and take �Σ to be the above map, whose fibers are isomorphic to �m .   ◻

Proposition 4.7 There is a four-dimensional quasi-projective scheme TΔ fitting into a 
diagram

for i = 0, 1. The fibers of �0
Δ
 are three-dimensional rational constant cycle subvarieties in 

M. Over 2C ∈ Δ , the fibers of (�1
Δ
)2C are birational to a ℙ2-bundle over a curve of genus 

17 that is étale of degree 16 over C. In particular, they yield examples of three-dimensional 
constant cycle subvarieties in M that are not rationally connected.

Proof We consider the component M0
Δ
 first. A general point in M0

Δ
 is of the form E = i∗E0 , 

where i ∶ C ↪ S is the inclusion of a smooth curve C ∈ |H| ≅ Δ and E0 is a vector bundle 
of rank 2 on C. Again, by Theorem 3.2 and Example 3.7(iii) the class [i∗E0] ∈ CH 0(M) is 
determined by i∗c1(E0) . This suggests to set

where U ⊂ |H| is the open subset of smooth curves and CU → U denotes the universal 
curve and then define �0

Δ
 as the determinant map. The fibers of �0

Δ
 are isomorphic to a 

moduli space of stable vector bundles of rank two with fixed determinant of degree one, 
which is rational [25, 26, Proposition 2].

To deal with M1
Δ
 , let E ∈ M1

Δ
⧵(M0

Δ
∩M1

Δ
) such that C∶= Supp (E)red ∈ U . Then, 

by (2.8) and Lemma  3.6 the class ch 2(E) is determined by i∗c1(L
⊗2(x)⊗𝜔−1

C
) , where 

L∶=E|C∕T ∈ Pic 1(C) and x∶= Supp (T) ∈ C with T  being the torsion subsheaf of E|C and 
i ∶ C ↪ S being the inclusion. Consequently, we define

We want to compute the fibers of (�1
Δ
)2C . First, we forget the twist with �−1

C
 . Then we can 

factor (�1
Δ
)2C as follows

Pic C̃Σ⧵Δ∕Σ⧵Δ
∕𝜏 ≅ Pic CΣ⧵Δ∕Σ⧵Δ

⟶ (Pic
C̃
1

Σ⧵Δ
∕Σ⧵Δ

×Σ⧵Δ Pic
C̃
2

Σ⧵Δ
∕Σ⧵Δ

)∕𝜏

TΣ∶=(Pic
1

C̃
1

Σ⧵Δ
∕Σ⧵Δ

×Σ⧵Δ Pic 2

C̃
2

Σ⧵Δ
∕Σ⧵Δ

⊔ Pic 2

C̃
1

Σ⧵Δ
∕Σ⧵Δ

×Σ⧵Δ Pic 1

C̃
2

Σ⧵Δ
∕Σ⧵Δ

)∕𝜏

M i
∆

φi
∆

f

T∆

∆

TΔ∶=Pic 1
CU∕U

,

𝜙1
Δ
∶ M1

Δ
⤏ TΔ, E ↦ L

⊗2(x)⊗𝜔−1
C
.

M1
2C

⤏ Pic 1(C) × C → Pic 3(C), E ↦ (L, x) ↦ L
⊗2(x).
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The first arrow is defined outside the intersection M0
2C

∩M1
2C

 and its fibers are a torsor 
under Ext 1

C
(i∗L, i∗(L(x)⊗𝜔−1

C
)) ≅ ℂ

2 , cf. [15, Corollary 3.5]. Thus the fibers of (�1
Δ
)2C 

are an �2-bundle over the fibers of the second arrow, which we factor as follows

Here, the first map is étale of degree 16 and the fibers of the second map

are isomorphic to C. To see this, let M ∈ Pic 3(C) and consider p2 ∶ �−1(M) → C . As 
L(x) ≅ M for fixed x ∈ C determines L ∈ Pic 2(C) , this projection is an isomorphism and 
the claim follows.   ◻

Remark 4.8 A combination of the proofs of Propositions 4.5–4.7 allows one to find the iso-
tropic fibrations for the remaining cases MVi

, i = 1, 2, 3.

4.3  More examples

We construct some more examples of algebraically coisotropic subvarieties.

4.3.1  Horizontal constant cycle Lagrangians

To start with, we produce a constant cycle Lagrangian that dominates B. For example, 
any section of M → B would work. Unfortunately, f does not admit a section [2]. Below, 
we produce a multisection of degree of 210 . Recall that

where B◦ = B⧵(Λ4 ∪ Σ) is the locus of smooth curves, and there is an exact sequence [12, 
(9.2.11.5)]

Next, we claim that

The first isomorphism follows from the diagram with exact rows and columns

Pic 1(C) × C → Pic 2(C) × C
𝜇
������→ Pic 3(C), (L, x) ↦ (L⊗2, x) ↦ L

⊗2(x).

� ∶ Pic 2(C) × C → Pic 3(C), (L, x) ↦ L(x)

M◦ ≅ Pic 3
C◦∕B◦

,

(4.4)0 → Pic (C◦)∕Pic (B◦) → Pic C◦∕B◦ (B◦) → Br (B◦) → … .

(4.5)Pic (C◦)∕Pic (B◦) ≅ Pic (C)∕Pic (B) ≅ Pic (S).

Z · [Λ4]⊕ Z · [Σ] ∼ Z · [CΛ4 ]⊕ Z · [CΣ]

Pic(B) Pic(C) Pic(C)/Pic(B)

Pic(B◦) Pic(C◦) Pic(C◦)/Pic(B◦),
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where we use, that the restriction of the universal curve over Λ4 and Σ , respectively is irre-
ducible. The second isomorphism in (4.5) holds, because C ⊂ B × S is a ℙ4-bundle over S 
with Op2

(1) = p∗
1
OB(1) . After this identification, any L ∈ Pic (S) with n = 2H.L is mapped 

under the first morphism in (4.4) to the section

If Pic (S) = ℤ ⋅ H , for example, one gets sections for n ≡ 0 mod 4. There is always a sec-
tion of Pic 2

C◦∕B◦ that does not come from S.

Lemma 4.9 There is a section

such that a curve D ∈ B◦ maps to the unique line bundle g1
2
(D) ∈ Pic 2(D) with 

h0(g1
2
(D)) = 2. In particular,

and g1
2
 is not of the form sL for L ∈ Pic (S).

Proof This is a consequence of the same phenomenon occurring for the universal family of 
smooth quadrics in ℙ2 . We identify B = |O

ℙ2 (2)| and we will see that the lemma holds true 
for B◦ = B⧵Σ . Let Q◦ ⊂ B◦ × ℙ

2 be the universal quadric, which is an étale ℙ1-fibration, 
but not a projective bundle. We claim that there is a section

that is not induced by a line bundle on Q◦ . Indeed, fix a line � ⊂ ℙ
2 and consider

This morphism is finite, flat of degree 2 and the base change Q̃◦
→ B̃◦ admits a section. 

Therefore we get

As the two points in B̃◦ lying over a fixed point in B◦ define the same line bundle, s̃ 
descends to a section s. By definition, s⊗ s is the section defined by p∗

2
O

ℙ2 (1) , which does 
not admit a square root. Pulling back s along C◦ → Q

◦ defines g1
2
 .   ◻

Remark 4.10 In all our examples, it does not matter if we identify M and MH(0, 2H,−3) 
via the isomorphism (4.2) (given by tensorization and dualization) or the birational map 
induced by the section g1

2
 . The composition of the one map with the inverse of the other is 

the rational involution on M that comes from the natural involution �[5] on S[5].

Now, we use the squaring map

to construct a constant cycle Lagrangian from g1
2
(B◦) . Specifically, we set

sL ∶ B◦
→ Pic n

C◦∕B◦
, D ↦ L.D.

g1
2
∶ B◦

→ Pic 2
C◦∕B◦

(g1
2
)⊗ (g1

2
) = sH ∶ B◦

→ Pic 4
C◦∕B◦

s ∶ B◦
→ Pic 1

Q◦∕B◦

B̃◦∶=Q◦ ∩ (B◦ × 𝓁) → B◦.

s̃ ∶ B̃◦ → Pic 1

Q̃◦∕B̃◦
.

𝜌2 ∶ Pic 1
C◦∕B◦ ⟶ Pic 2

C◦∕B◦ , L ↦ L
⊗2,
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Lemma 4.11 The subvariety L1
2
 is a constant cycle Lagrangian in M, which is generically 

finite of degree 210 over B.

Proof It is clear, that dimL1
2
= 5 . We will show that L1

2
⊂ F0MH(0, 2H,−3) . Let D ∈ B◦ 

and L ∈ Pic 1(D) such that L⊗2 = g1
2
(D) . Then

This implies i∗c1(L) = cS because CH 0(S) is torsionfree. We conclude that a general point 
in L1

2
 is contained in S0 CH 0(S) as desired. Finally, �2 is finite, étale of degree 210 .   ◻

Remark 4.12 Another example of a horizontal constant cycle Lagrangian is constructed 
more generally for any Lagrangian fibration by Lin [21].

4.3.2  Examples in MΔ

Starting from �i
Δ
∶ Mi

Δ
⤏ TΔ (cf. Proposition 4.7), we construct two examples of con-

stant cycle Lagrangians in M0
Δ
 and M1

Δ
 . Recall that TΔ = Pic 1

CU∕U
 , where U ⊂ |H| is the 

open subset consisting of smooth curves and the fibers of �i
Δ
 are three-dimensional con-

stant cycle subvarieties in M.
The idea of Example 4.13 is to find a constant cycle surface in TΔ . Then the preimage 

under �i
Δ
 is a constant cycle Lagrangian in M contained in Mi

Δ
 . This idea is taken further 

in Example 4.14. Here, we find a surface in TΔ , that consists of line bundles whose first 
Chern class is a multiple of the Beauville–Voisin class, when pushed forward to S. By 
Theorem 3.5, the preimage of this surface is also a constant cycle Lagrangian in M.

For simplicity, we assume from now on that Pic (S) = ℤ ⋅ H . Then every curve in |H| 
is integral and Pic 1

C|H|∕|H| is representable by a smooth, quasi-projective scheme.

Example 4.13 We construct a constant cycle subvariety of Pic 1
C|H|∕|H| applying the same 

trick as for the construction of L1
2
 . Namely, let

and consider the section sH of Pic 2
C|H|∕|H| defined by H. We set

Since Pic 2
C|H|∕|H| can be embedded as an open subset of MH(0,H, 2) , we can apply Theo-

rem 3.5 to see that ZH is a constant cycle subvariety, as in the proof of Lemma 4.11. Now, 
ZH ⊂ Pic 2

C|H|∕|H| is a smooth, quasi-projective surface and the morphism ZH → |H| is finite, 
étale of degree 24 , when restricted to the open subset of smooth curves U ⊂ |H| . By 
Lemma 2.2, we know that U = |H|⧵V(1, |H|) is the complement of a nodal curve of degree 
30. Therefore �1(U) ≅ ℤ∕30ℤ [10, Proposition 1.3 and Theorem 1.13]. Consequently, ZH 
must have 8 pairwise isomorphic connected components that restrict over U to the unique 
degree 2 cover of U. We replace ZH by one of its irreducible components and define

L1
2
∶=𝜌−1

2
(g1

2
(B◦)) ⊂ MH(0, 2H,−3)

∼
�������→ M.

4 ⋅ i∗c1(L) = i∗c1(OS(H)|D) = 4cS ∈ CH 0(S).

�2 ∶ Pic 1
C|H|∕|H| → Pic 2

C|H|∕|H|

ZH∶=�
−1
2
(sH(|H|)).
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By construction, these are constant cycle Lagrangians in M.

Example 4.14 The idea of this example is to consider the preimage of two-dimesional sub-
varieties in TΔ that are not constant cycle subvarieties themselves, but consist of line bun-
dles whose first Chern class is the Beauville–Voisin class when pushed forward to S.

To begin with, we have an embedding

Then, for example a vector bundle E ∈ M0
Δ
 lies over Θ(C|H|) if and only if its determinant 

line bundle is effective (of degree one). Therefore,

In particular, (�i
Δ
)−1(Θ(C|H|)) is algebraically coisotropic. The isotropic fibration is given 

by the composition of the projection C → S with �i
Δ
.

Refining this example yields constant cycle Lagrangians in Mi
Δ
 as follows. For example, 

let Ccc ⊂ S be a constant cycle curve and set

4.3.3  Examples in S[5]

We can also produce easily examples of algebraically coisotropic subvarieties in S[5] . As M 
and S[5] are birational, we have

[13, Example 16.1.11] and algebraically coisotropic varieties that are not contained in the 
exceptional locus of a birational map can be transferred from S[5] to M and vice versa.

Example 4.15 This example can also be found in [32, §4 Example 1]. For i = 1,… , 4 , 
define

Then Ei ⊂ S[5] is closed subvariety of codimension 5 − i [6]. For example, E∶=E4 is 
the exceptional divisor of the Hilbert–Chow morphism s ∶ S[5] → S(5) . The irreduc-
ible components En

i
 of Ei are indexed by ordered tuples of positive natural numbers 

n = (n1 ≥ n2 ≥ … ≥ ni) such that 
∑i

k=1
nk = 5 . In particular, E4 and E1 are irreducible, 

whereas E3 and E2 consists of two irreducible components. To sum up

By definition of Ei and Theorem 3.2, we have

Li∶=(𝜙i
Δ
)−1(ZH) ⊂ Mi

Δ
for i = 0, 1.

Θ ∶ C|H| ↪ Pic 1
C|H|∕|H|, C ∋ x ↦ OC(x).

(𝜙i
Δ
)−1(Θ(C|H|)) ⊂ F1M and codim (𝜙i

Δ
)−1(Θ(C|H|)) = 4.

LCcc
∶=(�i

Δ
)−1(Θ(C|H| ∩ Ccc × |H|)).

CH 0(S
[5]) ≅ CH 0(M),

Ei∶={� ∈ S[5] ∣ length (O�red
) ≤ i }.

(4.6)E1 ⊂ E2 ⊂ E3 ⊂ E4 = E ⊂ S[5].

Ei ⊂ FiS
[5]
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for all i = 1,… , 4 and hence Ei is algebraically coisotropic.

Example 4.16 We have ℙ2 ⊂ S[2] given by x ↦ �−1(x) , where � ∶ S → ℙ
2 . Consider the 

generically injective rational maps

and set

Clearly, Pi ⊂ FiS
[5] and codimPi = 5 − i.

Example 4.17 This example is taken from Knutsen et  al. [19]. As in (2.2), we consider 
the locus V(j, |H|) ⊂ |H| of curves C with g(C̃) ≤ j for j = 0, 1, 2 . Specifically, V(2,  |H|) 
is everything, V(1, |H|) ⊂ |H| is irreducible and one-dimensional and the generic curve 
in V(1,  |H|) has exactly one node, V(0,  |H|) is the discrete set of rational curves. We let 
Cj → V(2 − j, |H|) be the respective restriction of the universal curve C|H| → |H| . For 
2 − j ≤ i ≤ 4 , consider the diagram

in which the lower horizontal map turns out to be generically injective [19, Theorem 6.4]. 
Hence, f j

i
 is generically finite. We define

This is a subvariety of codimension 5 − i , which is irreducible for j ≠ 2 . We have the fol-
lowing table of inclusions:

A generic point � ∈ W
j

i
 corresponds to a subscheme in S that contains exactly 7 − i − j 

points, which lie on a curve C ∈ V(2 − j, |H|) and the other i + j − 2 points can move 
freely outside C. Hence, [�] ∈ CH 0(S) is contained in the (2 − j) + (i + j − 2)-th step of 
O’Grady’s filtration. In other words,

and Wj

i
 is algebraically coisotropic.

g3 ∶ ℙ
2 × S[3] ⤏ S[5] and g1 ∶ Sym 2(ℙ2) × S ⤏ S[5]

Pi∶= im (gi) ⊂ S[5] for i = 1, 3.

S[7−i−j] × S[i+j−2]

s×id

S[5]

Sym7−i−j
V (2−j,|H|)(Cj)× S[i+j−2]

fj
i

S(7−i−j) × S[i+j−2],

W
j

i
∶= im (f

j

i
) ⊂ S[5].

W0
2

⊂ W0
3

⊂ W0
4

∪ ∪ ∪

W1
1

⊂ W1
3

⊂ W1
3

⊂ W1
4

∪ ∪ ∪ ∪

W2
0

⊂ W2
1

⊂ W2
2

⊂ W2
3

⊂ W2
4
.

W
j

i
⊂ FiS

[5]
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Remark 4.18 In [16, Proposition 4.4] it is shown that W0
2
 is the ℙ3-bundle over MH(0,H,−6) 

parameterizing extensions Ext 1
S
(E,OS(−H)) . Moreover, W0

3
⧵W0

2
 has the structure of a ℙ2

-bundle over a dense open subset of S ×MH(0,H,−5) . This bundle parameterizes ideal 
sheaves I ∈ MH(1, 0,−4) = S[5] that fit into an extension
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