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Abstract
We study p-adic L-functions Lp(s,�) for Dirichlet characters � . We show that Lp(s,�) 
has a Dirichlet series expansion for each regularization parameter c that is prime to p and 
the conductor of � . The expansion is proved by transforming a known formula for p-adic 
L-functions and by controlling the limiting behavior. A finite number of Euler factors can 
be factored off in a natural manner from the p-adic Dirichlet series. We also provide an 
alternative proof of the expansion using p-adic measures and give an explicit formula for 
the values of the regularized Bernoulli distribution. The result is particularly simple for 
c = 2 , where we obtain a Dirichlet series expansion that is similar to the complex case.

Keywords  p-adic L-Functions · Dirichlet Characters · Dirichlet Series · Euler Factors · 
Regularized Bernoulli Distributions · p-adic Measures

Mathematics Subject Classification  Primary: 11R23 · Secondary: 11R42 · 11S80 · 11M41

1  Introduction

Let p be a prime, let q = p if p is odd and q = 4 if p = 2 , and let � be a Dirichlet character 
of conductor f. A p-adic L-function Lp(s,�) for a Dirichlet character � is a p-adic mero-
morphic function and an analogue of the complex L-function. For powers of the Teich-
müller character � of conductor q, one obtains the p-adic zeta functions �p,i = Lp(s,�

1−i) , 
where i = 0, 1, … , p − 2 ( i = 0, 1 if p = 2 ). It is well known that Lp(s,�) is identically 
zero for odd � . p-adic L-functions have a long history and the primary constructions going 
back to Kubota-Leopoldt [6] and Iwasawa [3] are via the interpolation of special values of 
complex L-functions.
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It can also be shown that p-adic L-functions are in fact Iwasawa functions.
It is well known that for Re(s) > 0,

and, more generally, if c ≥ 2 is an integer,

where ac,n = 1 − c if n ≡ 0 mod c and ac,n = 1 if n ≢ 0 mod c . In the following, we derive 
similar, but slightly different, expansions for p-adic L-functions.

An explicit formula for Lp(s,�) is given in [9] (Theorem  5.11): let F be any mul-
tiple of q and f. Then Lp(s,�) is a meromorphic function (analytic if � ≠ 1) on 
{s ∈ ℂp | |s| < qp−1∕(p−1)} such that

In Sect. 2, we will use formula (1) to derive a Dirichlet series expansion of Lp(s,�).
p-adic L-functions can be also be defined using distributions and measures. Let � have 

conductor f = dpm with (d, p) = 1 . Choose an integer c ≥ 2 , where (c, dp) = 1 . Then there 
is a measure E1,c on (ℤ∕dℤ)× × ℤ

×
p
 (the regularized Bernoulli distribution) such that

(see [9] Theorem 12.2). In Sect. 3, we give an explicit formula for the values of E1,c and 
derive the Dirichlet series expansion from (2).

The expansion is particularly simple for c = 2 , and this parameter can be used for p ≠ 2 
and Dirichlet characters with odd conductor. For this case we obtain similar results as in [1, 
2], and [4]. In Sect. 4, we provide examples for different parameters c.

2 � Expansions of p‑adic L‑functions

First, we derive an approximation of Lp(s,�) that is close to the original definition of 
Kubota-Leopoldt (see [6]).

For r ∈ ℂ
×
p
 we write �(r) for a term with p-adic absolute value ≤ |r|.

Proposition 2.1  Let p be a prime number, � an even Dirichlet character of conductor f, 
and F a multiple of q and f. For s ∈ ℂp with |s| < qp−1∕(p−1) , we have

(1 − 21−s)� (s) =

∞∑
n=1

(−1)n+1

ns

(1 − �(c)c1−s)L(s,�) =

∞∑
n=1

�(n)
ac,n

ns
,

(1)Lp(s,�) =
1

F

1

s − 1

F�
a=1
p∤a

�(a)⟨a⟩1−s
∞�
j=0

�
1 − s

j

��
F

a

�j

Bj.

(2)−(1 − �(c)⟨c⟩1−s)Lp(s,�) = ∫(ℤ∕dℤ)××ℤ×
p

��
−1(a)⟨a⟩−s dE1,c
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Proof  We use formula (1) above and look at the series 
∑∞

j=0

�
1 − s

j

��
F

a

�j

Bj . The first two 

terms are 1 + (1 − s)
−F

2a
 . We claim that the p-adic absolute value of the other terms ( j ≥ 2 ) 

is less than or equal to |(s − 1)F2∕qp| . To this end, we note that |1∕j!| ≤ p(j−1)∕(p−1) and

since we assumed that |s| < qp−1∕(p−1) . Since |F| ≤ 1

q
 , |a| = 1 , and |Bj| ≤ p , we obtain

Then (1) implies

It remains to show that the second sum can be absorbed into �(F∕qp) . We have

The last step can be justified by noting that

since |s| < qp−1∕(p−1) (this is the same estimate as earlier, without the presence of the Ber-
noulli number). This proves the proposition. 	�  ◻

Remark 2.2  For F = fpn and n → ∞ , formula (3) gives the original definition of Lp(s,�) by 
Kubota and Leopoldt (see [6]).

Remark 2.3  Suppose that p ≠ 2 . Then the error term in the above Proposition (as well as in 
the following Theorem 2.4) can be improved to �(F∕p2−(p−2)∕(p−1)) . First we note that Bj = 0 
for odd j ≥ 3 . By the von Staudt–Clausen Theorem (see [9] 5.10), we have for even j ≥ 2 : 

(3)Lp(s,�) =
1

F

1

s − 1

F�
a=1
p∤a

�(a)⟨a⟩1−s + �(F∕qp).

|||||

(
1 − s

j

)|||||
≤ |1 − s| p(j−1)∕(p−1)(qp−1∕(p−1))j−1 = |1 − s| qj−1

|||||

(
1 − s

j

)(
F

a

)j

Bj

|||||
≤ |1 − s| qj−1q2−j|F|2 p = |1 − s| |F|2 qp.

Lp(s,�) =
1

F

1

s − 1

F�
a=1
p∤a

�(a)⟨a⟩1−s + 1

2

F�
a=1
p∤a

��
−1(a)⟨a⟩−s + �(F∕qp).

F�
a=1
p∤a

��
−1(a)⟨a⟩−s =

F�
b=1
p∤b

��
−1(F − b)⟨F − b⟩−s

= −

F�
b=1
p∤b

��
−1(b)⟨b − F⟩−s

= −

F�
b=1
p∤b

��
−1(b)⟨b⟩−s + �(F∕qp−1∕(p−1)).

⟨b − F⟩−s
⟨b⟩−s =

�
1 −

F

b

�−s

= 1 +

∞�
j=1

�
−s

j

��
−F

b

�j

= 1 + �(F∕qp−1∕(p−1)),
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|Bj| = p iff (p − 1) ∣ j , and otherwise |Bj| ≤ 1 . Furthermore, |1∕j!| = p(j−Sj)∕(p−1) , where 
Sj is the sum of the digits of j, written to the base p (see [5]). Since j ≡ Sj mod (p − 1) , 
j ≡ 0 mod (p − 1) is equivalent to Sj ≡ 0 mod (p − 1) . We conclude that |Bj| = p yields 
Sj ≥ p − 1 and |1∕j!| ≤ p(j−1)∕(p−1)p−(p−2)∕(p−1) . This implies the above error term. We also 
see that this error term cannot be further improved.� ◊

Now we give the Dirichlet expansion of Lp(s,�) . For m ∈ ℕ , we denote by {x}m the 
unique representative of x mod mℤ between 0 and m − 1.

Theorem 2.4  Let p be a prime number, � be an even Dirichlet character of conductor f, 
and F a multiple of q and f. Let c > 1 be an integer satisfying (c,F) = 1 . For a ∈ ℤ , define

Then we have for s ∈ ℂp with |s| < qp−1∕(p−1) the formula

Proof  Use (3) with cF in place of F, and subtract �(c)⟨c⟩1−s times (3) with F, to obtain

Let 0 < a0 < F with (a0, p) = 1 . Since we assumed (c, F) = 1 and p ∣ F , there is a unique 
number of the form a0c with 0 < a0c < cF and (a0c, p) = 1 in each congruence class mod-
ulo F relatively prime to p. The first sum in (4) can be written as

Note that | a−a0c
a0c

| ≤ |F| , so this is the same type of estimate used in the proof of Proposi-
tion 2.1. Subtracting the second sum in (4) yields

�a,c,F =
c − 1

2
− {−aF−1}c ∈

{
−
c − 1

2
, −

c − 1

2
+ 1, … ,

c − 1

2

}
.

−(1 − �(c)⟨c⟩1−s)Lp(s,�) =
F�

a=1
p∤a

��
−1(a)⟨a⟩−s�a,c,F + �(F∕qp).

(4)

(1 − �(c)⟨c⟩1−s)Lp(s,�) = 1

cF

1

s − 1

cF�
a=1
p∤a

�(a)⟨a⟩1−s

−
1

F

1

s − 1

F�
a=1
p∤a

�(ac)⟨ac⟩1−s + �(F∕qp).

1

cF

1

s − 1

F�
a0=1
p∤a0

�(a0c)⟨a0c⟩1−s
⎛
⎜⎜⎜⎝

cF�
a=1

a≡a0c mod F

�
1 +

a − a0c

a0c

�1−s
⎞⎟⎟⎟⎠

=
1

cF

1

s − 1

F�
a0=1
p∤a0

�(a0c)⟨a0c⟩1−s
⎛⎜⎜⎜⎝

cF�
a=1

a≡a0c mod F

�
1 + (1 − s)

a − a0c

a0c

�⎞⎟⎟⎟⎠
+ �(F∕q).
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We compute the inner sum. Let b = {a0c}F . Then a0c = b + {−F−1b}c F , since the latter 
sum is congruent to b modulo F and congruent to 0 modulo c. If a satisfies a ≡ a0c mod F 
and 0 < a < cF , then a = b + jF with 0 ≤ j < c . Hence

Since b ≡ a0c mod F , we have ��−1(b)⟨b⟩−s = ��
−1(a0c)⟨a0c⟩−s + �(F∕q) by the same 

estimate as earlier, so

This completes the proof. 	�  ◻

We can take the limit of F = fpn as n → ∞ and obtain:

Corollary 2.5  Let p be a prime number, � an even Dirichlet character of conductor f, and 
c > 1 an integer satisfying (c, pf ) = 1 . Then we have for s ∈ ℂp with |s| < qp−1∕(p−1),

The next Theorem shows that a finite number of Euler factors can be factored off in a 
similar way as in [8], where a weak Euler product was obtained. The main statement is that 
the remaining Dirichlet series has the expected form, similar to the complex case.

Theorem 2.6  Let p be a prime number and let � be an even Dirichlet character of conduc-
tor f. Let S be any finite (or empty) set of primes not containing p and set S+ = S ∪ {p} . 
Let F be a multiple of q, f and all primes in S. Let c > 1 be an integer satisfying (c,F) = 1 . 
Then we have for s ∈ ℂp with |s| < qp−1∕(p−1) the formula

(1 − �(c)⟨c⟩1−s)Lp(s,�)

=
−1

cF

F�
a0=1
p∤a0

�(a0c)⟨a0c⟩1−s
⎛
⎜⎜⎜⎝

cF�
a=1

a≡a0c mod F

a − a0c

a0c

⎞
⎟⎟⎟⎠
+ �(F∕qp)

=
−1

c

F�
a0=1
p∤a0

��
−1(a0c)⟨a0c⟩−s

⎛
⎜⎜⎜⎝

cF�
a=1

a≡a0c mod F

a − a0c

F

⎞
⎟⎟⎟⎠
+ �(F∕qp).

cF∑
a=1

a≡a0c mod F

a − a0c

F
=

c−1∑
j=0

(j − {−F−1b}c) = c �b,c,F .

−(1 − �(c)⟨c⟩1−s)Lp(s,�) =
F�

b=1
p∤b

��
−1(b)⟨b⟩−s�b,c,F + �(F∕qp).

−(1 − �(c)⟨c⟩1−s)Lp(s,�) = lim
n→∞

fpn�
a=1
p∤a

��
−1(a)

�a,c,fpn

⟨a⟩s .

−(1 − �(c)⟨c⟩1−s) ⋅�
l∈S

(1 − ��
−1(l)⟨l⟩−s) ⋅ Lp(s,�) =

F�
a=1

(a,S+)=1

��
−1(a)

�a,c,F

⟨a⟩s + �(F∕qp).
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Proof  We prove the statement by induction on |S|. By Theorem 2.4, the formula is true for 
S = ∅ . Now assume the formula is true for S, and l ≠ p is a prime with l ∉ S and (c, l) = 1 . 
It suffices to prove the following formula:

Note that �1 − ��
−1(l)⟨l⟩−s� ≤ 1 and |lF| = |F| , so we can keep the error term. We can use 

lF in place of F and write the left side of (5) as

Now we have

Thus (6) is equal to

which shows equation (5).
	�  ◻

Remark 2.7  What happens if S contains more and more primes? It is well known that the 
Euler product does not converge p-adically (see [2]), since the factors (1 − ��

−1(l)⟨l⟩−s) 
have absolute value ≤ 1 and do not converge to 1 as l → ∞ . Furthermore, there are infi-
nitely many primes l with ��−1(l) = 1 and (1 − ⟨l⟩−s)−1 has a pole at s = 0 . We have for 
l ≠ p and |s| < qp−1∕(p−1),

The p-adic absolute value of each term of the above series is less than

Hence the product 
∏

l∈S(1 − ��
−1(l)⟨l⟩−s) approaches 0 as S expands to include all primes.

(5)

(1 − ��
−1(l)⟨l⟩−s)

F�
a=1

(a,S+)=1

��
−1(a)⟨a⟩−s�a,c,F =

lF�
a=1

(a,S+∪{l})=1

��
−1(a)⟨a⟩−s�a,c,lF + �(F∕qp).

(6)

lF�
a=1

(a,S+)=1

��
−1(a)⟨a⟩−s�a,c,lF −

F�
a=1

(a,S+)=1

��
−1(la)⟨la⟩−s�a,c,F + �(F∕qp).

�la,c,lF =
c − 1

2
− {−la(lF)−1}c =

c − 1

2
− {−aF−1}c = �a,c,F .

lF�
a=1

(a,S+)=1

��
−1(a)⟨a⟩−s�a,c,lF −

F�
a=1

(a,S+)=1

��
−1(la)⟨la⟩−s�la,c,lF + �(F∕qp)

=

lF�
a=1

(a,S+)=1
l∤a

��
−1(a)⟨a⟩−s�a,c,lF + �(F∕qp),

1 − ⟨l⟩−s = −

∞�
j=1

�
−s

j

�
(⟨l⟩ − 1)j.

(qp−1∕(p−1))jp(j−1)∕(p−1)q−j = p−1∕(p−1) < 1.
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3 � Regularized Bernoulli distributions

Let p be a prime number and let d be a positive integer with (d, p) = 1 . Define 
Xn = (ℤ∕dpnℤ) and X = lim

←����������

Xn ≅ ℤ∕dℤ × ℤp . Let k ≥ 1 be an integer. Then the Ber-
noulli distribution Ek on X is defined by

where Bk(x) is the k-th Bernoulli polynomial and Bk = Bk(0) are the Bernoulli numbers 
(see [5, 7]). For k = 1 , one has B1(x) = x −

1

2
 . Choose c ∈ ℤ with c ≠ 1 and (c, dp) = 1 . 

Then the regularization Ek,c of Ek is defined by

One shows that the regularized Bernoulli distributions Ek,c are measures (see [7]). In the 
following, we consider only k = 1 ; the cases k ≥ 2 are similar.

Theorem 3.1  Let p be a prime, c, d ∈ ℕ , and c ≥ 2 such that (c, dp) = 1 . Let X be as above, 
and let E1,c be the regularized Bernoulli distribution on X. For a ∈ {0, 1,… , dpn − 1} , we 
have

Proof  By definition,

We give the standard representative of c−1a mod dpn:

Note that the numerator is divisible by c, since {−a(dpn)−1}c dpn ≡ −a mod c . Hence the 
quotient is an integer between 0 and dpn − 1 . Furthermore, the numerator is congruent to a 
modulo dpn , and so the quotient has the desired property. We obtain

which is the assertion. 	�  ◻

Now the Dirichlet series expansion in Corollary 2.5 follows from Theorem 3.1 and 
the integral formula (2).

Ek(a + dpnX) = (dpn)k−1
1

k
Bk

(
{a}dpn

dpn

)
,

Ek,c(a + dpnX) = Ek(a + dpnX) − ckEk

({
a

c

}
dpn

+ dpnX

)
.

E1,c(a + dpnX) =
c − 1

2
− {−a(dpn)−1}c = �a,c,dpn .

E1,c(a + dpnX) = E1(a + dpnX) − cE1(c
−1a + dpnX) =

a

dpn
−

1

2
− c

(
{c−1a}dpn

dpn

)
+

c

2
.

{c−1a}dpn =
{−a(dpn)−1}c dp

n + a

c

E1,c(a + dpnX) =
a

dpn
+

c − 1

2
−

{−a(dpn)−1}c dp
n + a

dpn
=

c − 1

2
− {−a(dpn)−1}c
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4 � Expansions for different regularization parameters

We look at the coefficients �a,c,dpn for different parameters c and the resulting Dirichlet 
series expansions. The following observation follows directly from the definition.

Remark 4.1  The sequence of values E1,c(a + dpnX) = �a,c,dpn for a = 0,1, 2, … , dpn − 1 is 
periodic with period c. The sequence begins with c−1

2
 and continues with a permutation 

of c−3
2
,… ,−

c−1

2
 . If we restrict to values of n such that dpn lies in a fixed congruence class 

modulo c, then the values do not change as n → ∞ .  � ◊

The measure E1,c and the Dirichlet series expansion are particularly simple 
for c = 2 . Note that we assumed that d and p are odd in this case. If a is even, then 
{−a(dpn)−1}2 = 0 and

If a is odd, then −a(dpn)−1 is odd, {−a(dpn)−1}2 = 1 and

Hence E1,2 is up to the factor 1
2
 equal to the following simple measure:

Definition 4.2  Let p ≠ 2 be a prime, and let X ≅ ℤ∕dℤ × ℤp be as above. Then

defines a measure on X. We call � the alternating measure, since the measure of all clopen 
balls is ±1.� ◊

The corresponding integral is also called the fermionic p-adic integral (see [4]).
Now we obtain the following Dirichlet series expansion from Corollary 2.5.

Corollary 4.3  Let p ≠ 2 be a prime number, and let � be an even Dirichlet character of odd 
conductor f. Then we have for s ∈ ℂp with |s| < p(p−2)∕(p−1),

For � = �
1−i and odd i = 1, … , p − 2 , we obtain the branches of the p-adic zeta function:

Remark 4.4  Dirichlet series expansions of p-adic L-functions were studied by D. Del-
bourgo in [1] and [2]. He considers Dirichlet characters � satisfying (p, 2f�(f )) = 1 and 
their Teichmüller twists. We obtain the same expansion for c = 2 and � = �

1−i . However, 
we require (c, fp) = 1 and use other methods for the proof.

E1,2(a + dpnX) = �a,2,dpn =
1

2
.

E1,2(a + dpnX) = �a,2,dpn = −
1

2
.

�(a + dpnX) = (−1){a}dpn

(1 − �(2)⟨2⟩1−s)Lp(s,�) = lim
n→∞

1

2

fpn�
a=1
p∤a

(−1)a+1��−1(a)
1

⟨a⟩s .

�p,i(s) = Lp(s, �
1−i) =

1

1 − �(2)1−i⟨2⟩1−s ⋅ limn→∞

1

2

pn�
a=1
p∤a

(−1)a+1�(a)−i
1

⟨a⟩s
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Similar expansions for a slightly different p-adic L-function using a fermionic p-adic 
integral (i.e., c = 2 ) were also obtained by M.-S. Kim and S. Hu (see [4]).

Example 4.5  We look at the case c = 3 . The sequence of values �a,3,dpn is periodic with 
period 3. If dpn ≡ 1 mod 3 , then the sequence is 1, −1, 0, … . If dpn ≡ 2 mod 3 , then we 
obtain the sequence 1, 0, −1, … .

Corollary 4.6  Let p be a prime number, and let � be an even Dirichlet character of conduc-
tor f = dpm such that (3, dp) = 1 . If d ≡ 1 mod 3 , then define a sequence �0 = 1 , �1 = −1 , 
�2 = 0 , … with period 3. Otherwise, set �0 = 1 , �1 = 0 , �2 = −1 and extend it with period 3. 
Then we have for s ∈ ℂp with |s| < qp−1∕(p−1),

Example 4.7  For c = 5 , we get a periodic sequence with period 5 and we have �a,5,dpn = 2 
for a ≡ 0 mod 5 . The next four coefficients are a permutation of the values −2 , −1 , 0 and 1, 
depending on the class of dpn mod 5.

Example 4.8  Let c = 7 . Then �0,7,dpn = 3 . Now suppose, for example, that dpn ≡ 3 mod 7 . 
Then (dpn)−1 ≡ 5 mod 7 . This yields the values

and these are extended with period 7.
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