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Abstract
In this paper we investigate growth properties and the zero distribution of polynomials 
attached to arithmetic functions g and h, where g is normalized, of moderate growth, and 
0 < h(n) ≤ h(n + 1) . We put Pg,h

0
(x) = 1 and 

As an application we obtain the best known result on the domain of the non-vanishing 
of the Fourier coefficients of powers of the Dedekind �-function. Here, g is the sum of 
divisors and h the identity function. Kostant’s result on the representation of simple com-
plex Lie algebras and Han’s results on the Nekrasov–Okounkov hook length formula are 
extended. The polynomials are related to reciprocals of Eisenstein series, Klein’s j-invari-
ant, and Chebyshev polynomials of the second kind.

Keywords Arithmetic functions · Dedekind eta function · Fourier coefficients · 
Polynomials · Recurrence relations
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Pg,h
n
(x) ∶=

x

h(n)

n
∑

k=1

g(k)P
g,h

n−k
(x).
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1 Introduction

Properties of coefficients of generating series [27], especially Fourier coefficients of powers of 
the Dedekind �-function have been in the focus of research since the times of Euler [1, 2, 16, 
20, 23, 25]:

Here, q ∶= e2�i� , Im (𝜏) > 0 and r ∈ ℤ . The coefficients are special values of the D’Arcais 
polynomials Pn(x) [6, 7, 22, 26]. It has been recently noticed that the growth and vanishing 
properties of these polynomials have much in common with properties of other interesting 
polynomials [10, 13]. These include special orthogonal polynomials, such as associated 
Laguerre polynomials and Chebyshev polynomials of the second kind. Also included are 
polynomials attached to reciprocals of the Klein’s j-invariant and Eisenstein series [12, 14].

In this paper we investigate growth properties and the zero distribution of polynomials 
attached to arithmetic functions g and h inspired by Rota [18].

Let g be normalized and of moderate growth. Further, let 0 < h(n) ≤ h(n + 1) . We put 
P
g,h

0
(x) = 1 and

This definition includes all mentioned examples. Before providing examples and explicit 
formulas for these polynomials, we give one application for the coefficients of the Dede-
kind �-function. Let g(n) = �(n) ∶=

∑

d∣n d , h(n) = id(n) = n and an(r) be defined by (1), 
the nth coefficient of the rth power of the Dedekind �-function. Let P�

n
(x) ∶= P�,id

n
(x) , then

Han [9] observed that the Nekrasov–Okounkov hook length formula [21, 26] implies that 
an(r) ≠ 0 if r > n2 − 1 . This improves a previous result by Kostant [17]. In [13] we proved 
that

Numerical investigations show that � has to be larger than 9.5 (see Table 5). In the present 
paper we prove that (3) is already true for � = 10.82.

Since the definition of Pg,h
n (x) is quite abstract, we provide two examples of families of 

polynomials, to familiarize the reader with the types of polynomials we are studying. At first, 
they appear to have nothing in common.

Let us start with the Nekrasov–Okounkov hook length formula [21]. Let �(�) be the Dede-
kind �-function. Let � be a partition of n and let |�| = n . By H(�) we denote the multiset of 
hook lengths associated with � and by P the set of all partitions.

Partitions are presented by their Young diagram. Let � = (7, 3, 2) . Then n = |�| = 12 : 

(1)�(�)
r ∶= q

r

24

∞
∏

m=1

(1 − qm)
r
= q

r

24

∞
∑

n=0

an(r)q
n.

(2)Pg,h
n
(x) ∶=

x

h(n)

n
∑

k=1

g(k)P
g,h

n−k
(x).

an(r) = P�

n
(−r).

(3)an(r) ≠ 0 holds for r > 𝜅 ⋅ (n − 1) where 𝜅 = 15.
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We attach to each cell u of the diagram the arm au(�) , the amount of cells in the 
same row of u to the right of u. Further we have the leg �u(�) , the number of cells in 
the same column of u below of u. The hook length hu(�) of the cell u is given by 
hu(�) ∶= au(�) + �u(�) + 1 . Then the hook length multiset H(�) is the multiset of all hook 
lengths of � . The example gives

The list is given from left to right and from top to bottom in the Young diagram. Cells have 
the coordinates (i, j) following the same procedure. We refer to Han [9] and [11].

The Nekrasov–Okounkov hook length formula ([9], Theorem 1.2) states that

The identity (4) is valid for all z ∈ ℂ . Note that the P�

n
(x) are integer-valued polynomials of 

degree n. From the formula it follows that (−1)nP𝜎

n
(x) > 0 for all real x < 1 − n2.

The second example is of a more artificial nature, discovered recently [12], when study-
ing the q-expansion of the reciprocals of Klein’s j-invariant and reciprocals of Eisenstein 
series [4, 5, 14]. Let

denote Klein’s j-invariant. Asai, Kaneko, and Ninomiya [3] proved that the coefficients of 
the q-expansion of 1∕j(�) are non-vanishing and have strictly alternating signs. This fol-
lows from their result on the zero distribution of the nth Faber polynomials �n(x) and the 
denominator formula for the monster Lie algebra. The zeros of the Faber polynomials are 
simple and lie in the interval (0, 1728). Asai, Kaneko, and Ninomiya obtained the remark-
able identity:

Let c∗(n) ∶= c(n)∕744 . Define the polynomials Qj,n(x) by

We have proved in [12] that Qj,n(x) = Q�2,n
(x) + 2xQ�

�2,n
(x) +

x2

2
Q��

�2,n
(x) , where Q�2,n

(x) are 
polynomials attached to Weber’s cubic root function �2 of j in a similar way. We have also 
proved that Q�2,n

(z) ≠ 0 for all |z| > 82.5 . Hence, the identity

H(�) = {9, 8, 6, 4, 3, 2, 1, 4, 3, 1, 2, 1}.

(4)
∞
∑

n=0

P�

n
(z) qn =

∑

�∈P

q|�|
∏

h∈H(�)

(

1 +
z − 1

h2

)

= q
z

24 �(�)−z.

j(�) =

∞
∑

n=−1

c(n)qn = q−1 + 744 + 196884q +⋯

1

j(�)
=

∞
∑

n=1

�
�

n
(0)

qn

n
.

∞
�

n=0

Qj,n(x) q
n ∶=

1

1 − x
∑∞

n=1
c∗(n) qn

.
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restates and extends the result of [3].
Now, let g(n) be a normalized arithmetic function with moderate growth, such that 

∑∞

n=1
�g(n)�Tn is analytic at T = 0 . Then the illustrated examples are special cases of poly-

nomials Pg
n(x) and Qg

n(x) defined by

Note that Pid
n
(x) =

x

n
L
(1)

n−1
(−x) are essentially associated Laguerre polynomials (see [10]). 

Letting g(n) = �(n) , then we recover the polynomials provided by the Nekrasov–Okounkov 
hook length formula. The polynomials Qid

n
(x) are related to the Chebyshev polynomials of 

the second kind [15].
It is easy to see that Pg

n(x) and Qg
n(x) are special cases of polynomials Pg,h

n (x) defined by 
the recursion formula (2). Here, Pg

n(x) = P
g,id
n (x) and Qg

n(x) = P
g,�
n (x) . In the next section, 

we state the main results of this paper.

2  Statement of main results

Let g, h be arithmetic functions. Assume that g be normalized and 0 < h(n) ≤ h(n + 1) . It 
is convenient to extend h by h(0) ∶= 0.

We start by recalling what is known [12, 13, 15]. Assume that 
G1(T) ∶=

∑∞

k=1
�g(k + 1)�Tk has a positive radius R of convergence. Let 𝜅 > 0 be given, 

such that G1(2∕�) ≤
1

2
 . Let x ∈ ℂ . Then we have for all |x| > 𝜅 h(n − 1):

This implies that Pg,h
n (x) ≠ 0 for all |x| > 𝜅 h(n − 1) and (−1)nPg,h

n (x) > 0 if x < −𝜅h(n − 1) . 
Let g(n) = �(n) . In [13] we proved that � = 15 is an acceptable value.

In the following we state our two main results: Improvement A and Improvement B.

2.1  Improvement A

The following result reproduces our previous result (6), if we choose � =
1

2
.

Theorem 1 Let 0 < 𝜀 < 1 . Let R > 0 be the radius of convergence of

��
n
(0)

n
= Qj,n(−744) =

(

Q�2,n
(x) + 2xQ�

�2,n
(x) +

x2

2
Q��

�2,n
(x)

)

|x=−248

(5)

∞
�

n=0

Pg
n
(x) qn = exp

�

x

∞
�

n=1

g(n)
qn

n

�

,

∞
�

n=0

Qg
n
(x) qn =

1

1 − x
∑∞

n=1
g(n)qn

.

(6)
|x|

2 h(n)
|P

g,h

n−1
(x)| < |Pg,h

n
(x)| <

3 |x|

2 h(n)

|

|

|

P
g,h

n−1
(x)

|

|

|

.

G1(T) =

∞
∑

k=1

|g(k + 1)|Tk.
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Let 0 < T𝜀 < R be such that G1

(

T�
)

≤ � and � = �� =
1

1−�

1

T�
 . Then

if |x| > 𝜅 h(n − 1) for all n ≥ 1.

This result can be reformulated in the following way, which is more suitable for applica-
tions to growth and non-vanishing properties.

Theorem 2 Let 0 < 𝜀 < 1 . Let R > 0 be the radius of convergence of

Let 0 < T𝜀 < R be such that G1

(

T�
)

≤ � and � = �� =
1

1−�

1

T�
 . Then

if |x| > 𝜅 h(n − 1) for all n ≥ 1.

Corollary 1 Let � be chosen as in Theorem 1 or as in Theorem 2. Then

Proof This follows from Theorem 2, since (1 − �)
|x|

h(n)
≠ 0 and Pg,h

0
(x) = 1 .   ◻

We note that the smallest possible � is independent of the function h(n). It is also pos-
sible to provide a lower bound for the best possible �.

Proposition 1 The constant �� obtained in Theorem 1 has the following lower bound:

As a lower bound independent of � we have 4|g(2)|.

Proof If we consider only the first order term of the power series

then for positive T we always have G1(T) =
∑∞

k=1
�g(k + 1)�Tk ≥ �g(2)�T  . Thus, G1(T) > 𝜀 

if T >
𝜀

|g(2)|
 . The case G1(T) ≤ � is only possible if T ≤

�

|g(2)|
 . This forces T� ≤

�

|g(2)|
.

Applying the last inequality now to

(7)
|

|

|

|

Pg,h
n
(x) −

x

h(n)
P
g,h

n−1
(x)

|

|

|

|

< 𝜀
|x|

h(n)

|

|

|

P
g,h

n−1
(x)

|

|

|

,

G1(T) =

∞
∑

k=1

|g(k + 1)|Tk.

(1 − 𝜀)
|x|

h(n)

|

|

|

P
g,h

n−1
(x)

|

|

|

<
|

|

|

Pg,h
n
(x)

|

|

|

< (1 + 𝜀)
|x|

h(n)

|

|

|

P
g,h

n−1
(x)

|

|

|

,

Pg,h
n
(x) ≠ 0 for |x| > 𝜅 h(n − 1).

�� ≥
|g(2)|

(1 − �)�
.

G1(T) =

∞
∑

k=1

|g(k + 1)|Tk,

�� ∶=
1

(1 − �)T�
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from Theorem 1 shows the lower bound �� ≥
|g(2)|

(1−�)�
 in the proposition depending on � . The 

minimal value of this lower bound is at � =
1

2
 because of the inequality of arithmetic and 

geometric means (1 − �)� ≤

(

1−�+�

2

)2

=
1

4
 .   ◻

2.2  Improvement B

Theorem 3 Let 0 < 𝜀 < 1 . Let R > 0 be the radius of convergence of

Let 0 < T𝜀 < R be such that G2

(

T�
)

≤ � and

Then

if |x| > 𝜅 h(n − 1) for all n ≥ 1.

Theorem 4 Let 0 < 𝜀 < 1 . Let R > 0 be the radius of convergence of

Let 0 < T𝜀 < R be such that G2

(

T�
)

≤ � and

Then

if |x| > 𝜅 h(n − 1) for all n ≥ 1.

Corollary 2 Let � be chosen as in Theorem 3 or as in Theorem 4. Then

Proposition 2 The constant �� obtained in Theorem 3 has the following lower bound:

G2(T) =

∞
∑

k=2

|g(k + 1) − g(2)g(k)|Tk.

� = �� ∶=
1

1 − �

(

1

T�
+ |g(2)|

)

.

(8)
|

|

|

|

Pg,h
n
(x) −

x + g(2)h(n − 1)

h(n)
P
g,h

n−1
(x)

|

|

|

|

< 𝜀
|x|

h(n)

|

|

|

P
g,h

n−1
(x)

|

|

|

G2(T) =

∞
∑

k=2

|g(k + 1) − g(2)g(k)|Tk.

� = �� ∶=
1

1 − �

(

1

T�
+ |g(2)|

)

.

(9)

|x + g(2)h(n − 1)| − 𝜀|x|

h(n)

|

|

|

P
g,h

n−1
(x)

|

|

|

<
|

|

|

Pg,h
n
(x)

|

|

|

<
|x + g(2)h(n − 1)| + 𝜀|x|

h(n)

|

|

|

P
g,h

n−1
(x)

|

|

|

(10)Pg,h
n
(x) ≠ 0 for |x| > 𝜅 h(n − 1).
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As a lower bound independent of � we have 3
2

√

3
|

|

|

(g(2))2 − g(3)
|

|

|

+ |g(2)|.

Proof If we consider only the second order term of the power series 
G2(T) =

∑∞

k=2
�g(k + 1) − g(2)g(k)�Tk , then for positive T we always have

Thus, G2(T) > 𝜀 if T >

√

𝜀

|
(g(2))2−g(3)

|

 . The case G2(T) ≤ � is only possible if 

T ≤

√

�

|
(g(2))2−g(3)

|

 . This forces T� ≤
√

�

|
(g(2))2−g(3)

|

.

Applying the last inequality now to

from Theorem 3 shows the lower bound �� ≥
1

1−�

(
√

|
(g(2))2−g(3)

|

�
+ |g(2)|

)

 in the proposi-

tion depending on �.
It is clear that

for 0 < 𝜀 < 1 . To estimate �� independent of � we consider the right hand side of the last 
inequality as a function in � . Thus, we are interested in the minimal value of this function 
for 0 < 𝜀 < 1 . The inequality of arithmetic and geometric means yields

We obtain 3
2

√

3
|

|

|

(g(2))2 − g(3)
|

|

|

+ |g(2)| .   ◻

2.3  Comparing improvement A and improvement B

Let 0 < 𝜀1 < 1 and T�1 as in Theorem 1. For all T ≥ 0 we have that

�� ≥
1

1 − �

⎛

⎜

⎜

⎜

⎝

�

�

�

�

�

�

�

(g(2))2 − g(3)
�

�

�

�
+ �g(2)�

⎞

⎟

⎟

⎟

⎠

.

G2(T) =

∞
∑

k=2

|g(k + 1) − g(2)g(k)|Tk
≥
|

|

|

(g(2))2 − g(3)
|

|

|

T2.

�� ∶=
1

1 − �

(

1

T�
+ |g(2)|

)

1

1 − �

⎛

⎜

⎜

⎜

⎝

�

�

�

�

�

�

�

(g(2))2 − g(3)
�

�

�

�
+ �g(2)�

⎞

⎟

⎟

⎟

⎠

≥
1

1 − �

�

�

�

�

�

�

�

(g(2))2 − g(3)
�

�

�

�
+ �g(2)�

(1 − �)�1∕2 =2((1 − �)∕2)1∕2 ⋅ ((1 − �)∕2)1∕2 ⋅ �1∕2

≤2

�

(1 − �)∕2 + (1 − �)∕2 + �

3

�3∕2

=
2

3
√

3
.
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Let �2 be such that

Then

This shows that we can choose T�2 = T�1 as the corresponding T� from Theorem 3.
Let �1,� and �2,� be the respective constants from Theorems 1 and 3. Then

This shows that the minimal value of the �2,� is never larger than the minimal value of the 
�1,�.

3  Applications

3.1  Toy example

Let us consider the case g(n) = 1 for all n ∈ ℕ . We observe that G2(T) = 0 for all T. Let 
0 < 𝜀 < 1 . Then we apply Theorem 4. For all |x| > 1

1−𝜀
h(n − 1) we obtain

Let � → 0 , then for all |x| > h(n − 1):

Then, �
�

P�,h
n
(x)�

�

=
∏n−1

k=0

�x+h(k)�

h(k+1)
 (we define h(0) ∶= 0 ). Since P�,h

1
(x) = x∕h(1) and P�,h

n
(x) is a 

polynomial of degree n with positive leading coefficient, it follows:

G2(T) ≤

∞
∑

k=2

(|g(k + 1)| + |g(2)g(k)|)Tk

=(1 + |g(2)|T)G1(T) − |g(2)|T .

(

1 + |g(2)|T𝜀1

)

G1

(

T𝜀1

)

− |g(2)|T𝜀1 ≤ 𝜀2 ≤
(

1 + |g(2)|T𝜀1

)

𝜀1 − |g(2)|T𝜀1 < 1.

0 ≤ G2

(

T�1

)

≤
(

1 + |g(2)|T�1

)

G1

(

T�1

)

− |g(2)|T�1 ≤ �2.

�2,�2
=

1

1 − �2

(

1

T�1

+ |g(2)|

)

=
1

1 − �2

(

1 + |g(2)|T�1

) 1

T�1

≤
1

1 −
(

1 + |g(2)|T�1

)

�1 + |g(2)|T�1

(

1 + |g(2)|T�1

) 1

T�1

=
1

1 − �1

1

T�1

= �1,�1
.

|x + h(n − 1)| − 𝜀|x|

h(n)

|

|

|

P
�,h

n−1
(x)

|

|

|

<
|

|

|

P�,h
n
(x)

|

|

|

<
|x + h(n − 1)| + 𝜀|x|

h(n)

|

|

|

P
�,h

n−1
(x)

|

|

|

.

|x + h(n − 1)|

h(n)

|

|

|

P
�,h

n−1
(x)

|

|

|

≤
|

|

|

P�,h
n
(x)

|

|

|

≤
|x + h(n − 1)|

h(n)

|

|

|

P
�,h

n−1
(x)

|

|

|

.

P�,h
n
(x) =

x(x + h(1))⋯ (x + h(n − 1))

h(1)⋯ h(n)
.
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3.2  Reciprocals of Eisenstein series

Let �k(n) =
∑

d�n d
k and let Bk be the kth Bernoulli number. Then we define Eisenstein 

series of weight k:

In [3] it was indicated that the q-expansion of the reciprocal of 
E4(�) = 1 + 240

∑∞

n=1
�3(n) q

n given by

has strictly alternating sign changes: (−1)n𝛽n > 0 . Let �1 =
1

25
 and �2 =

1

982
 . We can 

chose � in Theorems 1–4, such that 240 > 𝜅 . (In both cases T� =
87

20000
 does the job. Then 

�1 =
62500

261
≈ 239.46 and �2 =

20408906

85347
≈ 239.13 . Note that an approximation of the small-

est possible value that can be obtained by our method is �2 =
539

16
≈ 33.7 . This we obtain 

for �2 =
5

21
 and T�2 =

3

20
.)

Proof of �1 ≤
62500

261
 and �2 ≤

20408906

85347
 Let T� =

87

20000
 . Let further �1 =

1

25
 and �2 =

1

982
 . 

We have the well-known estimate

Thus, �3(k) ≤ 3k3∕2 ≤ 9

(

k + 2

3

)

 . Let c1(k) = �3(k + 1) for k ≤ 2 and c1(k) = 9

(

k + 3

3

)

 

for k ≥ 3 . Then G1(T) ≤
∑∞

k=1
c1(k)T

k = 9
1

(1−T)4
− 9 − 27T − 62T2 and

Thus, �1 ≤
20000

87

25

24
=

62500

261
≈ 239.46.

With (11) it also follows that |
|

9�3(k) − �3(k + 1)|
|

≤ 15(k + 1)3 ≤ 90

(

k + 3

3

)

 . Let 

c2(k) =
|

|

9�3(k) − �3(k + 1)|
|

 for k ≤ 4 and c2(k) = 90

(

k + 3

3

)

 for k ≥ 5 . Then 

G2(T) ≤
∑∞

k=2
c2(k)T

k =
90

(1−T)4
− 90 − 360T − 847T2 − 1621T3 − 2619T4 for T > 0 and

Thus, �2 ≤
(

20000

87
+ 9

)

982

981
=

20408906

85347
≈ 239.13 .   ◻

Note that �1 = −240 , �n ∈ ℤ and �1 ∣ �n for all n ≥ 1 . From (6), Theorems 1–4 
and Corollary 1 the following properties are obtained:

Ek(�) ∶= 1 −
2k

Bk

∞
∑

n=1

�k−1(n) q
n (k = 2, 4, 6,…).

1

E4(�)
=

∞
∑

n=0

�n q
n,

(11)�3(k) ≤

(

1 +
�

∞

1

t−3 dt

)

k3 = 3k3∕2.

G1

(

87

20000

)

≤
1248274072444709335238721

31446822595409952200000000
<

1

25
.

G2

(

87

20000

)

≤
25605878110865247894531439480101

25157458076327961760000000000000000
<

1

982
.
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Since �0 = 1 we can deduce that (−1)n𝛽n > 0.
In the previous proof we showed that G2

(

T𝜀
)

<
1

982
<

1

250
 for T� =

87

20000
 and 𝜅2 < 240 . 

This leads to the following:

Theorem 5 ([14]) Let G2(T) be defined by

with positive radius of convergence R. Suppose that there is 0 < T𝜀 < 1 such that 
G2

(

T�
)

≤
1

250
 and 𝜅2 ≤

250

249

(

1

T𝜀
+ 𝜎3(2)

)

<
8

|
B4|

= 240 , then the absolute value of the nth 
coefficient �n of 1∕E4 can be estimated by

This implies

The following table displays the first values (Table 1).
By dividing �n by the estimates we obtain the figures displayed in Table 2:

Remarks The value �2 =
1

982
 improves the inequalities (12) to

The lower bound is quite close to the correct value e�
√

3 = 230.764588… . It can be shown 
using for instance the circle method that �n ∼ C (−1)n e� n

√

3 with some suitable constant 
C > 0 (e.g. [5]).

3.3  Associated Laguerre polynomials and Chebyshev polynomials of the second 
kind

We briefly recall the definition of associated Laguerre polynomials L(�)
n
(x) and Chebyshev pol-

ynomials Un(x) of the second kind [8, 24]. Both are orthogonal polynomials. We have

1

2
|𝛽1𝛽n−1| <|𝛽n| <

3

2
|𝛽1𝛽n−1|,

|𝛽n − 𝛽1|
|

|

𝛽n−1
|

|

<𝜀1 |𝛽1𝛽n−1|,

(1 − 𝜀1)|𝛽1𝛽n−1| <|𝛽n| < (1 + 𝜀1)|𝛽1𝛽n−1|,

|𝛽n − (𝛽1 + 9)| <𝜀2|𝛽1𝛽n−1|,

|231 + 𝜀2𝛽1| |𝛽n−1| <|𝛽n| < |231 − 𝜀2𝛽1| |𝛽n−1|.

∞
∑

m=2

|

|

�3(m + 1) − 9�3(m)
|

|

Tm

240
((

1 ±
1

250

240

231

)

231
)n−1

.

(12)230n−1 ≤
(−1)n�n

240
≤ 232n−1.

230.7556n−1 ≤
(−1)n�n

240
≤ 231.2444n−1.
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The Chebyshev polynomials are uniquely characterized by

The Chebyshev polynomials are of special interest and use, since they are the only classical 
orthogonal polynomials whose zeros can be determined in explicit form (see Rahman and 
Schmeisser [24], Introduction) (Tables 3, 4, 5).

Let g(n) = id(n) = n . Then

L(𝛼)
n
(x) =

n
∑

k=0

(

n + 𝛼

n − k

)

(−x)k

k!
(𝛼 > −1).

Un(cos(t)) =
sin((n + 1)t)

sin(t)
(0 < t < 𝜋).

Table 1  Estimation given by (12)

n 230n−1 �
n

240
232n−1

1 1 −1 1
2 230 231 232
3 52900 −53308 53824
4 12167000 12301607 12487168
5 2798410000 −2838775326 2897022976
6 643634300000 655088819748 672109330432
7 148035889000000 −151171301803544 155929364660224
8 34048254470000000 34884983226375975 36175612601171968
9 7831098528100000000 −8050218792755033557 8392742123471896576
10 1801152661463000000000 1857705425589167301906 1947116172645480005632

Table 2  Normalization n �
n

240⋅230n−1

�
n

240⋅232n−1

0 −1.00000000 −1.00000000

1 1.00434783 0.99568966
2 −1.00771267 −0.99041320

3 1.01106329 0.98513987
4 −1.01442438 −0.97989396

5 1.01779663 0.97467598
6 −1.02118009 −0.96948578

7 1.02457479 0.96432322
8 −1.02798078 −0.95918815

9 1.03139810 0.95408043



316 B. Heim, M. Neuhauser 

1 3

The generating function of the Chebyshev polynomial of the second kind is given by

With this we can prove Eq. (13). We have

(13)
Pid
n
(x) =

x

n
L
(1)

n−1
(−x),

Qid
n
(x) =xUn−1

(

x

2
+ 1

)

.

∞
�

n=0

Un(x) q
n =

1

1 − 2xq + q2
, �x�, �q� <

1
√

3
.

1 + xq

∞
�

n=0

Un

�

x

2
+ 1

�

qn =1 +
xq

1 − (2 + x)q + q2
=

1 − 2q + q2

1 − (2 + x)q + q2

=
1

1 − xq
1

(1−q)2

=
1

1 − xq
∑∞

n=1
nqn−1

=

∞
�

n=0

Qn(x)q
n

Table 5  Minimal zeros of P�,id
n

(x) n min
{

Re (x) ∶ P
�,id
n

(x) = 0
}

1 0
2 −3

3 −8

4 −14

5 −20.61187

6 −27.64001

7 −34.97153

8 −42.53511

9 −50.28267

10 −58.18014

50 −410.63656

100 −874.47135

500 −4687.67815

1000 −9501.75903

Table 3  Case g(n) = n
�1 T�1

�1 �2 T�2
�2

11

25

1

6

75

7

1

4

1

3

20

3

Table 4  Values of |�(k + 1) − 3�(k)|

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

|�(k + 1) − 3�(k)| 0 5 5 15 6 28 9 32 21 42 8 70 18 48
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using Definition (5). Note that G1(T) =
∑∞

k=1
(k + 1)Tk =

1

(1−T)2
− 1 and

From this we obtain the following values:
If we consider the special case �1 = 1∕2 in Improvement A, we can chose T�1 = 2∕11 

and finally get �1 = 11.
This leads to several applications. For example, let |x| > (20∕3) n then L(1)

n
(x) ≠ 0 and 

the estimates hold

3.4  Powers of the Dedekind �‑function

Let us recall the well-known identity:

The q-expansion of the −z th power of the Euler product defines the D’Arcais polynomials

where P�

0
(x) = 1 and P�

n
(x) =

x

n

∑n

k=1
�(k)P�

n−k
(x) , as polynomials. Note that these polyno-

mials evaluated at −24 are directly related to the Ramanujan �-function: �(n) = P�

n−1
(−24) , 

which indicates a small link to the Lehmer conjecture [19].
In the spirit of this paper, let � ∶=

3

14
 . Then T� ∶=

2

11
 satisfies the assumptions of The-

orem 4. We obtain the

Corollary 3 Let � =
119

11
 . Then P�

n
(z) ≠ 0 for all complex z with |z| > 𝜅 (n − 1).

Proof We have to show that G2

�

T𝜀
�

=
∑∞

k=2
�𝜎(k + 1) − 3𝜎(k)�Tk

𝜀
< 𝜀 . For this let 

c(k) = |�(k + 1) − 3�(k)| for 1 ≤ k ≤ 7 and c(k) = 4

(

k + 2

2

)

 for k ≥ 8 . Then 

|�(k + 1) − 3�(k)| ≤ c(k) for all k ∈ ℕ since

for k ≥ 4 . This implies G2(T) ≤
∑∞

k=2
c(k)Tk for 0 ≤ T < 1 ≤ R . The upper bound is now 

almost, except for the first 8 terms, a multiple of the second derivative of the geometric 
series of T. Hence,

G2(T) =

∞
∑

k=2

(k − 1)Tk =
T2

(1 − T)2
.

(|2n − x| − |x|∕4)
|

|

|

L
(1)

n−1
(x)

|

|

|

< n
|

|

|

L(1)
n
(x)

|

|

|

< (|2n − x| + |x|∕4)
|

|

|

L
(1)

n−1
(x)

|

|

|

.

∞
∏

n=1

(1 − qn) = exp

(

−

∞
∑

n=1

�(n)
qn

n

)

(z ∈ ℂ).

∞
∑

n=0

P�

n
(z) qn =

∞
∏

n=1

(1 − qn)
−z

(z ∈ ℂ),

�(k) ≤ (1 + ln (k))k ≤
(

k

4
+ ln (4)

)

k ≤

(

k + 1

2

)

G2(T) ≤
4

(1 − T)3
− 4 − 12T − 19T2 − 35T3 − 45T4 − 78T5 − 84T6 − 135T7.
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For T = T� =
2

11
 we obtain

The claim now follows from Corollary 2.   ◻

Remarks 

a) Let � and � be as above, and let h be an arbitrary arithmetic function with 
0 < h(n) ≤ h(n + 1) . Then P�,h

n
(x) satisfies (8), (9), and (10) obtained by Improvement B.

b) The value � =
3

14
 already leads to 

 Note only minor further improvements can be achieved.
c) Corollary 3 improves our previous result [13], where � = 15.

Proposition 3 Let � = 0.217 and T� = 0.18289 . Then the assumptions of Theorem  3 are 
fulfilled. Furthermore we can take � = 10.815.

Proof Let � and T� be given. We have to show that

Let c(k) = |�(k + 1) − 3�(k)| for 1 ≤ k ≤ 11 and c(k) = 4

(

k + 2

2

)

 for k ≥ 12 . Then 

|�(k + 1) − 3�(k)| ≤ c(k) for all k ∈ ℕ as

for k ≥ 4 . This implies G2(T) ≤
∑∞

k=2
c(k)Tk for 0 ≤ T ≤ 1 ≤ R . The upper bound is almost 

(except for the first 12 terms) a multiple of the second derivative of the geometric series of 
T. Hence G2(T) ≤

∑∞

k=2
c(k)Tk ≤

For T = T� = 0.18289 we obtain

The claim now follows from Corollary 2.   ◻

G2

(

T𝜀
)

≤
3043993780

14206147659
<

3

14
= 𝜀.

�� =
119

11
= 10.81.

G2

(

T𝜀
)

=

∞
∑

k=2

|𝜎(k + 1) − 3𝜎(k)|Tk
𝜀
< 𝜀.

�(k) ≤ (1 + ln (k))k ≤
(

k

4
+ ln (4)

)

k ≤

(

k + 1

2

)

4

∞
∑

k=0

(

k + 2

2

)

Tk − 4 − 12T − 19T2 − 35T3 − 45T4 − 78T5 − 84T6 − 135T7

− 148T8 − 199T9 − 222T10 − 304T11

=
4

(1 − T)3
− 4 − 12T − 19T2 − 35T3 − 45T4 − 78T5 − 84T6 − 135T7

− 148T8 − 199T9 − 222T10 − 304T11.

G2

(

T𝜀
)

< 0.216998 < 𝜀.
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4  Proof of Theorems 1 and 2

Proof of Theorem  1 The proof will be by induction on n. The case n = 1 is obvious: 
|

|

|

P
g,h

1
(x) −

x

h(1)
P
g,h

0
(x)

|

|

|

= 0 < 𝜀
|x|

h(1)

|

|

|

P
g,h

0
(x)

|

|

|

 for |x| > 𝜅 h(0).
Let now n ≥ 2 . Then

The basic idea for the induction step is to use the inequality

We estimate the sum by the following property for 1 ≤ j ≤ n − 1:

for |x| > 𝜅 h(n − 1) . Thus,

Further, we have

for |x| > 𝜅 h(n − 1) ≥ 𝜅 h(n − k) for all 2 ≤ k ≤ n by assumption. Using this, we can now 
estimate the sum by

and we obtain

Pg,h
n
(x) =

x

h(n)

(

P
g,h

n−1
(x) +

n−1
∑

k=1

g(k + 1)P
g,h

n−1−k
(x)

)

.

|

|

|

|

Pg,h
n
(x) −

x

h(n)
P
g,h

n−1
(x)

|

|

|

|

≤
|x|

h(n)

n−1
∑

k=1

|g(k + 1)|
|

|

|

P
g,h

n−1−k
(x)

|

|

|

.

|

|

|

P
g,h

j
(x)

|

|

|

≥
|

|

|

|

x

h(j)

|

|

|

|

|

|

|

P
g,h

j−1
(x)

|

|

|

−
|

|

|

|

P
g,h

j
(x) −

x

h(j)
P
g,h

j−1
(x)

|

|

|

|

>

(

|x|

h(j)
− 𝜀

|x|

h(j)

)

|

|

|

P
g,h

j−1
(x)

|

|

|

=
(1 − 𝜀)|x|

h(j)

|

|

|

P
g,h

j−1
(x)

|

|

|

|

|

|

P
g,h

j−1
(x)

|

|

|

<
h(j)

(1 − 𝜀)|x|

|

|

|

P
g,h

j
(x)

|

|

|

.

|

|

|

P
g,h

n−k
(x)

|

|

|

<
|

|

|

P
g,h

n−k+1
(x)

|

|

|

h(n − k + 1)

(1 − 𝜀)|x|
< …

<
|

|

|

P
g,h

n−1
(x)

|

|

|

k−1
∏

j=1

h(n − j)

(1 − 𝜀)|x|

≤
|

|

|

P
g,h

n−1
(x)

|

|

|

(

h(n − 1)

(1 − 𝜀)|x|

)k−1

n−1
∑

k=1

|g(k + 1)|
|

|

|

P
g,h

n−1−k
(x)

|

|

|

<
|

|

|

P
g,h

n−1
(x)

|

|

|

n−1
∑

k=2

|g(k + 1)|

(

h(n − 1)

(1 − 𝜀)|x|

)k
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Estimating the sum using the assumption from the theorem we obtain

since |x| > 𝜅 h(n − 1) =
h(n−1)

1−𝜀

1

T𝜀
 which is equivalent to (1−𝜀)|x|

h(n−1)
>

1

T𝜀
 and G1 increases on 

[0,R) as |g(k + 1)| ≥ 0 for all k ∈ ℕ .   ◻

Proof of Theorem 2 Consider the following upper and lower bounds:

Applying (7) leads to the desired result.   ◻

5  Proof of Theorems 3 and 4

Proof of Theorem 3 The proof will be by induction on n. The case n = 1 is obvious:

for |x| > 𝜅 h(0) . Let now n ≥ 2 . Then

The basic idea for the induction step is to use the inequality

The sum can be estimated using for 1 ≤ j ≤ n − 1 that

|

|

|

|

Pg,h
n
(x) −

x

h(n)
P
g,h

n−1
(x)

|

|

|

|

<
|x|

h(n)

|

|

|

P
g,h

n−1
(x)

|

|

|

n−1
∑

k=1

|g(k + 1)|

(

h(n − 1)

(1 − 𝜀)|x|

)k

.

n−1
∑

k=1

|g(k + 1)|

(

h(n − 1)

(1 − �)|x|

)k

≤ G1

(

h(n − 1)

(1 − �)|x|

)

≤ G1

(

T�
)

≤ �,

|Pg,h
n
(x)| ≤

|

|

|

|

x

h(n)
P
g,h

n−1
(x)

|

|

|

|

+
|

|

|

|

Pg,h
n
(x) −

x

h(n)
P
g,h

n−1
(x)

|

|

|

|

,

|Pg,h
n
(x)| ≥

|

|

|

|

x

h(n)
P
g,h

n−1
(x)

|

|

|

|

−
|

|

|

|

Pg,h
n
(x) −

x

h(n)
P
g,h

n−1
(x)

|

|

|

|

.

|

|

|

|

P
g,h

1
(x) −

x + g(2)h(0)

h(1)
P
g,h

0
(x)

|

|

|

|

= 0 < 𝜀
|x|

h(1)

|

|

|

P
g,h

0
(x)

|

|

|

Pg,h
n
(x) − g(2)

h(n − 1)

h(n)
P
g,h

n−1
(x)

=
x

h(n)

(

P
g,h

n−1
(x) +

n−1
∑

k=2

(g(k + 1) − g(2)g(k))P
g,h

n−1−k
(x)

)

.

|

|

|

|

Pg,h
n
(x) −

x + g(2)h(n − 1)

h(n)
P
g,h

n−1
(x)

|

|

|

|

≤
|x|

h(n)

n−1
∑

k=2

|g(k + 1) − g(2)g(k)|
|

|

|

P
g,h

n−1−k
(x)

|

|

|

.
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for |x| > 𝜅 h(n − 1) . Note that for |x| > 𝜅 h(n − 1) we have

Thus,

We use this inequality and obtain

for |x| > 𝜅 h(n − 1) ≥ 𝜅 h(n − k) for all 2 ≤ k ≤ n by assumption. Using this, we can now 
estimate the sum by

and we obtain

Estimating the sum using the assumption from the theorem we obtain

|

|

|

P
g,h

j
(x)

|

|

|

≥
|

|

|

|

x + g(2)h(j − 1)

h(j)

|

|

|

|

|

|

|

P
g,h

j−1
(x)

|

|

|

−
|

|

|

|

P
g,h

j
(x) −

x + g(2)h(j − 1)

h(j)
P
g,h

j−1
(x)

|

|

|

|

>

(

|x|

h(j)
−

|g(2)|h(j − 1)

h(j)
− 𝜀

|x|

h(j)

)

|

|

|

P
g,h

j−1
(x)

|

|

|

=
(1 − 𝜀)|x| − |g(2)|h(j − 1)

h(j)

|

|

|

P
g,h

j−1
(x)

|

|

|

≥
(1 − 𝜀)|x| − |g(2)|h(j)

h(j)

|

|

|

P
g,h

j−1
(x)

|

|

|

(1 − 𝜀)|x| − g(2)h(j) >

(

1

T𝜀
+ |g(2)|

)

h(n − 1) − g(2)h(j) > 0.

|

|

|

P
g,h

j−1
(x)

|

|

|

<
h(j)

(1 − 𝜀)|x| − g(2)h(j)

|

|

|

P
g,h

j
(x)

|

|

|

.

|

|

|

P
g,h

n−k
(x)

|

|

|

<
|

|

|

P
g,h

n−k+1
(x)

|

|

|

h(n − k + 1)

(1 − 𝜀)|x| − |g(2)|h(n − k + 1)
< …

<
|

|

|

P
g,h

n−1
(x)

|

|

|

k−1
∏

j=1

h(n − j)

(1 − 𝜀)|x| − |g(2)|h(n − j)

≤
|

|

|

P
g,h

n−1
(x)

|

|

|

(

h(n − 1)

(1 − 𝜀)|x| − |g(2)|h(n − 1)

)k−1

n−1
∑

k=2

|g(k + 1) − g(2)g(k)|
|

|

|

P
g,h

n−1−k
(x)

|

|

|

<
|

|

|

P
g,h

n−1
(x)

|

|

|

n−1
∑

k=2

|g(k + 1) − g(2)g(k)|

(

h(n − 1)

(1 − 𝜀)|x| − |g(2)|h(n − 1)

)k

|

|

|

|

Pg,h
n
(x) −

x + g(2)h(n − 1)

h(n)
P
g,h

n−1
(x)

|

|

|

|

<
|x|

h(n)

|

|

|

P
g,h

n−1
(x)

|

|

|

n−1
∑

k=2

|g(k + 1) − g(2)g(k)|

(

h(n − 1)

(1 − 𝜀)|x| − |g(2)|h(n − 1)

)k

.
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since |x| > 𝜅 h(n − 1) =
h(n−1)

1−𝜀

(

1

T𝜀
+ |g(2)|

)

 which is equivalent to (1−𝜀)|x|
h(n−1)

− |g(2)| >
1

T𝜀
 

and G2 is increasing on [0,R) as |g(k + 1) − g(2)g(k)| ≥ 0 for all k ∈ ℕ .   ◻

Proof of Theorem  4 This basically follows from Theorem  3 (see also the proof of Theo-
rem 2).   ◻
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