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microbiota manipulation that might be advantageous in 
decreasing allo-HSCT-related morbidity and mortality.
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Introduction

Allo-HSCT has been utilized to treat a variety of disorders; 
however, its efficacy is limited by the occurrence of GVHD 
[1]. A relationship between the microbiota and GVHD 
has long been suspected and is recently being extensively 
investigated by researchers.

The human gastrointestinal (GI) tract harbors an esti-
mated ~1014 individual bacteria belonging to about 1000 
species in any single individual, and ~15,000 species of 
bacteria have been identified from human GI samples 
[2–4]. Less than 30 % of these bacteria are amenable to 
conventional culture techniques, which makes their iden-
tification and functional analysis difficult. In recent years, 
deep-sequencing technology has made it possible to char-
acterize the composition of intestinal microbial contents 
free of the selective biases of culture-based methods. 
Sequencing of bacterial 16S rRNA gene was developed in 
the 1970s [5], and in combination with subsequent genetic 
methodologies, including in situ hybridization and poly-
merase chain reaction (PCR), this method allows rapid 
identification of bacterial isolates from clinical samples 
[6]. Recently, high-throughput sequencing technologies, 

Abstract Allogeneic hematopoietic stem cell transplan-
tation (allo-HSCT) is an increasingly important treatment 
for conditions including hematopoietic malignancies and 
inherited hematopoietic disorders, and is considered to be 
the most effective form of tumor immunotherapy avail-
able to date. However, graft-versus-host disease (GVHD) 
remains a major source of morbidity and mortality fol-
lowing allo-HSCT, and understanding the mechanisms 
of GVHD has been highlighted as a key research prior-
ity. During development of GVHD, activation of various 
immune cells, especially donor T cells, leads to damage of 
target organs including skin, liver, hematopoietic system, 
and of particular clinical importance, gut. In addition to 
histocompatibility complex differences between the donor 
and recipient, pretransplant conditioning with chemother-
apy and irradiation also contributes to GVHD by damaging 
the gut, resulting in systemic exposure to microbial prod-
ucts normally confined to the intestinal lumen. The intes-
tinal microbiota is a modulator of gastrointestinal immune 
homeostasis. It also promotes the maintenance of epithe-
lial cells. Recent reports provide growing evidence of the 
impact of intestinal microbiota on GVHD pathophysiology. 
This review summarizes current knowledge of changes and 
effects of intestinal microbiota in the setting of allo-HSCT. 
We will also discuss potential future strategies of intestinal 
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so-called deep-sequencing methods allow investigators to 
characterize the composition of mixed bacterial samples. 
This has led to a surge of interest investigating how bac-
teria can contribute to outcomes ranging from obesity [7, 
8], atherosclerosis [9], and cancer [10–12], to allergies and 
asthma [13], and even to autism [14]. Deep-sequencing of 
16S rRNA has yet to be utilized routinely in the clinical 
setting due to practical barriers for implementation includ-
ing time, cost, and complexity, and the lack, thus far, of 
clinically actionable findings. More recently, rapid next-
generation technologies are being developed [15] that are 
expected to lower the threshold to clinical translation.

Since the early 1970s, researchers have known that the 
commensal bacteria residing in our intestines, collectively 
termed the intestinal microbiota, are important media-
tors of the biology of allo-HSCT [16, 17]. Early studies in 
mice and humans suggested a link between an individual’s 
intestinal microbial flora and his/her propensity for GVHD. 
Clinical strategies to suppress the intestinal microbiota in 
an attempt to prevent GVHD initially showed considerable 
promise [18, 19]; however, these strategies failed to dem-
onstrate consistent benefit [20–22]. Thus, the best means 
of preventing GVHD by modulating intestinal microbiota 
have remained unclear. In the current era of rapidly devel-
oping new technologies for deep-sequencing of 16S rRNA, 
the microbiota has been now been re-examined in relation 
to a variety of clinical outcomes including several that are 
related to allo-HSCT. Several groups have recently discov-
ered important relationships between the microbiota and 
outcomes in allo-HSCT recipients [23–25]. In the current 
review, we provide an update focusing on the biology of 
intestinal homeostasis in relation to the microbiota in the 
setting of allo-HSCT and its impact on GVHD.

Intestinal immune homeostasis and the key 
players

Among trillions of bacteria, Bacteroidetes, Firmicutes, Pro-
teobacteria, and Actinobacteria dominate in human adult 
intestine [26] and only a very small number of these bac-
teria are known to be pathogenic. The interactions between 
the host and commensal microbiota as a whole can have an 
impact on various aspects of the host immunogenic biology 
[27–29].

Hematopoietic cells in intestinal homeostasis

Various populations of hematopoietic cells participate in 
intestinal homeostasis. Myeloid cells including macrophages 
and dendritic cells (DCs) mediate immune tolerance and 
protection. CX3CR1-expressing nonmigratory macrophages 
keep close contact with intestinal epithelial cells (IECs) to 

mediate clearance of enteropathogens and commensal bac-
teria that invade the epithelial barriers [30]. In response to 
commensal bacteria, IECs produce cytokines in response to 
signals mediated via pathogen recognition receptors (PRRs). 
These cytokines promote the development of tolerogenic 
DCs and macrophages [31], including TGF-β-producing 
CD103+CD11b+ DCs within the GI tract, which in turn 
induce expansion of FoxP3-expressing regulatory T cells 
(Treg) [32]. DCs carry antigenic material and live bacteria 
to secondary lymphoid organs including mesenteric lymph 
nodes (MLNs) and Peyer’s patches where their cargo is pre-
sented to adaptive immune cells [30]. This induces the dif-
ferentiation and recruitment of Tregs as well as gut-homing 
effector T cells to the site of antigen encounter in the intes-
tinal lamina propria (LP) [33]. One potential molecular 
mechanism linking the microbiota to T cell function involves 
indoleamine 2,3-dioxygenase (IDO), an enzyme expressed 
by DCs and macrophages that catalyzes the initial rate-limit-
ing step in tryptophan degradation. Inflammatory cytokines, 
such as IFN-γ, induce IDO, and this inhibits T cell activation 
through the consumption of tryptophan and expands Tregs, 
inducing immune tolerance [34]. Germ-free mice have been 
reported to exhibit decreased levels of IDO, suggesting a role 
of microbiota in the regulation of IDO [35].

B cells are also involved in the regulation of the immune 
system within intestinal tissues. Commensal organisms 
have recently been shown to influence early B cell line-
age development in the gut LP [36]. B cell class switch-
ing to IgA is mediated by cytokines secreted by IECs in 
both T cell-dependent and T cell-independent manners. 
IgA is transported by IECs across the epithelial barrier into 
the intestinal lumen to serve as another important line of 
defense barrier against microbes [31].

Moreover, T cells play important roles in intestinal 
immunity. An important function of the microbiota is to 
metabolize materials ingested by the host. This results in 
the production of short-chain fatty acids (SCFAs) includ-
ing acetate, propionate, and butyrate. Thus, the intesti-
nal “metabolome” consists of products from discrete host 
metabolism, microbial metabolism, and mammalian micro-
bial co-metabolism [37]. These SCFAs have been shown 
to induce Tregs through upregulation of gut-homing mole-
cules [38] and FoxP3 [39] in the colon. A subset of bacteria 
from the order Clostridiales has been identified as impor-
tant for induction of colonic Tregs [40, 41], potentially 
by upregulating TGF-β to support FoxP3 induction. In 
contrast, pathogen-associated stimuli cause inflammatory 
responses via IL-1 and IL-6 induction, resulting in Th1 and 
Th17 activation [42]. Tregs also play a critical role in GI 
homeostasis via the anti-inflammatory cytokine IL-10 with 
a direct impact on macrophages [43–45]. Another report 
demonstrated de novo generation of colonic Tregs by utiliz-
ing a cocktail of altered flora [46].
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The recently recognized population of lymphocytes 
known as innate lymphoid cells (ILCs) [47, 48] also plays an 
important role in intestinal immune homeostasis. They are 
classified into three distinct subpopulations termed group 1 
through 3 on the basis of the expression of specific transcrip-
tional factors, cell surface markers, as well as the ability to 
secrete particular cytokines. Group 3 ILCs expressing RORγt 
in the intestine have been found to regulate commensal bacte-
ria by inhibiting local and systemic inflammation. In response 
to IL-23 signals emanating from myeloid cells, these group 
3 ILCs produce IL-22, which is a potent regenerative fac-
tor for epithelial cells [49]. We speculate that this is one of 
several cellular mechanisms that serve to protect intestinal 
epithelium during inflammation by restoring immune toler-
ance at the epithelial interface. For example, ILCs have also 
been recently reported to produce colony-stimulating factor 2 
(Csf2, also known as GM-CSF) in response to macrophage-
derived IL-1b, which stimulates DCs to produce retinoic 
acid, which to promote Treg recruitment [50]. Manipulation 
of these cytokine-mediated epithelial protection pathways 
might potentially be exploited in the treatment of patients 
with intestinal inflammatory diseases such as GVHD, radia-
tion enteritis, or inflammatory bowel disease.

Intestinal epithelium in intestinal homeostasis

IECs assemble the intestinal epithelium which maintains 
a physical and biochemical barrier to separate intestinal 
tissues from luminal organisms [51]. Intestinal epithe-
lial stem cells can give rise to all subsets of differentiated 
IECs, including goblet cells, enteroendocrine cells, entero-
cytes, and Paneth cells. These stem cells reside at the base 
of intestinal crypts and are dependent on Wnt signaling. 
[52]. The mucins secreted by goblet cells into the intestinal 
lumen form a mucus layer that acts as a first line of defense 
against microbes [53]. Paneth cells reside within the crypts 
and secrete various antimicrobial peptides (AMPs) that 
inhibit the growth of and kill bacteria by compromising the 
integrity of microbial cell membranes [31]. AMPs include 
defensins, cathelicidins, and calprotectins. In addition to 
neutralizing pathogenic bacteria, defensins also amplify 
adaptive immune responses resulting in both Th1- and Th2-
dependent responses by activation of immature DCs [54]. 
Cathelicidin is mainly produced in the neutrophils; how-
ever, it is also an inducible product of ECs [55]. Another 
recently described AMP, a C-type lectin regenerating islet-
derived protein III gamma (RegIIIγ; RegIIIα in humans), 
is secreted by Paneth cells in a myeloid differentiation pri-
mary response protein 88 (MYD88)-dependent manner and 
plays an important role in separating luminal bacteria from 
the intestinal epithelial surface [56, 57].

The intestinal mucosa functions to immunologically sur-
vey the intestinal lumen, monitoring harmless commensal 

bacteria as well as potential harmful pathogens [58]. IECs 
recognize a variety of microbial products in both antigen-
dependent and antigen-independent manners to participate 
in coordinated immune tolerance, or alternatively immune 
response [31]. Microbiota-associated molecular patterns 
are directly recognized by pathogen recognition receptors 
(PRRs) expressed on IECs. PRRs include Toll-like recep-
tors (TLRs), NOD-like receptors (NLRs), and RIG-I-like 
receptors (RLRs), and mediate recognition of microbial 
ligands or endogenous signals associated with pathogenesis 
to modulate cellular responses [59, 60]. One highly special-
ized subpopulation of IECs called microfold cell function 
to sample antigens and microorganisms for presentation to 
the mucosal immune system [61]. Moreover, subepithelial 
macrophages sample luminal contents through their inter-
actions with transepithelial DCs [62]. It is well known 
that dysregulation of the surveillance mechanisms utilized 
by the intestinal mucosa can lead to the development of 
inflammatory bowel disease and other disorders [63].

An observation that speaks to the intimate and code-
pendent relationship of the host with its microbiota is that 
many aspects of intestinal immune homeostasis fail to 
develop in the absence of the intestinal microbiota. Germ-
free mice show defective development of gut-associated 
lymphoid tissues and antibody production [64]. IECs in 
germ-free mice have altered patterns of microvilli forma-
tion and decreased rates of cell turnover compared to con-
ventionally housed mice, leading to defective expansion of 
defensins and other AMPs. In coordination with various 
types of immune cells, IECs have a significant impact on 
both the microbiota and homeostasis of the host tissue.

Interactions among components of the microbiota

Interactions among components of the microbiota present 
another line of defense against potential pathogens. A recent 
report indicates that commensal bacteria themselves function 
to prevent the overgrowth of potential pathogens [65]. Host 
and environmental factors can modulate microbiota compo-
sition, resulting in fluctuations in intestinal microbial diver-
sity. These factors include age [66], antimicrobial use [67], 
disease [68], inflammation [69], metabolites [70], stress [71], 
and diet [72], particularly malnourishment [73, 74].

Effects of allo‑HSCT and GVHD on intestinal 
homeostasis and microbiota

Allo‑HSCT and GVHD cause disruption of intestinal 
barrier/homeostasis

Pretransplantation conditioning regimens, which often 
include combinations of chemotherapy and total body 
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irradiation (TBI), are critical for the success of transplants 
because they allow engraftment of allogeneic hematopoi-
etic cells and often also treat the underlying malignancy. 
However, conditioning also disrupts the delicate interplay 
between host and microbiota by way of mucositis, other 
organ dysfunction, and increased susceptibility to infection. 
Bacterial lipopolysaccharide (LPS) is released from the 
injured gut during conditioning, inducing TLRs and lead-
ing to a cytokine storm that enhances the development of 
GVHD. In murine models, TBI dose correlated inversely 
with gut barrier function as measured by translocated LPS 
in the serum [75]. This phenomenon has been confirmed in 
a clinical study [76] in which the translocation of an orally 
administered radiolabeled tracer was found to be higher 
after conventional myeloablative conditioning than reduced 
intensity conditioning. GVHD itself further deteriorates 
intestinal barrier function, suggesting that conditioning and 
GVHD can cause synergistic damage to the epithelium [77, 
78].

Cell death in the intestinal epithelium, especially the 
compartment of the rapidly proliferating crypt cells, leads 
to impaired replenishment of the villus epithelium and 
drives loss of intestinal barrier function. Patients manifest 
nausea, diarrhea, and abdominal discomfort with mild loss 
of barrier function from intestinal inflammation and treat-
ment options are limited to supportive care [79]. Several 
efforts are ongoing to develop approaches to protect epithe-
lial cells from damage in the setting of GVHD. Strategies in 
murine models of GVHD to support epithelial cell recovery 
have shown promise by utilizing Wnt agonist R-spondin1 
[80] and IL-22 [77]. Recovery of the intestinal epithelium 
from injury appears to be dependent on repopulation of 
intestinal stem cells that were compromised by GVHD. 
IL-22 producing ILCs have been found to be extremely 
diminished in the intestines of mice suffering from GVHD, 
possibly contributing to the loss of intestinal epithelial cells 
[77]. Furthermore, Paneth cells are markedly reduced in the 
setting of GVHD in both mice [25, 81] and humans [82]. 
Patients with reduced number of Paneth cells at onset of GI 
GVHD were at higher risk for nonrelapse mortality [82]. 
These reports indicate the importance of regeneration of 
intestinal stem cells and warrant development of interven-
tions to protect them after transplantation.

Both mouse and clinical studies have demonstrated 
impaired humoral immunity in recipients of allo-HSCT 
[83–85]. Reduced IgA concentration intestinal lumen was 
observed in mice after transplantation [25]. In patients, the 
serum levels of IgA generally recovers by 6 months after 
allo-HSCT; however, recovery is impaired in those who 
develop acute or chronic GVHD [86].

There is mounting evidence that the effects of GVHD on 
intestine-derived antimicrobial molecules seem to be mole-
cule-specific. Paneth cells express both α-defensins and the 

antimicrobial lectin RegIIIγ at steady state [87]; the levels 
of α-defensins are significantly reduced during GVHD, 
while expression of RegIIIγ is profoundly increased [23]. 
RegIIIα, a human homolog of mouse RegIIIγ, is found to 
be similarly upregulated in the serum samples of patients 
with intestinal GVHD [88].

Allo‑HSCT and GVHD cause changes in intestinal 
microbiota

The impact of GVHD on the intestinal microbiota is receiv-
ing increased attention and has been explored by several 
groups. While mice transplanted in the absence of GVHD 
exhibit only mild changes in microbiota composition, 
murine GVHD is associated with many specific changes in 
the intestinal flora, including a loss of microbial diversity, 
dysbiosis (imbalance of intestinal flora), and the expansion 
of the bacterial orders Lactobacillales (including Lactoba-
cillus, Enterococcus, and Streptococcus species) or Entero-
bacteriales (including Escherichia, Klebsiella, and Entero-
bacter species), the latter of which may adversely impact 
on GVHD. This is also accompanied by a corresponding 
loss of obligately anaerobic bacteria from the phylum Fir-
micutes, including members of the order Clostridiales [25, 
81, 89].

In contrast to these findings in mice, in humans allo-
HSCT uncomplicated by GVHD is associated with major 
changes in microbiota composition [90]. This species dif-
ference may be explained by the frequent administrations 
of antibiotics in patients after allo-HSCT, whereas anti-
biotics are not commonly used in murine models of allo-
HSCT experiments. Allo-HSCT is associated with a loss of 
flora diversity and expansion of certain bacterial species. 
Enterococcus, Streptococcus, and various Enterobacteri-
ales are commonly expanded after allo-HSCT, and their 
increased abundance can precede bloodstream infection by 
the same organism [91]. Exposure to metronidazole during 
allo-HSCT increases the risk for developing enterococcal 
expansion. These findings may suggest that reduction of 
obligately anaerobic commensals leads to impaired sup-
pression of Enterococcus.

Separate from antibiotics, how might GVHD itself affect 
the intestinal microbiota? Recent reports indicate that the 
abundance of certain bacteria that play important homeo-
static roles, especially Clostridiales, could be affected dur-
ing GVHD. In concert with observations made in mice, 
patients who develop GVHD display microbiota shifts 
away from dominance of Clostridiales species to domi-
nance by Lactobacillales or Enterobacteriales [24, 25, 
92]. Interestingly, changes in nutritional intake, especially 
the malnutrition that plagues transplant patients, might be 
an explanation for these shifts in intestinal flora composi-
tion, as a pattern of loss of Clostridiales can be observed in 
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volunteers given high-protein and low-carbohydrate diets 
[93] or diets derived entirely from animal products [94]. 
The findings of bacterial shift from Clostridiales observed 
during GVHD may reflect maladaptation of these bacteria, 
given the fact that many of the Clostridiales perform the 
bulk of fermentation of consumed nondigestible carbo-
hydrates. Their metabolites are thought to produce health 
benefits [94], and in the setting of GVHD, changes in diet 
nutrition in the patients can affect metabolic functions of 
the bacteria. Another important finding that Clostridial 
species prevent inflammation by upregulating Tregs in the 
intestines [40] invites speculation that GVHD may deplete 
anti-inflammatory cell populations by reducing the abun-
dance of Clostridiales. Consistent with this notion, we have 
observed that re-introduction of a mixture of 17 Clostridial 
isolates derived from human stool prolongs the survival of 
mice with GVHD (unpublished results).

Effects of microbiota changes on GVHD outcomes

Studies from as early as the 1970s in mice and in patients 
suggested a link between microbes and GVHD. These were 
followed by clinical trials that reported less GVHD when 
allo-HSCT was performed in an isolated, protective envi-
ronment with laminar airflow and gut decontamination [18, 
19, 95]. Subsequent studies, however, could not confirm a 
clear benefit of these protective environments [20–22], and 
the practice of laminar airflow isolation was abandoned in 
the early 1990s [96]. The reasons behind these inconsistent 
results remain unclear but could be due to variable success 
in total decontamination in the gut.

In the early studies, mice transplanted in germ-free con-
ditions [16] or treated with gut-decontaminating antibiotics 
[17] developed significantly less GVHD, which demon-
strated that the microbiota contributes to the development 
of GVHD-related lethality. Reports from Germany [97] and 
the Netherlands [98] showed that prophylactic complete gut 
decontamination prevented acute GVHD. Another study of 
the prophylactic use of the broad-spectrum antibiotic mero-
penem during episodes of neutropenia or fever reported a 
favorable effect on the morbidity of allo-HSCT [99]. Gut 
decontamination continues to be practiced at many centers, 
but there is no consensus regarding ideal choice of antibi-
otic coverage and its benefits remain controversial. Careful 
studies focusing on effects of different-spectrum antibiotics 
on bacterial commensals and transplant-related outcomes 
are needed. Hopefully, such trials could be done in both 
mice and patients and would include analysis of commen-
sal metabolites.

Our group has recently reported a detailed analysis 
of patient fecal samples early after allo-HSCT [100]. We 
enrolled eighty recipients who provided fecal samples at 

the time of neutrophil recovery. We found microbial diver-
sity, as quantified by the Simpson index, was predictive of 
overall survival (OS). Mortality was especially increased 
in patients with the lowest intestinal diversity, with OS at 
3 years of 36 % in the low-diversity group, compared to 
60 and 67 % in the intermediate- and high-intestinal-diver-
sity groups, respectively. The increase in mortality in the 
low-diversity group could be largely attributed to increased 
death due to GVHD or infection, rather than relapse or dis-
ease progression.

Recent studies have sought to elucidate mechanisms 
by which the microbiota can modulate GVHD-mediated 
inflammation. It has been established that LPS initiates the 
process of GVHD by signaling through TLR4 [75]. A role 
for TLR9 and its downstream signaling adaptor MYD88 
was observed in an intestinal GVHD model [89]. The biol-
ogy of TLRs and MYD88/TRIF signaling has been inves-
tigated by several groups, but remains controversial, with 
disparate results observed in different model systems and 
tissues. [101–103]. One report [104] described an important 
role for neutrophils recruited into intestinal tissue follow-
ing bacterial translocation that had been induced by TBI. In 
this study, neutrophilic infiltration mediated localized tissue 
damage by production of reactive oxygen species, resulting 
in exacerbated GVHD. Interestingly, severe neutropenia fol-
lowing reduced intensity conditioning is related to increased 
GVHD and nonrelapse mortality [105]. However, it remains 
unclear whether neutropenia directly contributes to GVHD 
severity, or alternatively whether neutropenia is associated 
with frequent use of antibiotics that then lead to GVHD. An 
additional pathway that mediates inflammatory responses to 
microbiota during GVHD includes the Nlrp3 inflammasome 
via IL-1β production [106]. In addition, our group and oth-
ers found that NOD2, which serves to recognize bacterial 
peptidoglycan, appears to mediate protective effects against 
GVHD in both mice [107] and humans [108].

The development of strategies to manipulate gut flora 
to suppress development of GHVD would be a welcome 
addition to the armamentarium of the care of the transplant 
patient. It would be very encouraging if strategies to manip-
ulate gut flora could be developed to produce favorable 
conditions that could minimize GVHD. Studies in murine 
models found that certain intestinal Lactobacilli can reduce 
experimental GVHD [25] and indeed, decreased severity 
of GVHD as well as improved survival of recipients was 
observed following the administration of probiotic bacteria 
[109]. Thus, replenishing the microbiota through probiotic 
therapy may potentially offer a novel approach to attenuate 
GVHD and its associated risk for bloodstream infections 
(Fig. 1). Members of Enterobacteriales and Enterococcus 
may be potential contributors to worse GVHD in both mice 
[25, 81] and humans [24, 92], though causation and poten-
tial mechanisms remain to be elucidated.
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We have focused on the microbiota in the setting of 
HSCT. Could the microbiota of the donor have effects on 
the outcomes after allo-HSCT? This question is not yet 
fully answered. A recent study of hematopoietic grafts 
derived from mice raised in germ-free conditions indicated 
that the presence or absence of donor microbiota does not 
dramatically impact on GVHD severity [110].

There have not been enough published reports to draw 
conclusions about the impact of microbiota on graft-versus-
tumor (GVT) activities in the setting of allo-HSCT. Recent 
reports suggest that microbiota could bolster the effects of 

chemotherapy [11, 111].Whether changes in the composi-
tion of microbiota can modulate GVT activities remains an 
open question.

Summary and future directions

There is growing evidence that the microbiota could impact 
on GVHD, and GVHD could also lead to dysbiosis of the 
microbiota [29, 112]. The complex interactions between 
microbiota and GVHD including the differential roles of 

Probiotic 
Therapy

Maintain epithelial 
Barrier

Attenuate Host 
APC function

Attenuated donor 
T-cell activation

Susceptibility to 
enteric pathogens

Maintain commensal
barrier

Maintain immune 
tolerance

Maintain regulatory 
immune cells

LPS, IL-1β, 
IL-6, TNF-α

IL-12, IFN-γ

Epithelial 
cytotoxicity

Epithelial 
cytotoxicity

IL-10, TGF-β

Maintain microbial 
diversity

Nature Reviews | Immunology
Blazar et al., 2012

Fig. 1  Roles of probiotic therapy in preventing acute GVHD. Probiotic therapy reduces susceptibility to harmful enteric pathogens by maintain-
ing epithelial and commensal barriers

Table 1  Factors altering 
microbiota homeostasis during 
allo-HSCT and proposed 
therapies targeting restoration in 
intestinal microbial diversity

Dysbiosis (-> Inflammation/epithelial damage) Eubiosis (-> Immune regulation/epithelial restoration)

GVHD Growth factors (KGF)

Conditioning chemotherapy/irradiation Probiotics (Lactobacillus)

Antimicrobial therapy Cellular therapy (ISC, MSC)

Alloreactivity Cytokines (IL-22)

Supplemental nutrition (intralipids) SCFA (butyrate/acetate)

Mucositis Polysaccharide A/vitamin A

Infection (viral/bacterial) Antimicrobial peptides (REGIIIα)

Reduced intensity conditioning

Narrow-spectrum antimicrobials
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donor vs. host microbiota, and pathways of microbiota-
associated molecular patterns and PRRs remain to be fur-
ther examined. Additional studies are needed to better char-
acterize the bacterial mediators of increased or reduced risk 
for GVHD, bacterial ligands and metabolites that modulate 
host tissues, and the cellular components that carry out 
microbiota effects (Table 1). The ultimate goal would be 
to establish novel strategies to modulate the microbiota in 
a rational way to mitigate GVHD while maintaining host 
immune functions that mediate favorable anti-tumor activi-
ties to prevent relapse after allo-HSCT, contributing to bet-
ter outcomes in patients.
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