
1 3

DOI 10.1007/s12185-015-1762-8
Int J Hematol (2015) 101:319–329

PROGRESS IN HEMATOLOGY

The RUNX1–PU.1 axis in the control of hematopoiesis

Maria Rosaria Imperato · Pierre Cauchy · 
Nadine Obier · Constanze Bonifer 

Received: 19 February 2015 / Accepted: 23 February 2015 / Published online: 8 March 2015 
© The Japanese Society of Hematology 2015

Introduction

Hematopoiesis is the dynamic process by which all the 
blood lineages originate from pluripotent hematopoietic 
stem cells. Lineage-specific transcription factors are at 
the heart of this process, a fact that is impressively high-
lighted by the finding that the development of specific lin-
eages cannot take place in the absence of specific factors 
(Fig. 1). In this review we will highlight the specific role 
of two of these factors: RUNX1, which is part of the core-
binding factor complex (CBF), and PU.1. In the absence 
of RUNX1, HSCs are absent, whereas in the absence of 
PU.1 myeloid cells and B-cells are not formed. However, in 
spite of their different positions in the hematopoietic hier-
archy RUNX1 and PU.1 are in the same pathway within 
the hematopoietic transcriptional network. As mutations in 
this pathway lay at the heart of many cases of acute mye-
loid leukemia (AML) we will also discuss the role of the 
RUNX1/PU.1 axis in AML where myeloid differentiation 
is blocked [1].

Identification and cloning of RUNX1 and SPI1 (PU.1)

The core-binding factor (CBF) is also known as SL3-3 
enhancer factor 1 [2], polyomavirus enhancer-binding fac-
tor 2 (PEBP2) [3] and SL3 and AKV core-binding factor 
[4] and was first purified in 1992 by Wang and Speck from 
calf thymus nuclei by combination of selective pH dena-
turation and chromatographic procedures [5]. The same 
investigator team described the isolation of cDNA clones 
encoding different CBF polypeptides from a mouse thy-
mus cDNA library, a DNA-binding form named CBFα 
and a non-DNA-binding subunit, CBFβ. These subunits 
exist as a heterodimer prior to forming a protein–DNA 
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complex [6]. Although the CBFα subunit is able to bind to 
DNA as a monomer in vitro, its affinity increases dramati-
cally when it binds CBFβ, and their association results in 
the decrease of the rate of dissociation of the CBF–DNA 
complex [6, 7]. HPLC assays of tryptic peptides of the 
CBFα polypeptide reveal that one of these fragment shares 
70 % sequence identity with the protein encoded by the 
Drosophila runt gene. Most importantly, the link between 
RUNX1 and blood has been established by the finding that 
CBFα has 100 % homology with a protein encoded by the 
human proto-oncogene acute myeloid leukemia 1 (AML1), 
which is localized on chromosome 21 and whose cDNA 
had been isolated and sequenced by Miyoshi et al. in 1991 
as a partner in an AML causing translocation event [6, 8]. 
The AML1 protein is a member of a family of transcription 
factors that directly bind the enhancer core DNA sequence 
TGT/cGGT which is present in several viral and cellular 
promoters and enhancers [9–11]. AML1 binds DNA with a 
central RUNT homology domain (RHD) which constitutes 
128 amino acids and is also relevant for protein–protein 
interactions [11, 12].

During hematopoiesis, the function of RUNX1 is strictly 
regulated. Mechanisms for finely controlling RUNX1 
activity include alternative splicing, transcriptional control 
by two different promoters [13], translational control and 
the presence of posttranslational modifications, such as 
acetylation, methylation, phosphorylation, which promote 

transcriptional activity of RUNX1, and phosphorylation 
and ubiquitination, which regulate RUNX1 protein stabil-
ity, reviewed in [14]. RUNX1 targets multiple genes, many 
of which are also pivotal transcription regulators involved 
in the formation of all hematopoietic lineages, includ-
ing the hematopoietic-specific member of E-twenty-six 
(ETS) family, PU.1 [15, 16]. The gene encoding PU.1, also 
known as Sfpi1 (SFFV proviral integration, the human gene 
is named SPI1), was first identified as a novel oncogene 
isolated from a murine erythroleukemia induced by the 
acute leukemogenic retrovirus spleen focus forming virus 
(SFFV) [17]. PU.1 cDNA was cloned in 1990 and PU.1 
protein has been shown to be a transcriptional activator in 
macrophages and B-cells [18]. The PU.1 protein has an 85 
amino acid-long DNA-binding domain in the C-terminus 
which is highly conserved among all Ets family members 
and recognizes a purine-rich DNA sequence containing the 
core sequence 5′-GGAA-3′ [19]. Structural analysis of this 
domain revealed that PU.1 binds to DNA with its winged 
helix–turn–helix domain [20]. Other relevant sequences 
within the PU.1 activation domain include three acidic sub-
domains and one glutamine-rich subdomain towards the 
N-terminal half of the protein that are required for its trans-
activation function [21]. Phosphorylation of a central serine 
residue in position 148 has been found to be responsible for 
protein–protein interactions, which are also decisive in the 
control of transcriptional activity [22].
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Fig. 1  Hematopoietic hierarchy, representing the development of all 
blood lineages arising from totipotent cells from the inner cell mass. 
HSC hematopoietic stem cell, MPP multipotent progenitor, LMPP 
lymphoid-primed multipotent progenitor, CMP common myeloid 

progenitor, CLP common lymphoid progenitor, GMP granulocyte–
macrophage progenitor, MEP megakaryocyte–erythrocyte progenitor. 
Lineage-determining transcription factors are depicted at the position 
where their action in critical for further blood cell development
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Targeted mutagenesis of RUNX1 and PU.1 genes

Loss-of-function animal models in conjunction with cut-
ting-edge genome-wide technologies represent a powerful 
strategy to understand how cell-specific transcription fac-
tors regulate biological processes [23]. The importance of 
RUNX1 in embryonic hematopoiesis was shown in mice 
where both alleles of RUNX1 were disrupted. The absence 
of RUNX1 results in embryonic lethality at day E11.5–
E12.5, caused by perivascular edema, hemorrhaging in the 
central nervous system, and a block of fetal liver hemat-
opoiesis [24]. A similar phenotype is observed in CBFβ-
knock-out mice, whereby CBFβ deficient ESCs are able 
to contribute to nonhematopoietic organs but not to hemat-
opoietic tissues, i.e., peripheral blood and thymus [25]. 
However, Runx1 can work independently from its partner 
CBFβ, as suggested in a recent study, where it was shown 
that RUNX1 is able to drive the formation of nascent HSCs 
in zebrafish embryo model in the absence of CBFβ [26]. 
Another independent study found that murine AML1−/− 
ESCs are able to give rise primitive erythroid progenitors 
in vitro but no myeloid or erythroid cells are produced in 
either fetal livers or yolk sac of AML1−/− embryos [27]. 
To assess the role of RUNX1 in the development of adult 
blood cells, conditional RUNX1 knockout mice were gen-
erated and analyzed by several independent groups. These 
studies overall show that loss of RUNX1 in adult stages 
does not totally compromise hematopoiesis in general (i.e., 
HSCs are still present) [28–30], but causes expansion of 
a lineage negative Sca1+ Kit+ (LSK) population and the 
myeloid progenitor compartment in bone marrow [30, 31]. 
Moreover, in vivo long-term HSC activity is negatively reg-
ulated by RUNX1 [32].

PU.1 mutant embryos display a variable onset of anemia 
between days E14.5 and E17.5 due to defects in multiple 
hematopoietic lineages, and no viable embryos are found 
after day E18 [33, 34]. Further experiments conducted in 
another strain of PU.1 null mice demonstrate multiple 
hematopoietic abnormalities, leading to septicemia within 
24 h and to death by 48 h after birth [34]. In PU.1 null mice, 
macrophages are totally absent and neutrophil development 
is severely impaired. Abnormalities are also detected in B 
cell compartment, which is blocked at a very early stage of 
maturation [34]. PU.1 has been shown to play a role also 
in early committing blood precursor stages. TALE-effector-
mediated PU.1 repression in a murine ESC differentiation 
confirmed the presence of PU.1 at sites of mouse definitive 
hematopoiesis [35]. However, using the same experimental 
model, Lancrin et al. [36] investigated the capability of the 
major downstream targets of RUNX1, i.e., GFI1, GFI1B 
and PU.1, to rescue the defective phenotype of Runx1−/− 
FLK1+ cells in cell differentiation assays and find that the 
retroviral overexpression of PU.1 in Runx1−/− FLK1+ cells 

is not able to rescue their impairment in forming blast colo-
nies, confirming its role downstream of RUNX1.

Developmental‑stage‑specific RUNX1 and PU.1 
function

During embryogenesis the hematopoietic system origi-
nates from the mesoderm and consists of two distinct 
developmental waves: primitive and definitive hemat-
opoiesis, which take place in the yolk sac and dorsal 
aorta, respectively [37]. As opposed to cells derived from 
primitive hematopoiesis, definitive hematopoiesis gener-
ates true HSCs which give rise to all blood cell compart-
ments throughout the entire lifespan of an individual. HSCs 
emerge from a specialized endothelium inside the dorsal 
aorta, i.e., the hemogenic endothelium (HE), from which 
they detach and form intra-aortic cell clusters that eventu-
ally take part in blood circulation before homing to the fetal 
liver and the bone marrow [38]. The process that comprises 
the loss of endothelial specificity and the emergence of 
round, free-moving cells is referred to as the endothelial-to-
hematopoietic transition (EHT) [39–41]. The upregulation 
of RUNX1 during the EHT is responsible for the upregu-
lation of Pu.1/Sfpi1, with Runx1 mRNA being detected as 
early as E7.5 and Pu.1/Sfpi1 mRNA at E8.5 in the HE in 
the mouse [40, 42, 43].

RUNX1 was shown to be essential for the formation of 
intra-aortic clusters, HSCs and hematopoietic progenitor 
formation [31], via facilitated expression of critical regu-
lators of the EHT. These include GFI1 and GFIB, which 
trigger down-regulation of the endothelial markers Tek/
TIE2, VE-Cadherin/CDH5 and KIT, even in the absence 
of RUNX1 [36]. Genome-wide studies have shown that 
hematopoietic genes such as PU.1 are actually primed 
in the HE by occupancy of TAL1/SCL and FLI1 to their 
regulatory regions and that a RUNX1-mediated reorgani-
zation of these factors is critical during EHT [44]. PU.1, 
on the other hand, contributes towards HSC maintenance 
by balancing the expression of cell-cycle regulators [45]. 
However, above all, PU.1 is a master regulator of later 
hematopoiesis and is required for commitment to the 
myeloid lineage since together with C/EBPα it controls 
the expression of the receptors for GM-CSF [46], and of 
CSF-1 which are critical cytokines for myelopoiesis [47, 
48]. In addition, high levels of CSF-1 result in higher PU.1 
expression [49]. C/EBPα which is required for the produc-
tion of granulocyte–macrophage progenitors (GMPs) and 
beyond upregulates Spi1 (PU.1) but PU.1 also upregu-
lates the expression of CEBPA [50–53]. Besides being 
part of such a feed-forward loop driving differentiation, 
high PU.1 levels and thus commitment towards the mye-
loid lineages are achieved via lengthening of the cell cycle 
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and ensuing protein accumulation [54]. As the end-product 
of these developmentally controlled activities, PU.1 and 
RUNX1 function synergistically by forming a complex that 
excludes co-repressors [55] in myeloid cells, ultimately 
resulting in the regulation of lineage-specific genes such as 
the CSF-1 receptor gene (Csf1r) [56] and Ig-like transcripts 
[57]. Finally, RUNX1 is also capable of recruiting Poly-
comb repressive complex 1 (PRC1) to regulatory elements 
of myeloid genes [58]. However, in the case of RUNX1 
deficiencies, this property is conferred to PU.1, although 
the loss of RUNX1 function prevents later switches from 
co-repressor to co-activator complexes, resulting in blocked 
differentiation [59].

PU.1 is not only a crucial factor for HSCs and myeloid 
progenitors but also plays an important role as a regulator 
of macrophage function. Macrophages are a highly het-
erogeneous cell type expressing high levels of this factor. 
In the last years, genome-wide studies have provided an 
explanation for its crucial role in the terminally differenti-
ated state and made some headway into understanding its 
function in setting the stage for macrophage heterogene-
ity. PU.1 binds to more than 40,000 sites in macrophages 
thus opening up chromatin for rapid binding of a variety 
of incoming signal-inducible factors in the context of an 
inflammatory response [60–62] and cooperating with dif-
ferent types of factors in different macrophage types [63–
65]. Macrophages are therefore primed to respond to a 
multitude of signals with the expression of a large number 
of different genes. In summary, the RUNX1/PU.1 axis is 
critical for the entire process of myeloid differentiation.

RUNX1 and PU.1 in T and B‑cells

Besides its important role in myelopoiesis, RUNX1 is also 
a master regulator of T-cell differentiation, due to its bind-
ing to regulatory elements of T-cell-specific genes [66]. In 
CD4+ single positive (SP) and CD4+/CD8+ double posi-
tive (DP) T-cells, genome-wide studies have conferred a 
key role of RUNX1 in the modulation of the expression 
of these genes via distal elements [67, 68]. In CD4−/
CD8− double negative (DN) and DP thymocytes, RUNX1 
enhances the expression of critical genes such as the TCRα 
and β loci by binding to their respective enhancers [69, 70]. 
Furthermore, RUNX1 represses CD4 at the DN and CD8+ 
SP stages by binding to its silencer element [71, 72]. This 
repression, however, requires cooperative binding with 
RUNX3, the latter driving T-cell differentiation towards the 
CD8+ lineages [73–75], reviewed in [76]. At later CD4+ 
SP, stages, RUNX1 favors Th1 differentiation by inhibit-
ing the expression of GATA3 and IL4 [77, 78], reviewed in 
[79]. RUNX1 also suppresses the emergence of regulatory 
T-cells (Treg) by inhibiting the expression of FOXP3 [80, 

81]. In B-cells, the expression of RUNX1 and its binding to 
enhancer regions of critical pre-B cell transition genes are 
required for the production and survival of early B-cell pro-
genitors [82]. Early B-cell development is also facilitated 
by enhanced expression of Ebf1 via the RUNX1–CBFβ 
interaction [83].

PU.1 is expressed in early thymocytes up to the DN2 
stage, after which its down-regulation is required for nor-
mal T-cell development [84–86]. However, T-cell differenti-
ation is severely impaired in PU.1-deficient mice [34], indi-
cating a critical role for this transcription factor at the onset 
of thymopoiesis. This was later confirmed by genome-wide 
studies whereby binding of PU.1 revealed factor-specific 
epigenetic marking of crucial early T-cell differentiation 
genes [87]. In contrast, low levels of PU.1 expression are 
specifically required for normal B-cell development, since 
higher levels drive precursors into myeloid differentiation 
[88, 89]. Similar to T-cells, PU.1 expression is not required 
for the expression of very early B-cell genes; however, it is 
essential for the formation of progenitors, as it also regu-
lates the expression of Ebf1 [90]. Likewise, PU.1 triggers 
chromatin remodeling in early B-cells, followed by depo-
sition of activation-specific histone marks in distal regions 
later bound by B-cell-specific transcription factors [60].

Consequently, due to their critical role in hematopoiesis, 
both RUNX1 and PU.1 exhibit oncogenic potential in B- 
and T-cell lineages. In t [12, 21] B-cell acute lymphoblastic 
leukemia (ALL), the most common mutation in child leu-
kemia, the RUNX1–ETV6 fusion protein causes aberrant 
upregulation of proliferation genes [82, reviewed in 91]. 
On the other hand, RUNX1 is downregulated or mutated 
in TLX1 T-ALL, as its normal expression entails tumor-
suppressing effects [92]. Conversely, the role of PU.1 in 
ALL is less established, although it is expressed in most 
B-ALLs, and that its deletion together with SpiB system-
atically results in leukemia [93, 94]. In T-ALL recent stud-
ies have reported expression of PU.1; however, the mecha-
nisms in which it could contribute towards leukemogenesis 
remain unclear [93, 95].

Developmental regulation of RUNX1 and PU.1: one 
regulates the other and both regulate themselves

Both RUNX1 and PU.1 contain distal regulatory elements 
harboring RUNX and ETS motifs [16, 96], indicating that 
both genes are subject to autoregulation [44, 45, 89, 97]. 
Using an inducible system, Lichtinger et al. [44] showed 
that the induction of Runx1 leads to binding of RUNX1 to 
the proximal promoter and to a strong upregulation of its 
own expression. Only one transcriptional start site (TSS) 
is known to initiate PU.1 mRNA transcription. However, 
an antisense RNA was described to regulate PU.1 protein 
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levels originating from a promoter within the gene which 
also is regulated by the −14 kb upstream regulatory ele-
ment (URE) [98]. Early in development prior to hematopoi-
etic specification, low levels of RUNX1 prime Pu.1/Sfpi1 
by binding to its −14 kb URE, an event that is accompanied 
by remodeling of the chromatin of cis-elements in the Pu.1 
locus [99]. In adult and embryonic mouse hematopoietic 
progenitors RUNX1 expressed at high levels then recruits 
the methyltransferase mixed lineage leukemia (MLL) to 
the -14 Kb URE to further upregulate expression [15, 44]. 
Moreover, RUNX1-binding sites within the URE are cru-
cial for PU.1 expression and the interaction between the 
URE and its promoter [100]. Autoregulation of the Pu.1/
Sfpi1 locus is achieved by different mechanisms, depend-
ing on the cell type. Intermediate levels of PU.1 expression 
in B-cells are achieved by a cooperation of PU.1 with E2A 
and FOXO1 which bind to the -14 Kb URE. In myeloid 
cells, C/EBP factors activate additional myeloid-specific 
enhancers at -12 and -10 kb which leads to an upregulation 
of gene expression through the cooperation of PU.1 and  
C/EBP factors [89].

The deletion of the URE in mice causes the development 
of AML, indicating that high levels of PU.1 are required 
to maintain a healthy balance between proliferation and 
differentiation [101]. Aberrant down-regulation of PU.1 
thus occurs in AML and MDS patients with frame-shift 
and missense RUNX1 mutations which impact its inter-
action with MLL [102]. These phenotypes are explained 
by RUNX1 binding being an absolute requirement for 
Pu.1/Sfpi1 expression [103], since its loss causes a block 
in myeloid and B-cell differentiation as well as increased 
platelet and T-cell development due to the tissue-specific 
nature of Pu.1/Sfpi1 expression [15]. In T-cells, Pu.1/Sfpi1 
expression is abrogated by specific TCF/LEF binding in the 
absence of Wnt signaling [104].

The Runx1 locus contains two temporally modulated 
promoters: a proximal one (P2) which transcribes a shorter 
isoform, expressed in early embryonic hematopoiesis, as 
well as a distal one (P1) which corresponds to isoforms 
expressed from hematopoietic progenitors onwards [105, 
106]. P1 is bound and repressed by RUNX1 itself [44, 
105–107], while in T-cells P2 is activated by NFAT bind-
ing [108]. To date, an enhancer has been characterized 
at +23 kb in the Runx1 locus, conferring hematopoietic 
specificity to both isoforms [109]. Runx1 expression is con-
trolled by TAL1/SCL via binding at the +23 kb enhancer 
[96, 110]. Further, GATA1 as well as ETS factors, includ-
ing PU.1, bind sites required for enhancer activity at the 
+23 kb element, suggesting that Runx1 is a PU.1 target 
[96]. Finally, it was shown that RUNX1 protein expres-
sion is downregulated in AML with MLL fusion pro-
teins, which, along with the loss of correct MLL function 
[111] and interaction with RUNX1 may contribute to the 

leukemic phenotype via incorrect regulation of RUNX1 
and consequently PU.1. In summary, these studies demon-
strate a profound interdependence of these two factors in 
driving correct hematopoietic development.

RUNX1 and PU.1 in AML

The genes encoding RUNX1 and CBFβ, its heterodimeric 
partner, are hot spots for chromosomal rearrangements and 
are the most frequent mutations associated with AML [8]. 
In a clinical study conducted in patients with normal karyo-
type, most RUNX1 mutations were detected in AML with 
an immature phenotype characterized by French–Ameri-
can–British classification subtype M0, less in M1 and 
M2 [112]. Genetic aberrations that can affect these genes 
include reciprocal chromosomal translocations, which give 
rise to chimeric fusion protein, such as RUNX1–ETO and 
CBFβ–MYH11, partial tandem duplication, intragenic loss-
of-function mutations and loss of heterozygosity [112–115] 
(Fig. 2). Point mutations in RUNX1 have been found in 
both de novo and secondary AML, following myelod-
ysplastic syndrome or chemotherapy [114, 116] and are 
capable of driving these diseases when introduced into the 
mouse germ line [117]. The majority of acquired RUNX1-
associated point mutations occurs in the RHD domain or 
the TAD domain and confers a very poor prognosis [112, 
116, 118].

The best characterized of these fusion proteins is 
RUNX1–ETO and it has for many years served as a para-
digm for studying the molecular basis of AML [119]. In 
the t[8, 21] chromosomal aberration, part of the N-termi-
nal portion of the RUNX1 protein, including its RHD, is 
fused to the repressor protein ETO, whose gene is local-
ized on chromosome 8, thus producing a RUNX1–ETO 
chimeric protein [8, 10, 120]. RUNX1–ETO retains the 
ability to interact with the enhancer core DNA sequence 
and has been shown to interfere with RUNX1-dependent 
transactivation [11, 121–123] and to alter the transcrip-
tional regulation of normal RUNX1 target genes [27, 122]. 
The fusion protein forms a tetrameric complex that inter-
acts with other important hematopoietic regulators, namely 
the bridging factors LMO2 and LDB1, the E-Box binding 
factor HEB and the ETS family members FLI1 and ERG 
[123–126]. Genome-wide studies demonstrated that the 
majority of RUNX1–ETO binding sites overlap with bind-
ing sites for RUNX1 [122, 125] and it was shown later 
that RUNX1 and RUNX1–ETO form complexes with the 
same transcriptional regulators and compete for the same 
binding sites. However, RUNX1–ETO and RUNX1 have 
distinct preferences for co-repressors and co-activators, 
with RUNX1–ETO being mostly associated with repressed 
genes [123]. These data show that RUNX1–ETO and 
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RUNX1 are in balance with each other, and additional stud-
ies have shown that each regulate distinct sets of genes 
which are both required to keep AML cells alive [127]. 
This dependency on the wild-type copy of RUNX1 has 
also been demonstrated for other RUNX1 and CBF trans-
locations [127, 128]. Genome-wide binding studies have 
shown that RUNX1–ETO binds to thousands of genes in 
chromatin [122, 125]. The nature of these binding sites 
is dictated by the nature of the RUNX1–ETO complex 
binding to sequences with RUNX, E-Box and ETS bind-
ing motifs whereas RUNX1 has a much larger choice of 
interaction partners and also binds to additional sequences 
[122]. Using a combination of chromatin immunoprecipi-
tation studies and knock-down approaches, Ptasinska et al. 
[123] identified and characterized the core t[8, 21] specific 
transcriptional network and demonstrated that the binding 
of RUNX1–ETO occurs at chromatin regions that are des-
tined for differentiation-drive transcription factor exchange 
during myeloid differentiation. At such sites, C/EBPα is 
the main driver of this exchange, together with RUNX1, 
binding to thousands of new sites once RUNX1–ETO is 
depleted. This exchange does not occur in t[8, 21] AML 
since RUNX1–ETO represses CEBPA, differentiation is 
thus blocked [122, 129]. Besides providing a system-wide 
molecular explanation of the block in differentiation, this 
work therefore also provided the molecular explanation for 
the crucial role of C/EBPα for myelopoiesis [52].

Although PU.1 mutations occurring in the DNA-bind-
ing domain and the transactivation domain have been 
found in AML patients [130], they are not common [131]. 

However, PU.1 expression is required for leukemia devel-
opment in a RUNX1/Eto9a-dependent leukemia model as 
a reduction of PU.1 levels results in a delayed onset of the 
AML phenotype [100]. In addition, although PU.1 expres-
sion is not directly controlled by chimeric MLL proteins, 
it is required for initiating and maintaining the leukemic 
phenotype induced by the MLL fusions, via cooperation 
with HOXA9 and MEIS1 proteins, which play a central 
role in the MLL-dependent leukemogenicity. Indeed, 
reduced expression of PU.1 in MLL-AF9 cells also results 
in a delay in the onset of leukemia [132]. Similarly, the 
upregulation of the CSF1R by the cooperation between 
PU.1 and the fusion protein MOZ-TIF2 is essential in 
the establishment and maintenance of an AML pheno-
type [47]. As outlined above, reduction in PU.1 expres-
sion induces a premalignant state that is associated with 
a high frequency of chromosomal rearrangements, lead-
ing to the AML development [101]. In addition, mutations 
within the URE and loss of heterozygosity in the PU.1 
locus, detected in AML patients, strongly suggest that 
these rearrangements could be associated with AML [133, 
134]. Taken together, these data highlight the importance 
of the RUNX1–PU.1 axis for both normal and leukemia 
stem cells.

Although in the last few years many details about the 
mechanisms by which RUNX1 and PU.1 cooperate have 
been elucidated, many relevant insights remain still elu-
sive. In particular, our knowledge of the molecular details 
of how these two factors program the epigenome and alter 
transcriptional networks is still incomplete and this holds 
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Fig. 2  Different types of genetic aberrations occur in RUNX1 locus 
in AML and other myeloproliferative disorders. The most frequent 
are point mutations, which can affect the main domains of the pro-
tein, often resulting in loss of function (a); reciprocal chromosomal 

translocations involving human chr21q22 locus (b); loss of heterozy-
gosity, in which the loss of the wild-type allele results in the aberrant 
expression of the non-functioning allele (c). RHD RUNT homology 
domain, TAD transactivation domain, LOH loss of heterozygosity
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true for both normal and abnormal hematopoiesis. How-
ever, such understanding is vital if we want to revert malig-
nant phenotypes and design more efficient therapeutic 
treatments for leukemias and other blood disorders. There 
is still a large amount of fundamental science to do.
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