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Abstract Acute myelogenous leukemia (AML) origi-

nates from self-renewing leukemic stem cells (LSCs),

which represent the ultimate therapeutic target for AML.

Recent studies have identified several AML LSC-specific

surface antigens as candidate targets of therapeutic mole-

cules. T cell immunoglobulin mucin-3 (TIM-3) is expres-

sed on LSCs in most types of AML, with the exception of

acute promyelocytic leukemia, but not on normal hema-

topoietic stem cells (HSCs). In xenograft models recon-

stituted with human AML LSCs or HSCs, an anti-human

TIM-3 mouse IgG2a antibody with cytotoxic activities

eradicates AML LSCs in vivo, but does not affect normal

human hematopoiesis. Thus, TIM-3 is a promising thera-

peutic target for the eradication of AML LSCs.

Keywords Acute myelogeneous leukemia �
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Introduction

Human hematopoietic stem cells (HSCs) reside within the

CD34?CD38- cell fraction of bone marrow. HSCs have

the potential to self-renew and differentiate into multi-

lineage mature hematopoietic cells and thereby maintain

normal hematopoiesis. By virtue of their organization into

such a hierarchical system, HSCs are able to regulate

dynamic homeostasis of hematopoiesis. Similarly, in acute

myelogenous leukemia (AML), a small number of leuke-

mic cells, called leukemic stem cells (LSCs) or leukemia-

initiating cells, are found within the same CD34?CD38-

cell fraction. LSCs self-renew and give rise to clonogenic

leukemic cells, whereas non-LSCs lack the potential to

self-renew or maintain leukemia, thus AML is also orga-

nized as a hierarchy, which originates from LSCs [1–3].

The concept of LSCs has been proposed based on the

finding in the 1980s that only a limited fraction of AML

cells can give rise to blast colonies in vitro. In 1994, Dick

et al. showed that the CD34?CD38- AML leukemic cells,

but not other AML cells, including CD34?CD38? and

CD34- leukemic cells, can reconstitute human AML in

immunodeficient mice, providing direct evidence for the

existence of LSCs [1]. Although recent studies have sug-

gested that LSCs in some types of AML may be present

within the CD34?CD38? fraction [4] or the CD34- leu-

kemic cell fraction as well [5, 6], the CD34?CD38- pop-

ulation concentrates the LSCs in a vast majority of cases

[7]. The CD34?CD38- phenotype is identical to that of

very primitive human HSCs with long-term reconstitution

activity [8, 9] and multipotent progenitor cells, suggesting

the possibility that LSCs originate from these very primi-

tive HSCs or progenitor cells [10].

In the clinic, conventional chemotherapy currently

achieves complete remission in *90 % of AML cases [11,

12]. However, a considerable fraction (*60 %) of AML

patients eventually relapse after intensive chemotherapies.

The recurrence of AML in these patients may be caused by

re-growth of surviving LSCs. Thus, LSCs should be the

ultimate therapeutic target if we are to achieve a cure for

AML. To selectively kill AML LSCs while sparing normal

HSCs, one of the most practical approaches is to target

AML LSC-specific surface molecules or molecules
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required for LSC function. To achieve such specificity, the

target molecule should be expressed on LSCs at a high

level, but not on normal HSCs [13]. It does not matter

whether the molecule is expressed in normal blood cells or

normal progenitor cells, because if physiologic HSCs are

spared, they are able to replenish all mature blood cells

after the conclusion of treatment.

Recently, two groups have identified T cell immuno-

globulin mucin-3 (TIM-3) as a surface molecule expressed

in LSCs of most AML types [14, 15]. TIM-3 is a promising

therapeutic molecule for the targeting of LSCs while

sparing normal residual HSCs [14]. Furthermore, a recent

study has succeeded in the prospective separation of LSCs

from residual HSCs in de novo AML patients by TIM-3

expression, allowing us to clarify the clonal relationship

between LSCs and HSCs in the same patient [16]. In this

review, we summarize recent progress in studies of TIM-3

and discuss the potential utility of TIM-3 for eradicating

AML LSCs while leaving normal HSCs unaffected.

TIM-3 in normal hematopoiesis

TIM-3 was first identified as a surface molecule expressed

in interferon (IFN)-c-producing CD4? Th1 cells and in

CD8? T cytotoxic type 1 (Tc1) cells [17] in murine

hematopoiesis. TIM-3, a type 1 cell-surface glycoprotein,

has a structure that includes an N-terminal immunoglobulin

variable domain followed by a mucin domain, a trans-

membrane domain and a cytoplasmic tail. Figure 1 shows

the structure of TIM-3 and its ligands. TIM-3 plays an

important role in regulating Th1-dependent immune

responses and in inducing immune tolerance [17–19]. In

lymphocytes, galectin-9, an S-type lectin, has been repor-

ted as a TIM-3 ligand. Galectin-9 has two distinct carbo-

hydrate recognition domains and can bind to carbohydrate

chains on the TIM-3 IgV domain. TIM-3 has highly con-

served six tyrosine residues and an Src homology 2(SH2)

binding motif in its cytoplasmic tail, and stimulation of

TIM-3 by galectin-9 results in increased phosphorylation of

tyrosine residues in T cells [20]. Engagement of TIM-3 by

galectin-9 induces apoptosis of Th1 cells and inhibits their

IFN-c production [21]. Thus, TIM-3 is considered to be a

negative regulator of Th1- and Tc1-driven immune

responses.

Another aspect of TIM-3 expression in the T cell lineage

is as a marker of ‘‘exhausted’’ CD8? T cells. Exhausted T

cells show impaired proliferation potential and effector

function in response to antigen stimulation. Such exhausted

T cells express the inhibitory molecule programmed cell

death 1 (PD-1) on their surface, and T cell function can be

partially restored by blocking the interaction between PD-1

and PD-1 ligand in mice [22]. In addition to PD-1

expression, recent studies have shown that TIM-3 expres-

sion also marks exhausted CD8? T cells in patients with

chronic viral infections, including human immunodefi-

ciency virus (HIV) [23], hepatitis B virus [24] and hepatitis

C virus (HCV) [25]. Blockade of both TIM-3 and PD-1

pathways can restore T cell proliferation and effector

potential, suggesting that both TIM-3 and PD-1 pathways

play a major role in CD8? T cell exhaustion [26].

TIM-3 also plays a major role in innate immunity, by

modulating immune reaction pathways. Among innate

immune cells, NK cells and some kinds of myeloid cells,

including monocytes/macrophages, dendritic cells and

mast cells, express TIM-3 in both humans and mouse. In

NK cells, TIM-3 is shown to be an inducible surface

receptor on activation [27, 28], but its function remains

controversial. Gleason et al. [27] reported TIM-3 as a

human NK cell co-receptor to enhance IFN-c production,

whereas Ndhlovu et.al reported the inhibition of NK cell-

mediated cytotoxicity by TIM-3 cross-linking [28]. Further

studies are necessary to clarify the precise function of TIM-

3 in NK cells. In the myeloid lineage, TIM-3 is expressed

in monocytes/macrophages, dendritic cells (DCs) and mast

cells [29–32]. TIM-3 expressed on monocytes or DCs

synergizes with Toll-like receptors to promote tumor

necrosis factor-a (TNF-a) secretion and enhances inflam-

matory responses [29]. In addition, TIM-3 on macrophages

and DCs recognizes phosphatidylserine (PS) in apoptotic

cells through its IgV domain. Binding of PS to TIM-3 does

not interfere with that of galectin-9 to TIM-3, as the

binding sites of these molecules are located on opposite

sides of the IgV domain. In TIM-3-expressing DCs,

Fig. 1 Structure of TIM-3 molecule and its ligands. TIM-3 is a type 1

cell-surface glycoprotein and has a structure that includes an

N-terminal immunoglobulin variable domain followed by a mucin

domain, a transmembrane domain and a cytoplasmic tail with highly

conserved six tyrosine residues and an SH2 binding motif. Galectin-9,

HMGB1 and PS have been identified as ligands of TIM-3
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recognition of PS by TIM-3 induced enhancement of

phagocytosis of apoptotic cells and cross-presentation of

apoptotic cell-associated antigen to CD8? T cells [30]. In

addition to the previously identified TIM-3 ligands,

galectin-9 and PS, a recent study revealed that high

mobility group box 1 (HMGB1) serves as a ligand for TIM-

3 in tumor-associated DCs (TADCs). TIM-3 is highly

expressed in TADCs and suppresses nucleic acid-mediated

innate immune response independently of galectin-9 or PS.

HMGB1 has the potential to trigger the transportation of

nucleic acids into endosomes in DCs. TIM-3 inhibits the

recruitment of nucleic acids to endosomes by trapping

HMGB1, and attenuates the innate immune response

against tumor [33]. As described above, TIM-3 is expres-

sed in various types of hematopoietic cells and seems to

have lineage- or cellular context-dependent signal trans-

duction pathways or functions [29]. Further studies will

help us to understand the detailed function of TIM-3.

In steady-state human hematopoiesis, TIM-3 is expres-

sed mainly in monocytes and a fraction of NK cells, but not

in granulocytes, B cells or the vast majority of T cells [14].

In human bone marrow, CD34?CD38-CD90?Lin- normal

HSCs and the vast majority of the CD34?CD38? progen-

itor cells lack TIM-3 expression. Within the CD34?CD38?

progenitor fraction, human myeloid progenitors can be

divided into three progenitors, including common myeloid

progenitors (CMPs), granulocyte/macrophage progenitors

(GMPs) and megakaryocyte/erythrocyte progenitors

(MEPs), by the expression of CD123 and CD45RA [34].

Of these myeloid progenitors, TIM-3 is expressed only in a

fraction GMPs, but not in CMPs and MEPs. The vast

majority of purified TIM-3? GMPs mainly give rise to

colony forming unit-macrophage (CFU-M), whereas TIM-

3-GMPs give rise to various types of myeloid colonies,

including colony forming unit-granulocyte/macrophage

(CFU-GM), colony forming unit-granulocyte (CFU-G) and

CFU-M, suggesting that upregulation of TIM-3 occurs in

concert with monocyte lineage commitment at the GMP

stage in human [14].

TIM-3 in AML

Many studies of TIM-3 have focused on its role as an

immune modulating molecule and intensively investigated

in the field of immunology; however, the studies on its role

or expression in hematological malignancies have been

limited so far. We and another group identified TIM-3 as

an AML LSC-specific surface molecule based on the

transcriptome analysis between gene expression profiles of

CD34?CD38- AML cells and normal HSCs (Fig. 2a). As

shown in Fig. 2b, TIM-3 protein is not expressed in

CD34?CD38-CD90?Lin- normal HSCs, but the vast

majority of the CD34?CD38- LSCs as well as the

CD34?CD38? cells in most types of AML except for acute

promyelocytic leukemia express TIM-3 protein at a high

level [14, 15]. Notably, it has been reported that the

expression level of TIM-3 is high in AML with core-

binding factor translocations or mutations in CEBPA [15].

Strikingly, the TIM-3? population in the bone marrow

contains all AML LSCs, and residual HSCs are always

included in patients’ TIM-3- population. To test the sig-

nificance of this, TIM-3? and TIM-3- AML populations

were transplanted into sublethally irradiated immunodefi-

cient mice, and it was found that only TIM-3? AML cells

reconstituted human AML in mice [14]. Jan et al. [15]

reported that normal human hematopoiesis is always

reconstituted in the mice transplanted with

CD34?CD38-TIM-3- cells from AML patients, suggest-

ing that TIM-3 may be a useful marker to separate residual

HSCs from AML LSCs. Jan et al. also compared the gene

mutation status of the prospectively isolated residual

CD34?CD38-CD99- TIM-3–HSCs and TIM-3?AML

cells in the same AML patients by exome sequencing, and

found that the presence of pre-leukemic HSCs harboring

identical gene mutations to those of paired AML cells,

revealing the multi-step leukemogenesis from self-renew-

ing HSCs [16]. These studies reveal that TIM-3 expression

is very specific to AML and is useful in clearly distin-

guishing HSCs from LSCs.

Targeting AML LSCs by anti-TIM-3 killing antibodies

To utilize TIM-3 to target AML LSCs, it is critical to

establish anti-human TIM-3 antibodies that can kill TIM-3-

expressing cells in vivo. In terms of the antibody-based

treatment, the antibody-dependent cellular cytotoxicity

(ADCC), as well as the complement-dependent cytotoxic-

ity (CDC) activities is critical to eliminate target cells [35].

Additionally, recent studies have suggested that antibody-

dependent cellular phagocytosis (ADCP) could play an

important role in killing target cells in vitro [36] and vivo

[37].

An anti-TIM-3 monoclonal antibody (IgG2b) was

obtained by immunizing Balb/c mice with L929 cells sta-

bly expressing human TIM-3 and soluble TIM-3 protein. In

this antibody, the variable portions of the VH regions of the

cloned hybridoma that recognize TIM-3 were grafted onto

IgG2a Fc regions, because IgG2a subclass is most efficient

to induce ADCC activity in mice [38, 39]. The established

clone, ATIK2a, was effective in killing TIM-3-expressing

cell lines via both CDC and ADCC effects [14].

The effect of ATIK2a on normal and malignant AML

hematopoiesis was tested in xenograft models. NOD-SCID

mice transplanted with 105 CD34? cord blood cells with or

without ATIK2a treatment developed nearly equal per-

centages of human hematopoietic cells. In mice injected
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with ATIK2a, however, human CD33?TIM-3? mature

monocytes were depleted, suggesting that targeting TIM-3

does not affect development of normal hematopoiesis,

killing only the normal TIM-3? cells.

In contrast, against AML cells, ATIK2a exerted pro-

found effects on leukemia development. In mice trans-

planted with human AML of M0, M1 and M4 types,

ATIK2a treatment significantly reduced the human CD45?

AML burden as well as the CD34?CD38- LSC cell

numbers in vivo. Re-transplantation of the remaining AML

cells in primary recipients treated with ATIK2a into the

secondary recipients failed to reconstitute human AML,

indicating that ATIK2a treatment successfully eradicated

functional LSCs in primary recipients. These data suggest

that eliminating AML LSCs by using anti-TIM-3 killing

antibodies is a practical approach to cure human AML.

Perspective

To target surface antigens on AML LSCs, it is critical to

specifically kill LSCs sparing normal HSCs with high

sensitivity. TIM-3 has several advantages over other can-

didate markers. First, TIM-3 protein is not detectable in

normal HSCs, or in other myelo-erythroid or lymphoid

progenitors, although TIM-3 is upregulated in monocyte

lineage committed progenitors. Second, TIM-3 marks all

functional LSCs that can reconstitute human AML in

immunodeficient mice in the majority of M0, M1, M2 and

M4 AML cases, and its expression level is sufficient to

eradicate LSCs by antibody-based treatment. The expres-

sion level of other candidate molecules, including CD25

[40], CD32 [40], CD44 [41] and CD47 [42] in LSCs, was

only two- to threefold higher at the mRNA level as com-

pared to normal HSCs in our own transcriptome analysis,

and in some AML cases, LSCs did not express these

molecules. CD33 and CD123 [43] proteins are expressed at

a considerably high level in normal HSCs and myeloid

progenitors including CMPs and GMPs [44], suggesting

that targeting these molecules should harm normal hema-

topoiesis. In fact, prolonged cytopenia has been observed

in AML patients treated with gemtuzumab [45], a recom-

binant humanized anti-CD33 monoclonal antibody conju-

gated with the cytotoxic antibiotic calicheamicin. In

contrast, CLL-1 [46], CSF1R [47], CD96 [48] and CD99

[16] are all specifically expressed in LSCs. CLL-1 is a

transmembrane glycoprotein [49]. The proportion of CLL-

1-expressing CD34?CD38- AML cells is highly diversi-

fied in cases [46]. CD96 is a member of the Ig gene

superfamily. CD96 is expressed on activated T cells [50].

Of note, like in the case of TIM-3, CD96? but not CD96-
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Fig. 2 TIM-3 expression in

normal HSCs and AML LSCs.

a Results of gene expression

analysis comparing

CD34?CD38- normal HSCs

and AML LSCs. Surface

molecules highly expressed in

LSCs are shown. b FACS

analysis of TIM-3 protein

expression in normal HSCs and

AML LSCs. Both

CD34?CD38-CD90- LSCs and

CD34?CD38?AML cells

express TIM-3, whereas

CD34?CD38-CD90- HSCs

completely lack TIM-3

expression. TIM-3 expression

originates within the

CD34?CD38? progenitor

fraction in normal human

hematopoiesis. Representative

FACS analysis results of TIM-3

expression are shown here
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AML cells efficiently reconstituted AML in the immuno-

deficient mice [48], suggesting that CD96 can mark all

functional AML LSCs. The expression level of CD96

protein is also high enough to clearly distinguish AML

LSCs from normal HSCs. The sensitivity of TIM-3 is likely

to be the highest among these molecules, at least for AML

M0, M1, M2 and M4.

It is important to understand the function of these

therapeutic target molecules on the development of AML.

For example, it has been shown that anti-CD44 monoclonal

antibodies reduce the leukemic burden and block second-

ary engraftment in an NOD-SCID model [41]. This effect

on LSCs was mediated in part by the disruption of LSC-

niche interactions [41]. Anti-CD47 antibodies can block

LSC reconstitution in an NOD-SCID model [42], and this

might be due to the activation of phagocytosis by macro-

phages through inhibition of interaction of CD47 with

SIRPA [51]. Since the pathway for eradication of LSCs by

anti-CD44 or anti-CD47 treatment is different from that by

anti-TIM3 antibodies, the combination of these antibodies

might be critical for future treatments targeting AML

LSCs. Unlike the cases in CD44 and CD47, the function of

TIM-3 molecule in AML is still largely unknown. TIM-3 is

expressed in the various types of hematopoietic cells and

seems to have lineage- or cellular context-dependent signal

transduction pathways or functions. TIM-3 expression and

functions in hematopoietic cells are summarized in Fig. 3.

Recent studies reported the ectopic expression of TIM-3

in lineages other than hematopoietic cells, particularly in

primary cancer cells, including melanoma [52], non-small

cell lung cancer [53], cervical cancer [54] and liposarcoma

[55]. Importantly, patients with TIM-3 positive cancer cells

had a significantly shorter survival time than those with

TIM-3 negative cancer cells in non-small cell lung cancer

[53] and cervical cancer [54]. TIM-3 expression in these

various types of malignant cells raises the possibility of

tumorigenic function of TIM-3. Further studies will help us

to find out the TIM-3 function in malignant cells.

Conclusion

TIM-3 plays pivotal and diverse roles in modulating

immune reaction. We identified TIM-3 as a specific surface

molecule expressed in AML LSCs through transcriptome

analysis of normal HSCs and AML LSCs. TIM-3 expres-

sion can distinguish AML LSCs from normal HSCs, indi-

cating that targeting TIM-3 may be a useful therapeutic

approach. We have developed antibody-based therapeutic

xenograft model of primary AML cells, and shown that

targeting TIM-3 by cytotoxic monoclonal antibodies kills

functional LSCs in vivo. Thus, TIM-3 is a promising

therapeutic target for the eradication of AML LSCs.
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