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Abstract Multiple myeloma (MM) is characterized by

the clonal expansion of malignant plasma cells. As in other

cancers, MM plasma cells are thought to be derived from

MM-initiating cells, although these remain unidentified.

MM patients harbor phenotypic CD19? B cells expressing

the immunoglobulin gene sequence and the idiotype unique

to the individual myeloma clone. Some previous studies

have reported that CD19? clonotypic B cells can serve as

MM-initiating cells. However, we and another group have

recently showed that CD19? B cells from many MM

patients do not reconstitute MM disease upon transplanta-

tion into NOD/SCID IL2Rcc-/- mice. In the SCID-rab and

SCID-hu models, which enable engraftment of human MM

in vivo, CD19-CD38?? plasma cells engrafted and rapidly

propagated MM, while engraftment of CD19? B cells was

not detected. Both CD138- and CD138? plasma cells have

the potential to propagate MM clones in vivo in the

absence of CD19? B cells. Distinct from acute myeloid

leukemia-initiating cells, which are derived from undif-

ferentiated stem or progenitor cells, MM-initiating cells are

derived from plasma cells, which are terminally differen-

tiated cells. An improved understanding of how the bone

marrow microenvironment supports MM-initiating plasma

cells, which can initiate MM disease in the SCID-hu (or

rab) model, is thus now essential.

Keywords Multiple myeloma � Stem cell � Progenitor

cell � Xenotransplant � CD138

CD191 clonotypic B cells in MM patients

Multiple myeloma (MM) is characterized by the clonal

expansion of malignant plasma cells [1–3]. The immuno-

globulin gene sequences in MM plasma cells are somati-

cally hyper-mutated and remain constant throughout the

clinical course, suggesting that the disease arises from a

post-germinal center B cell or a more differentiated cell [4–

6] (Fig. 1). Previous studies have found that MM patients

harbor phenotypic B cells expressing the immunoglobulin

gene sequence and the idiotype unique to the individual

myeloma clone [7–10]. These findings imply that clono-

typic B cells may be involved in the disease process but

offer no definitive proof that B cells in fact correspond to

the proliferating tumor compartment. We examined the

expression of immunoglobulin light chain j and k in the

CD19? B cells and CD19-CD38?? plasma cells from MM

patients, and found highly biased expression of j or k chain

in CD19? B cells in some patients, suggesting that clonal

CD19? B cells expanded in these patients. Morphological

abnormality of CD19? B cells were also observed in some

patients (Fig. 2). It is thus no doubt that clonotypic B cells

can be found in MM patients, however, it has been unclear

whether clonotypic B cells are MM-initiating cells or pre-

malignant cells, which need additional oncogenic hits to

become fully transformed MM-initiating cells.

MM-initiating potentials of CD191 clonotypic B cells

could not be detected by xeno-transplant assay using

NOD/SCIDXIL2Rc2/2 mice in many MM patients

CD19? B cells isolated from MM patients could reportedly

generate MM disease upon transplantation into NOD/SCID

mice in a few MM patients [11–14], indicating that
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clonotypic CD19? B cells served as MM progenitor cells in

these patients. These results suggested that CD19? clono-

typic B cells are important therapeutic targets in MM

therapy. However, B cell depletion by means of rituximab

in MM patients was not clinically effective in most cases,

at least for short periods [15]. It is therefore still unclear

whether CD19? or CD20? clonogenic MM progenitor cells

are responsible for disease progression and maintenance.

We transplanted purified CD19? B cells from peripheral

blood (PB) or bone marrow (BM) of MM patients into

immunodeficient mice. CD19? B cells were FACS-sorted

from PB or BM cells from MM patients and transplanted

directly into BM of NOD/Shi-scid,IL-2Rcnull (NOG) mice

or intravenously to new born pups of NOG mice [16].

Engraftment of human MM cells was monitored by mea-

suring human immunoglobulin light chain (IgL) j and k in

serum of the recipient mice, but no human IgL was detected

at any time. We also analyzed BM of the recipient mice

12–20 weeks after transplant, but no human CD19? or

CD38?? cells were detected (Fig. 3a). CD19-CD38??

plasma cells from the MM BM samples were also trans-

planted into NOG mice, but did not engraft. In contrast,

robust engraftment of human cells was observed upon

transplantation of cord blood-derived CD34? cells (Fig. 3a).

In some experiments, CD3-CD34-CD138- cells were

transplanted into BM of NOG mice, but did not engraft.

Finally, CD3-depleted BM cells from MM patients were

transplanted intravenously into a newborn NOG mouse.

When the BM cells were analyzed 12 weeks after transplant,

significant engraftment of human CD45? cells was observed

because CD3- BM cells contained many CD34? hemato-

poietic stem and progenitor cells. Small numbers of human

CD38??CD138? plasma cells were also detected, but

analysis of their IgL j and k expression showed that they

were not clonal MM plasma cells (Fig. 3b). This result

suggests that normal human hematopoietic cells, but not

MM cells engrafted in the recipient mice. Kim and Weiss-

man [17] have recently reported that the similar results.

Taken together, the presence of CD19? MM-initiating

cells could not be proven by xeno-transplant assay using
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NOG mice as recipients in many of MM patients, although

it is certain that there are small numbers of MM cases in

which CD19? B cells has MM-initiating potential as pre-

viously reported.

CD192CD3811 MM plasma cells, but not CD191

B cells, can initiate and maintain MM disease

in the SCID-hu/rab system

SCID-hu or SCID-rab model has been used for reconsti-

tution of MM disease in mice [18, 19]. In Japan, only

SCID-rab model is permitted to perform. A human or

rabbit bone fragment is inserted under the skin of a SCID

mouse more than 4 weeks before transplantation of MM

cells. Samples from MM patients are injected into the

human or rabbit bone, and the engraftment and expansion

of MM cells can be detected by measuring human

immunoglobulin light chain (IgL) j and k in serum of the

recipient mouse. We first transplanted whole BM cells

from MM patients and engraftment of MM cells was

monitored by measuring human IgLj and k in serum of

the recipient mice. Engraftment and expansion of MM

cells were observed in 5 out of 12 cases. Rabbit BM was

analyzed 12 weeks or more after transplant to determine

whether engraftment of not only MM plasma cells but

also CD19? B cells had taken place. Robust engraftment

of human CD38?? MM plasma cells expressing the

monotypic immunoglobulin light chain and containing

both CD138- and CD138? cells was detected in the

rabbit BM, but no human CD19? B cells were detected.

These results indicate that CD19-CD38?? plasma cells

could engraft and expand at least for several months

without engraftment of CD19? B cells. The same results

have been recently reported using SCID-hu system by

Kim and Weissman [17].

It was reported that clonogenic MM progenitor cells

could be found in the CD138- population in MM patients.

We thus transplanted purified CD138- or CD138? BM

cells into SCID-rab mice to test whether proliferating cell

compartments were present in the CD138- population.

Transplants with 9 MM samples were performed and in 3

of the samples, rapid increase of either human IgLj or k
was observed in serum of the mice transplanted with

CD138- cells. In the rabbit BM, CD38?? MM plasma

cells including CD138- and CD138? cells, but not CD19?

cells, were detected (Fig. 4). In 4 of 8 cases, CD138?

plasma cells also engrafted and expanded, although more

slowly than CD138- BM cells. Rabbit bone engrafted with

CD138? cells contained both CD38??CD138- and

CD38??CD138? plasma cells (Fig. 4). Importantly, these

BM cells, which do not contain CD19? B cells, could be

secondary transplanted to another SCID-rab recipient and

propagate MM disease (Fig. 4). These results indicate that

both CD38??CD138- and CD38??CD138- plasma cells,

but not CD19? B cells, contained MM-initiating cells,

which have the potential to propagate and maintain MM

clones, at least for several months, in the absence of clo-

notypic B cells. In some patients, highly proliferative MM

progenitor cells were present in the CD138-negative frac-

tion, but those cells were MM plasma cells, not B cells

(Fig. 4). CD138- MM plasma cells may be enriched with

immature and proliferative plasma cells. In consistent with

this, Kawano et al. [20] have recently reported that

MM cells expressing low levels of CD138 have an

immature phenotype and resistance against lenalidomide.
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Interestingly, substantial numbers of CD138-CD38??

plasma cells were detected in the SCID-rab mice trans-

planted with CD138? plasma cells. This suggests that

CD138 expression on MM plasma cells may be reversible.

The significance of CD138 expression on clonogenic MM

cells thus needs to be carefully interpreted. It was reported

that interaction with bone marrow stroma cells induced

expression of CD138 in MM plasma cells [21], indicating

that changes in CD138 expression depend on the micro-

environment. Jakubikova et al. [22] have recently reported

that clonogenic side populations in MM cells were not

enriched in the CD138low/? but not in the CD138- popu-

lation, although it is not clear whether clonogenic side

populations in primary MM cells are also enriched in

CD138low/? cells.

Taken together, our findings show that MM-initiating

cells are present in plasma cells in most MM patients. Both

CD138- and CD138? plasma cells have potential to prop-

agate and maintain MM clones for at least several months

without the need for CD19? clonotypic B cells (Fig. 5).

Future prospects about studies about MM-initiating

cells or MM stem cells

It is still unclear whether only a subset of plasma cells has

MM-initiating potential or many plasma cells have it. It is

well known that the survival of MM plasma cells is highly

dependent on microenvironment [23, 24]. Thus, it may be

possible that many plasma cells, even if not all, can acquire

MM-initiating potential by being at an appropriate location

namely ‘‘niche’’. It is undoubtedly important to know more

about the niche of MM plasma cells or MM-initiating cells.

For long years, many researchers have been used ‘‘bone

marrow stroma cell’’, which are the mixture of non-hema-

topoietic cells in BM, as supporting cells for MM plasma

cells. However, there has been only a little information about

niche cells for MM plasma cells. Recently, Iriuchishima et al.

[25] have reported interesting findings about niche for MM

cells. By transplanting GFP-expressing human MM cell line

into NOG mice, they found that transplanted MM cells

preferentially engrafted at the metaphyseal region of the BM

endosteum and formed a complex with osteoblasts and

osteoclasts, suggesting that MM plasma cells have the

character similar to quiescent hematopoietic stem cells

(HSCs). Another interesting finding in this report was that a

subpopulation of MM cells expressed VE-cadherin after

transplantation and formed endothelial-like structures in the

BM, and VE-cadherin(?) MM cells were chemo-resistant,

hypoxic, and HIF-2alpha-positive compared to the VE-

cadherin(-) population, suggesting the possibility of the

existence of VE-cadherin(?) MM stem cells. Accumulating

knowledge about stem cell niche obtained from HSC

research [26] may be applied to studies of MM stem cells.

CD19? B cells in a few MM patients generated MM

disease upon transplantation into NOD/SCID mice [11–

14], indicating that CD19? B cells of these MM patients

definitely contain MM progenitor cells. In our experiments

[16] and those by Kim et al. [17], CD19? B cells from MM

patients never induced MM disease upon transplantation

into NOG mice. However, this does not necessarily mean

that CD19? clonotypic B cells cannot be MM progenitor

cells in those MM patients. It should be noted that there are

many difficulties involved in the engraftment of human

cells in xeno-graft models. For example, mouse IL6, which

is one of the major growth factors for plasma cells, does

not transduce its signals through human IL6 receptors, and

probably other factors also lack inter-species cross-reac-

tivity between human and mice. This means that MM

progenitor cells can be detected in xeno-graft assays only

when they can survive independently of human IL6 or

other human factors. Thus, CD19? B cells from advanced

MM patients may be independent of several survival fac-

tors and effectively engraft and propagate MM disease

upon transplant into immuno-deficient mice. In addition,

signals from B cell receptors (BCRs) on clonotypic CD19?
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B cells need to be taken into consideration. When BCRs of

clonotypic CD19? B cells show very high affinity to xeno-

antigen in mice, they may be depleted and cannot survive

in xeno-graft models. Thus, assuming that CD19? MM

progenitor cells are present, they can be detected in xeno-

graft assays only when their BCRs are suitable for survival

in mice.

While xeno-transplant system is hard to utilize in

research for the stem cells of B cell malignancies for the

reason as described above, it is an extremely excellent tool

for the analysis of human hematopoietic stem cells.

Numbers of excellent studies about normal or malignant

hematopoietic stem cells have been done with xeno-trans-

plantation to NOD/SCID or NOG mice. It is thus possible

for us to analyze whether hematopoietic stem cells are

normal in MM or other B cell malignancies. Kikushige and

Akashi [27] have recently reported surprising results of the

analysis of HSCs in CLL patients. They found that HSCs

purified from patients with CLL displayed lymphoid-line-

age gene priming and produced a high number of poly-

clonal B cell progenitors. Strikingly, their maturation into

B cells was restricted always to mono- or oligo-clones with

CLL-like phenotype in xenogeneic recipients. These results

let us prompted us to perform the same analysis of HSCs

from MM patients.

How to target MM-initiating cells in bone marrow

MM-initiating plasma cells should be considered important

therapeutic targets, although we have not identified which

plasma cells have MM-initiating potential. The Hedgehog

signaling pathway was reported to be a promising candi-

date as a therapeutic target against clonogenic MM cells

[28]. In addition, it is also important to understand the

mechanisms involved in how the BM microenvironment

supports clonogenic MM plasma cells and targets them.

The Notch signaling pathway may be a good candidate for

such a target [29].

In addition to these, therapy with monoclonal antibody

against MM plasma cells should be a promising strategy

[30]. Since the mechanisms of antibody drug to kill tumor

cells are totally different from those of other drugs such as

chemotherapeutic drugs, proteasome inhibitors, and IMIDs,

combination of antibody drugs with these conventional

therapies should be effective. In fact, the addition of rit-

uximab to CHOP chemotherapy increased the cure rate of

lymphoma patients. Results of clinical trials with anti-CS1

antibody is very promising [31], and thereby it is expected

to be approved as the first antibody drug against MM. In

addition, several other antibodies, for example anti-CD38

mAb [32], have been also proved to be effective in MM

patients.

We recently identified CD48 as a novel therapeutic

target that is highly expressed on MM plasma cells in

almost all MM patients (Fig. 5) [33]. In 22 out of 24 MM

patients, CD48 was expressed on more than 90 % of MM

plasma cells at significantly higher levels than it was on

normal lymphocytes and monocytes. An anti-CD48 mAb

that was newly generated by us induced antibody-depen-

dent cell-mediated cytotoxicity and marked complement-

dependent cytotoxicity against not only MM cell lines but

also primary MM plasma cells in vitro. Administration of

the anti-CD48 mAb significantly inhibited tumor growth in

SCID mice inoculated subcutaneously with MM cells.

Furthermore, anti-CD48 mAb treatment inhibited growth

of MM cells transplanted directly into BM of the mice.

Finally and importantly, we demonstrated that the anti-

CD48 mAb did not damage normal CD34? hematopoietic

stem/progenitor cells. It should be noted that the expression

patterns of CD48 in human hematopoietic progenitor cells

are largely different form murine ones. While CD48 is
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expressed on almost all of c-kit?Sca-1?lin- mouse HSCs

except for CD150? long term-HSCs, in most of human

CD34? hematopoietic stem cells do not express or

expressed at very low levels of CD48. These results sug-

gest that the anti-CD48 mAb has the potential to become an

effective therapeutic mAb against MM.

Conclusion

Different from acute myeloid leukemia-initiating cells,

which are derived from undifferentiated stem or progenitor

cells, MM-initiating cells are derived from plasma cells,

which are terminally differentiated cells. This suggests that

strategies for targeting MM-initiating cells should be dif-

ferent from those for leukemia-stem cells. On the other

hand, some reports suggested common characters between

MM plasma cells and hematopoietic stem cells. Especially,

both of them highly prefer BM microenvironment. We now

need to know how BM microenvironment supports MM-

initiating plasma cells, which can initiate MM disease in

the SCID-hu (or rab) model.
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