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Abstract
A bimetallic nickel–molybdenum catalyst supported on γ-alumina was synthesized by the two-step incipient wetness impreg-
nation technique. The activity of the prepared Ni–Mo/γ-alumina catalyst was evaluated in a down flow fixed-bed micro-
reactor. In this way, hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) reactions of the main distillate fractions 
of crude oil were assessed. XRD, SEM, TPR, ICP-OES, BET–BJH and nitrogen adsorption/desorption methods were used 
for characterizing the synthesized Ni–Mo/γ-alumina catalyst. The active metals with Ni/Mo mass ratio of 0.23 and total 
metal of 13.7 wt% were loaded on the support, similar to the commercial industrial catalyst. The performance tests were 
conducted at 3.0 MPa (for light naphtha and heavy naphtha) and at 4.5 MPa (for kerosene and gas oil). The results revealed 
that the total sulfur conversion of the light naphtha, heavy naphtha, kerosene and gas oil fractions was 98.3%, 95%, 91.7% 
and 90.1% (after 24 h), respectively.
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1  Introduction

In refineries, crude oil is distilled to various fractions, in 
which the main distillate fractions including light naphtha, 
heavy naphtha, kerosene and gas oil are very valuable (Jarul-
lah et al. 2011; Prins 2001; Qian et al. 2013). There are 
serious regulations, especially in Europe and USA, which 
limit the impurities in the main petroleum fractions. These 
fractions contain various sulfur and nitrogen compounds 
that should be removed to help reaching a clean environ-
ment (Bassi et al. 2015; González-Cortés et al. 2006; Ling 
et al. 2009; Rong et al. 2014). Hydrodesulfurization (HDS) 
and hydrodenitrogenation (HDN) have been widely used for 
removing sulfur and nitrogen compounds from liquid phases 
(Faro and dos Santos 2006; Furimsky and Massoth 2005; 
Gao et al. 2011; Gutiérrez et al. 2014; Huirache-Acuña et al. 

2012; Ledoux and Djellouli 1990; Mendoza-Nieto et al. 
2015; Prins 2001; Qian et al. 2013; Soghrati et al. 2012; 
Sundaramurthy et al. 2006; Zepeda et al. 2016; Zhao et al. 
2004). For obtaining high-quality gasoline and enhancing 
the research octane number (RON) of light naphtha and 
heavy naphtha streams, refiners usually utilize isomeriza-
tion and catalytic reforming units (Eijsbouts et al. 2013), 
respectively. The catalysts used in the mentioned units are 
very sensitive to common impurities such as sulfur, nitrogen, 
oxygen and metal contents in the relevant feedstock. Sulfur 
compounds in transportation fuels are converted to SOx by 
combustion, and SOx is a major source of acid rain and air 
pollution (Ho and McConnachie 2011; Fan et al. 2011).

HDS and HDN are hydrotreating processes in which 
the reaction between feedstock and hydrogen occurs over a 
catalyst. Due to the importance of HDS and HDN processes 
and also economical–environmental issues associated with 
it, tremendous efforts have been devoted to the development 
of novel catalysts with high yields. NiMo and CoMo cata-
lysts on various supports are among the most studied cata-
lysts (Zdražil 2003; Yamamoto et al. 2007; Vonortas and 
Papayannakos 2014; Bui et al. 2015; Klimov et al. 2016; Liu 
et al. 2016; Zepeda et al. 2016; Escobar et al. 2017; Hajjar 
et al. 2017a, b; Maximov et al. 2017; Xu et al. 2017; Zhou 
et al. 2017).
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As mentioned, a wide range of catalysts has been used 
for HDS and HDN of various liquid phases. In general, a 
single feedstock has been used for evaluating the HDS and 
HDN activity of the catalysts. Tawara et al. have under-
taken catalysis for deep HDS of kerosene using Ni–Mo/
Al2O3, which performed better than conventional catalysts 
(i.e., NiO, CoO and MoO3) (Tawara et al. 2000). It is also 
reported that nickel clusters supported on ZnO nanowires 
and gamma alumina are highly active for HDS of gaso-
line and kerosene (Gupta et al. 2016). Song reviewed new 
approaches to clean gasoline, diesel fuel and jet fuel (Song 
2003). Sundaramurthy et al. (2006) studied HDN and HDS 
of different gas oils over phosphorus-doped NiMo/γ-Al2O3 
carbides catalysts. Miller et al. (2000) have used MoS2 cata-
lyst for HDS of fluid catalytic cracking (FCC) naphtha, and 
it was shown that MoS2 catalyst performs better on a silica 
support compared with alumina. Shan et al. (2015) have uti-
lized NiW catalysts for selective HDS of FCC naphtha, and 
it was reported that better dispersion of W enables modifi-
cation of the active phase which results in higher selective 
HDS. Also, various graphene-supported catalysts have been 
used for HDS of naphtha (Hajjar et al. 2015, 2016, 2017a, b). 
MoS2 supported over graphene was used for HDS of naphtha 
for which a simultaneous chemical exfoliation method was 
followed for preparing the catalyst by which high conversion 
was obtained (Hajjar et al. 2015). Co–Mo supported over 
graphene oxide has been used for performing the naphtha 
HDS reaction in which metallic phases were impregnated 
onto the support via the hydrothermal and wetness impreg-
nation method (Hajjar et al. 2017a, b). It is reported that con-
versions of 95%–100% have been obtained on naphtha feed 
(Hajjar et al. 2017a, b). However, the performance of the 
reported catalysts has been evaluated only on one feed type 
(i.e., Naphtha), which limits the commerciality of the cata-
lysts. Actually, most of the works on hydrotreating (HDT) 
of the liquid feedstock were mainly focused on only one feed 
type. However, Vozka et al. (2017) have studied the catalyst 
performance on a mixture of some distillates.

For commercializing the catalysts, it is necessary to 
develop catalysts which are effective in HDS and HDN on 
different fractions. Thus, in this study, the Ni–Mo/γ-alumina 
catalyst was synthesized and also HDS and HDN reactions 
on the main distillate fractions including light naphtha 
(L.N.), heavy naphtha (H.N.), kerosene (Kero.) and gas oil 
(G.O.) were studied and compared.

2 � Experimental

2.1 � Materials

Analy t ica l  g rade  n icke l  n i t ra te  hexahydra te 
(Ni(NO3)2·6H2O), ammonium heptamolybdate tetrahydrate 

((NH4)6Mo7O24·4H2O) and dimethyl disulfide (DMDS) were 
supplied by Merck Chemical Co.; analytical grade H2 and 
deionized water (DI) were used throughout the experiments.

2.2 � Catalyst preparation

The Ni/Mo atomic ratio was considered according to the 
specifications of the industrial catalysts. For preparing 
the catalysts, nickel nitrate hexahydrate (Ni(NO3)2·6H2O) 
and  ammonium heptamolybda te  te t rahydra te 
((NH4)6Mo7O24·4H2O) were used. The two-step incipient 
wetness impregnation method was used in which the Ni and 
Mo salts were added to the γ-alumina support. In the first 
step, incipient wetness impregnation was carried out on the 
support with ammonium heptamolybdate tetrahydrate aque-
ous solution and then it was dried in the air at 120 °C for 
4 h (by using a temperature-programmed electric furnace 
at the rate of 1 °C/min). In the second step, nickel nitrate 
hexahydrate aqueous solution was used and dried similar to 
step 1. The calcination step was in air to 550 °C (with a rate 
of 2 °C/min) and kept at this temperature for 5 h.

2.3 � Catalyst characterization methods

2.3.1 � ICP‑OES

As the metal loading has a determining effect on the overall 
performance of the hydrotreating catalysts, it is essential to 
obtain optimum metal loading and control it. To determine 
metal loading, inductively coupled plasma-optical emission 
(ICP-OES) spectrometry was used (Perkin Elmer, Optima 
8000 Dual view System).

2.3.2 � BET surface area measurements/BJH pore size 
distributions

Surface properties such as surface area, pore volume and 
an average diameter of pores of the calcined catalysts are 
of great importance and have a direct effect on HDS and 
HDN activities, so they should be investigated thoroughly. 
The ASAP-2010 V2 Micromeritics system (Micromeritics 
Instrument Corp., Norcross, GA, USA) was used to study 
the surface properties. The samples were degassed at 200 °C 
for 4 h at a vacuum of 50 mTorr, and their Brunauer, Emmett 
and Teller (BET) area, pore volume and pore diameter were 
determined.

2.3.3 � X‑ray diffraction

X-ray diffraction (XRD) patterns of the sample were col-
lected employing a Bruker D8 Advance powder diffractom-
eter with a copper anode X-ray tube (operating conditions, 
40 kV and 40 mA) and a Si(Li) solid-state detector (Sol-X) 
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was set to discriminate the Cu-Kα radiation. Data scans 
were performed in the 2θ range of 5°–80° with a step size 
of 0.020° and a counting time of 3 s/step.

2.3.4 � Temperature‑programmed reduction (TPR)

The H2-TPR profile of the synthesized Ni–Mo/γ-alumina 
catalyst was recorded to study the reducibility of the cata-
lyst. First, 0.05 g of the sample was purged under a helium 
atmosphere at 140 °C. Next, using a stream composed of 5% 
H2 in Ar with a flow rate of 40 ml/min, the temperature-pro-
grammed reduction (TPR) of each sample was performed for 
which the Micromeritics TPD-TPR 2900 analyzer equipped 
with a thermal conductivity detector (TCD), heating at a 
linearly programmed rate of 10 °C/min up to 1000 °C, was 
employed.

2.3.5 � Scanning electron microscopy (SEM)

SEM images are taken from the sample surface. A Seron 
Technologies AIS2100 SEM was used to obtain micrographs 
with different magnifications.

2.3.6 � CO chemisorption

The active surface properties were determined by volumet-
ric CO chemisorption using a Micromeritics ASAP 2010 
instrument. Two hundred milligrams of catalyst was loaded 
into a U-shaped quartz reactor and evacuated at 120 °C for 
60 min. The catalyst was reduced in flowing H2 to 330 °C 

(heating rate 10 °C/min) with a hold time of 2 h. Then, it 
was evacuated at 330 °C for 60 min and then cooled down 
to 40 °C. The adsorption isotherms were measured at 40 °C 
by determining the adsorbed amount of CO.

2.3.7 � Experimental outline and reaction testing

The HDS and HDN reactions were conducted in a continu-
ous down flow fixed-bed stainless steel reactor. The sche-
matic illustration of the experimental reactor setup is shown 
in Fig. 1.

The inner diameter and length of the reactor were 10 mm 
and 450 mm, respectively. Feed (liquid phase) was injected 
into the reactor by an HPLC pump (KNAUER K-501). The 
Brooks 5850 mass flow controller (MFC) was used to inject 
H2 into the reactor. The desired pressure of the reaction sys-
tem was adjusted by the backpressure valve. The required 
heat for the reaction was supplied with an adjustable elec-
trical heater. The reaction zone temperature was monitored 
and controlled by a temperature indicator controller (TIC 
WEST 3400).

Typically, 1 g of the synthesized catalyst was loaded into 
the reactor. The catalyst was loaded into the central segment 
of the reactor between two layers of carborundum filler and 
glass beads. After loading the catalyst into the reactor, a leak 
test of all connections and piping of the setup system was 
carried out using nitrogen gas. In the next step, sweeping 
nitrogen gas was switched to hydrogen gas and the pressure 
was reduced to the required level.

H2

MFCMFC

N2

Gas
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Feed

Water cooler
Separator
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Fig. 1   Schematic illustration of the experimental reactor setup
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Prior to the reaction, for providing Ni–Mo-S phases, all 
fresh catalysts were sulfided by injecting dimethyl disulfide 
(DMDS) as a sulfiding agent and the catalysts were con-
verted to activated states (sulfide). The sulfiding procedure 
took place in two steps: lower and higher temperature. The 
operating conditions during sulfiding steps such as liquid 
hourly space velocity (LHSV), H2/HC ratio and required 
time are presented in Table 1.  In the first step, the reaction 
zone temperature was increased up to 220 °C with a heating 
rate of 30 °C/h. In this step, DMDS was injected for 4 h. In 
the second step, the reaction zone temperature was increased 
to 330 °C at a heating rate of 30 °C/h. The operating condi-
tions of this step were similar to the first step. In this step, 
DMDS was injected for 12 h.

After sulfiding the catalyst, all of the main distillate frac-
tions of crude oil including light naphtha, heavy naphtha, 
kerosene and gas oil were fed into the reactor separately. The 
operating conditions such as temperature, pressure, LHSV 
and H2/HC ratio were adjusted to perform HDS and HDN 
reactions for each petroleum fraction according to a typical 
range of hydroprocessing unit operating conditions (Eijs-
bouts et al. 2013).

The reaction conditions in HDS and HDN reactions are 
presented in Table 2. After achieving steady-state condi-
tions, liquid samples were collected and total sulfur, mer-
captans and total nitrogen were measured. Actually, prior to 
final experiments, in order to find the duration to reach the 
steady states, some experiments were performed and it was 
found that there is no significant fluctuation in HDT activity 
of the catalysts.

3 � Results and discussion

3.1 � Characterization overview

The nitrogen adsorption/desorption isotherm of the syn-
thesized catalyst is shown in Fig. 2.

As it can be observed in Fig. 2, a Type 4 isotherm was 
obtained for the synthesized Ni–Mo/γ-alumina, which is 
characteristic of mesoporous materials, indicating that the 
sample was composed of pores in the range of 2–50 nm. 
In addition, by considering pore size distribution curve 
in Fig. 3, there is a peak at 6.4 nm (64 Å) for pore width, 

Table 1   Sulfiding conditions prior to HDS and HDN processes

Parameter Sulfiding conditions

Sulfiding (first step) Sulfiding 
(second 
step)

Temperature, °C 220 330
Pressure, MPa 3.5 3.5
LHSV, h−1 3 3
H2/HC, NL/L 115 115
Time, h 4 12

Table 2   Reaction conditions in HDS and HDN process

Parameter Sample

Gas oil Kero. H.N. L.N.

Temperature, °C 350 305 290 280
Pressure, MPa 4.5 4.5 3.0 3.0
LHSV, h−1 1.1 2.5 3.3 4
H2/HC, NL/L 150 130 100 75
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Fig. 2   Nitrogen adsorption/desorption isotherm for the synthesized 
Ni–Mo/γ-alumina catalyst
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in agreement with Fig. 2, confirming that a mesoporous 
material has been prepared.

As shown in Table 3, the specific surface area and pore 
volume of the synthesized catalyst are 224.4  m2/g and 
0.52 cm3/g, respectively.

Metal loading over the alumina support was determined 
using ICP-OES analysis. According to the results which are 
shown in Table 4, the Ni/Mo mass ratio of 0.23 and the total 
loading of 13.7 wt% for the prepared catalyst are close to 
that of the industrial catalyst.

SEM images of the synthesized Ni–Mo/γ-alumina are 
shown in Fig. 4 with different magnifications (the left-side 
image scale bar is 50 µm and the right-side 5 µm).

XRD patterns of the synthesized Ni–Mo/γ-alumina and 
γ-alumina support are shown in Fig. 5. In the XRD pattern 
of γ-alumina, the peaks at 2θ of 37.17°, 46.99° and 66.82° 
are observed corresponding to (3 1 1), (4 0 0) and (4 4 0) 
planes, respectively (Wang et al. 2004; Wang and Ozkan 
2005). By adding molybdenum and nickel oxide to the alu-
mina support, the intensity of the peaks related to alumina 
was decreased and peaks corresponding to the MoO3 phase 
(JCPDS 00-005-0508) emerged. Peaks at 2θ of 23.41°, 25.7° 
and 27.1° are related to (1 1 0), (0 4 0) and (0 2 1) planes of 
the MoO3 phase. However, due to the low amount of nickel 
(i.e., less than 3.5 wt%) in the synthesized catalyst, which 
has been determined by ICP analysis, no apparent peak was 
observed for nickel-based phases.

It can be observed that the synthesized catalyst has weak 
peaks in the XRD pattern which indicates the small metal 
particle sizes and high dispersion of Ni and Mo metals. 
Increase in the dispersion of Ni and Mo metals leads to the 
formation of more active sites and the adsorption of more 
hydrogen which enhanced the activity and stability of the 
catalyst.

The TPR curve of the synthesized Ni–Mo/γ-alumina is 
shown in Fig. 6, where two main peaks are observed. In 
Fig. 6, the right side of the diagram along with the red line 
indicated the temperature and the H2 consumption is shown 
on the left side. The first reduction occurred in the range 
of 400–500 °C, which can be related to the reduction of 
oxide forms of molybdenum, Mo+6, and nickel to different 
oxide states such as Mo+4 (Bunch and Ozkan 2002; Wang 
et al. 2015; Purón et al. 2017). Another reduction can be 
observed over 700 °C, which might be due to the reduc-
tion of molybdenum oxide (Mo+4) to metallic molybdenum 
(Mo0) (Bunch and Ozkan 2002; Wang et al. 2015; Purón 
et al. 2017). For comparison, the TPR curve of the industrial 

Table 3   BET surface area, pore volume and average pore diameter of 
the catalysts

Catalyst Characteristics

BET area, m2/g Pore vol-
ume, cm3/g

Average 
pore size, 
nm

Synthesized catalyst 224.39 0.52 6.57
Industrial catalyst 216.53 0.54 6.51

Table 4   Metal precursors in their oxide phase

Catalyst Characteristics

ICP Ni/Mo, mass 
ratio

ICP total 
metal loading, 
wt%

Synthesized catalyst 0.23 13.7
Industrial catalyst 0.24 14.1

Fig. 4   SEM images of the synthesized Ni–Mo/γ-alumina with different magnifications
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catalyst is also provided. It can be observed that the same 
shape was obtained for both curves, indicating the formation 
of oxides with the same oxidation state.

The active surface adsorption properties were deter-
mined by volumetric CO chemisorption. The amount of 
chemisorbed CO for the synthesized and industrial catalysts 
was 274.4 and 262.3 μmol/g, respectively. The Mo disper-
sion is obtained from the CO uptakes and the known metal 
concentration in the samples, assuming a chemisorption 
stoichiometry of CO/metal = 1:1. The calculated dispersion 
for the synthesized and industrial catalysts was 14% and 
13.2%, respectively. It shows that the accessibility of the 
active phase for the synthesized catalyst is higher than the 
industrial catalyst.

3.2 � Catalyst activity (evaluation of HDS and HDN 
reactions)

The specific gravities of the main distillate fractions (feed-
stock) are shown in Table 5. Also, total sulfur (T.S.), R-SH 
compounds (mercaptans) and total nitrogen (T.N.) of the 
feedstock are shown in Table 6. In addition, the physical 
properties of gas oil and kerosene (feedstock) are shown in 
Table 7.

Research octane number (RON) and Reid vapor pressure 
(RVP) in heavy naphtha and light naphtha (feedstock) are 
presented in Table 8. Furthermore, the ASTM D-86 of the 
feedstock of the main distillate fractions is shown in Fig. 7. 
By using the ASTM D-86 method, which was performed in a 
batch distillation system at atmospheric pressure, the boiling 
range of the petroleum fraction was determined.

For light naphtha and heavy naphtha fractions, PONA 
(paraffins, olefins, naphthenes and aromatics) of the feed-
stock and products of each catalyst (after 24 h) are shown 
in Figs. 8 and 9, respectively. Considering the fact that no 
significant changes were observed in these figures, it can be 
stated that a little hydrogenation reaction occurred under 
these conditions.
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Table 5   Specific gravity of the main distillate fractions (feedstock)

Analysis Sample

Gas oil Kerosene Heavy 
naphtha

Light 
naphtha

Test 
method

Specific 
gravity 
at 15 °C

0.8530 0.8010 0.7435 0.6505 ASTM D 
4052
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In these figures, it can be observed that for both frac-
tions (light and heavy naphtha), olefins and aromatics com-
pounds were decreased, whereas paraffins and naphthenes 
were increased.

Light naphtha, heavy naphtha, kerosene and gas oil 
were fed to the reactor separately. After steady-state con-
ditions were achieved, liquid samples were collected and 
total sulfur, mercaptans and total nitrogen were measured 
for both the industrial and synthesized catalysts during a 
240-h operating test.

For calculating the catalytic conversion of the fractions, 
Eq. 1 is used:

where Xi shows T.S., R-SH and T.N. conversions (%), ci0 
corresponds to T.S., R-SH and T.N. concentration in the 
feedstock (ppm) and ci is T.S., R-SH and T.N. concentra-
tion in the products (ppm).

The catalysts performance versus time on stream (TOS) 
for different fractions is depicted in Figs. 10, 11, 12 and 
13. Total nitrogen in treated light naphtha and heavy 

(1)Xi =

(

ci0 − ci

ci0

)

× 100,

Table 6   T.S., R-SH and T.N. of the main distillate fractions (feed-
stock)

Sample Test

T.S., ppm R-SH, ppm T.N., ppm

Gas oil 12,400 33.5 212
Kero. 2300 37.8 20
H.N. 280 51.4 3.5
L.N. 92 75 0.5
Test method ASTM D 5453 ASTM D 3227 ASTM D 4629

Table 7   Physical properties of gas oil and kerosene (feedstock)

Analysis Sample Test method

Gas oil Kerosene

Total aromatic, vol% 24.5 16 ASTM D 1319
Flash point, °C 88 50 ASTM D 93
Water content, ppm 310 24 ASTM D 6304
Aniline point, °C 70 – ASTM D 611
Cetane index 51 – ASTM D 976
Smoke point, mm – 24 ASTM D 1322
Freezing point, °C – – 45 ASTM D 2386

Table 8   RON and RVP of heavy and light naphtha

Analysis Sample Test method

Heavy naphtha Light naphtha

RON 45.6 69.3 ASTM D 2699
RVP, MPa – 0.075 ASTM D 323
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naphtha for both catalysts is presented in Table 9. The 
final amount of the nitrogen compounds in the treated feed 
is suitable for the relevant downstream process units (i.e., 
light naphtha for the isomerization unit and treated heavy 
naphtha for the catalytic reforming unit) (Hsu and Robin-
son 2017).

It can be observed that the synthesized catalyst has shown 
the highest activity in removing T.S. and R-SH in light naph-
tha fraction. T.S. and R-SH conversions for light naphtha 
were 98.3% and 98.8% after 24 h and also 98% and 98.5% 
after 240 h of operating test, respectively. Such a high activ-
ity compared with other fractions is attributed to the type 
of impurities in the light naphtha fraction. With respect to 
the T.S. conversion, it can be stated that the synthesized 
catalyst had a relatively high and acceptable performance on 
heavy naphtha and kerosene, respectively; however, it had 
the lowest activity for gas oil, which is due to the larger and 
more complex molecular structure of the sulfur compounds 
in the gas oil fraction. The highest activity in terms of R-SH 

conversion was obtained for light naphtha followed by heavy 
naphtha, kerosene and gas oil.

In removing the nitrogen compounds from these frac-
tions which is essential for producing a clean fuel, the best 
performance was obtained for light naphtha in which after 
240 h of the operating test, more nitrogen compounds were 
removed. Considering the fact that gas oil contained the 
highest amount of T.N. before hydrotreating, 82.5% of its 
nitrogen compounds were removed at the end of 240-h run-
ning time.

Comparing the results obtained for the industrial and syn-
thesized catalysts (the operating conditions were the same 
for each petroleum fraction) shows that the prepared cata-
lyst performance is slightly better than that of the industrial 
catalyst which can be attributed to the smaller particle sizes 
and higher metal dispersion as confirmed by CO chemisorp-
tion tests.

Overall, it can be concluded that the synthesized 
Ni–Mo/γ-alumina at the mentioned reaction conditions is 

Fig. 10   Conversion of the T.S. 
and R-SH compounds vs. time 
on stream for light naphtha 
(reaction conditions: T = 280 °C, 
P = 3.0 MPa, LHSV = 4 h−1 and 
H2/HC = 75 NL/L)
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Fig. 11   Conversion of the T.S. 
and R-SH compounds vs. time 
on stream for heavy naphtha 
(reaction conditions: T = 290 °C, 
P = 3.0 MPa, LHSV = 3.3 h−1 
and H2/HC = 100 NL/L)
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appropriate for the lighter fractions such as light naphtha 
and heavy naphtha that contain a lower amount of sulfur 
and nitrogen impurities. Due to limitations, we were not 

able to test the catalyst (especially for the heavier petroleum 
fractions with higher S and N contents) at higher pressures. 
For the heavier petroleum fractions, testing the catalyst at 

Fig. 12   Conversion of the T.S., 
T.N. and R-SH compounds vs. 
time on stream for kerosene 
(reaction conditions: T = 305 °C, 
P = 4.5 MPa, LHSV = 2.5 h−1 
and H2/HC = 130 NL/L)
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Fig. 13   Conversion of the T.S., 
T.N. and R-SH compounds vs. 
time on stream for gas oil (reac-
tion conditions: T = 350 °C, 
P = 4.5 MPa, LHSV = 1.1 h−1 
and H2/HC = 150 NL/L)
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higher pressures will later investigate the performance of the 
synthesized catalyst.

4 � Conclusion

The Ni/Mo catalyst supported on γ-alumina was syn-
thesized through the two-step incipient wetness impreg-
nation method. It was shown that the MoO3 phase had 
been formed over the γ-alumina support and BET results 
showed that pores with a size of 6.4 nm were dominating 
in the synthesized Ni–Mo/γ-alumina. Performance of the 
synthesized Ni–Mo/γ-alumina catalyst in HDS and HDN 
reactions of the four main distillate fractions of petroleum 
was compared. The synthesized Ni–Mo/γ-alumina catalyst 
showed the best performance for light naphtha followed 
by heavy naphtha, kerosene and gas oil. For light naph-
tha, T.S. and R-SH conversions of 98.3% and 98.8% after 
24 h and also 98% and 98.5% after 240 h of the operating 
tests were obtained, respectively. Furthermore, the total 
nitrogen in the treated light naphtha was less than 0.3 ppm.

In addition, it was observed that despite the mild 
pressure conditions (4.5 MPa), the sulfur and nitrogen 
compounds were acceptably removed from the kero-
sene and gas oil fractions. For gas oil, which contains 
higher amounts of sulfur and nitrogen impurities, T.S., 
R-SH and total nitrogen conversions of 90.1%, 82.4% and 
83.5% were obtained after 24 h, while 89.4%, 81.8% and 
82.5% were the results after 240 h of the operating tests, 
respectively. Thus, it is concluded that the synthesized 
Ni–Mo/γ-alumina catalyst has an appropriate performance 
for petroleum fractions in the mentioned reaction condi-
tions. Testing the catalyst for heavier petroleum fractions 
(with higher amounts of S and N) under higher pressures 
will be the subject of our future work.
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