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Abstract The closed-loop reservoir management tech-

nique enables a dynamic and real-time optimal production

schedule under the existing reservoir conditions to be

achieved by adjusting the injection and production strate-

gies. This is one of the most effective ways to exploit

limited oil reserves more economically and efficiently.

There are two steps in closed-loop reservoir management:

automatic history matching and reservoir production opti-

mization. Both of the steps are large-scale complicated

optimization problems. This paper gives a general review

of the two basic techniques in closed-loop reservoir man-

agement; summarizes the applications of gradient-based

algorithms, gradient-free algorithms, and artificial intelli-

gence algorithms; analyzes the characteristics and appli-

cation conditions of these optimization methods; and

finally discusses the emphases and directions of future

research on both automatic history matching and reservoir

production optimization.

Keywords Closed-loop reservoir management �
Automatic history matching � Reservoir production
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1 Introduction

With the rapid development of the world economy, the

depletion of oil resources increases year by year. It is now

difficult to find additional large oil fields. Therefore, the

demand for exploiting the limited oil reserves efficiently

and economically becomes increasingly significant and has

attracted more global attention in recent years. To achieve

this goal, an important technique proposed is closed-loop

reservoir management. It consists of two steps: automatic

history matching and reservoir production optimization.

Automatic history matching is a sequential model

updating method, where the estimate of uncertain reservoir

properties is updated continuously according to the pro-

duction measurements available at the time. Reservoir

production optimization is a complete or partial automation

process for maximizing the development effect within the

lifecycle of a reservoir by optimizing operational parame-

ters. The main idea is to exploit the oil reserves as near to

the desired optimum as possible. Both automatic history

matching and reservoir production optimization are opti-

mization problems as mentioned by researchers such as

Brouwer and Jansen (2004), Sarma et al. (2005) and Wang

et al. (2009). These problems can be solved by optimiza-

tion theories.

Automatic history matching has been studied since the

1960s (Jahns 1966; Wasserman and Emanuel 1976; Yang

and Watson 1988), but it is still a very difficult problem at

present. The existing history matching methods can be
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broken into two categories. One category is based on gra-

dient, including finite difference approximation of deriva-

tive, adjoint gradient-based methods, and gradient

simulator methods. The other category is based on gradi-

ent-free optimization, such as simultaneous perturbation

stochastic approximation, genetic algorithm, particle

swarm optimization, and pattern search methods (PSMs).

Oliver and Chen (2011) have summarized the recent pro-

gress on automatic history matching.

The origin of solving reservoir production problems

using optimization theories can be traced back to Lee and

Aronofsky (1958). They used a linear programming

method to maximize the net present value of production for

a homogeneous reservoir. Later, some other papers

appeared in journals such as Operation Research, Man-

agement Science, and Journal of Petroleum Technology.

However, most papers published before the 1980s did not

pay enough attention to optimization algorithms, and suc-

cessful applications were very rare (Aronofsky and Wil-

liams 1962; Wattenbarger 1970; McFarland et al. 1984).

With the advances in optimization algorithms and com-

puting power, research has increased greatly since the

1980s (Sequeira et al. 2002; Chacón et al. 2004; Barragán

et al. 2005; Gunnerud and Foss 2010; Knudsen and Foss

2013; Tavallali et al. 2013).

In order to find out under which operational parameters

at current reservoir conditions the oil production might be

most efficient and profitable, automatic history matching

and reservoir production optimization should be combined

together. This combination forms a concept of closed-loop

reservoir management, where the geological model will be

updated once the production measurements are available

and the operational parameters will be optimized based on

the newly updated reservoir model. Representative papers

on this concept include Brouwer and Jansen (2004), Jansen

et al. (2005), Nævdal et al. (2006), and Bieker et al. (2007).

This paper gives a general review of research on auto-

matic history matching and reservoir production optimi-

zation; analyzes the characteristics and application

conditions of gradient-based algorithms, gradient-free

algorithms, and artificial intelligence algorithms; and

finally discusses the emphases and directions of future

research on both automatic history matching and reservoir

production optimization.

2 Problem descriptions

2.1 Automatic history matching

The estimate of unknown geological properties using pro-

duction measurements is recognized as history matching. It

is an ill-posed inverse problem with many unknown res-

ervoir parameters that could be adjusted to obtain a match

against a relatively smaller number of measurements.

Traditionally, the unknown parameters are adjusted man-

ually by trial and error. This method is time-consuming and

often yields a reservoir numerical model which may be

unrealistic or not consistent with geological properties. To

address these problems, automatic history matching has

been studied for several decades. As shown in Fig. 1,

automatic history matching is an iterative procedure where

the unknown reservoir parameters are adjusted automati-

cally with an optimizer to match the observed production

or pressure data. In fact, automatic history matching is an

optimization problem and the most commonly used

objective can be written as follows:

where the subscript k is the discrete time step; K is the total

number of time steps; m is the vector of reservoir param-

eters to be estimated; d is the vector of observed historical

data; g is the vector of corresponding data to be matched;
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Sa�sfactory ?
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Update model

Reservoir model

No

Yes

StopPerform op�miza�on

Set ini�al model

Fig. 1 Flow chart for automatic history matching
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m̂ is the prior model information; CD is the covariance

matrix of measurement errors; CM is the covariance matrix

of prior probability density function. These matrices

determine the weight of individual terms in the objective

function.

Although the least-square error has been used success-

fully to match the observed production data, it does not work

well when the seismic data are history matched at the same

time. To address this problem, Tillier et al. (2013) presented

an appropriate objective function for history matching of

seismic attributes based on image segmentation and a

modified Hausdorff metric. The objective function of history

matching commonly has a complex shape and multiple local

minima (Oliver and Chen 2011). This is mainly because

unknown parameters are always much more numerous than

available production measurements.

In order to carry out history matching in a lower space and

reduce the necessity of an explicit regularization term in the

objective function, various parameterization methods have

been presented, including the zonation method, pilot point

method, subspace method, spectral decomposition, discrete

cosine transform, truncated singular value decomposition,

and the multiscale method. Jacquard (1965) and Jahns (1966)

applied the zonation method to reduce variables in their

automatic history matching study. The gradzone method in

Bissell et al. (1994) and the adaptive multiscale method in

Grimstad et al. (2003, 2004) were variations of the original

zonation method. Marsily et al. (1984) presented the pilot

point method, in which variables were estimated only at the

pilot points and others were calculated by the Kriging method.

Abacioglu et al. (2001) adopted a subspace method based on

segmentation of the objective function. Oliver (1996a, b)

applied the parameterization method based on spectral

decomposition of the prior covariance matrix to history match

a two-dimensional (2D) permeability field. Jafarpour and

McLaughlin (2008), Jafarpour et al. (2010) used the discrete

cosine transform as a parameterization method in their history

matching study. Tavakoli and Reynolds (2010, 2011) pro-

vided a theoretical basis for parameterization based on trun-

cated singular value decomposition of the dimensionless

sensitivity matrix. He et al. (2013) applied the orthogonal

decomposition method to transform the high-dimensional

states into a low-dimensional subspace. They also described

geological models in reduced terms by the Karhunen–Loève

expansion of the log-transmissibility field.

The parameterization methods should be performed

carefully, or results may sometimes mislead us. For

example, Oliver et al. (2008) showed a small number of

variables may underestimate the uncertainty in automatic

history matching problem. They adjusted a spatially vary-

ing porosity with a uniform permeability or adjusted a

spatially varying permeability with a uniform porosity to

history match a same set of well-test data. Both of the two

history matching results are good enough, but the

assumptions on uncertainty are definitely different.

More and more attention has been paid to the generation

and history matching of geologically realistic non-Gaussian

reservoir models. Researchers have presented several

methods including Gaussian mixture models, truncated

pluri-Gaussian method, level set method, discrete cosine

transform, and other principal component analysis methods.

Dovera and Rossa (2011) proposed expressions of condi-

tional means, covariances, and weights for Gaussian mixture

models, so that the ensemble Kalman filter algorithm

(EnKF) became usable in this case. Liu and Oliver (2005a,

b) combined EnKF with a truncated pluri-Gaussian method

for history matching of reservoir facies. Agbalaka and Oli-

ver (2008) extended this method to a three-dimensional (3D)

reservoir case. Chang et al. (2010) proposed a methodology

to combine a level set method with EnKF for history

matching of facies distribution in a 2D reservoir model. Hu

et al. (2013) introduced a new method to update complex

facies models generated by multipoint simulation while

preserving their geological and statistical consistency. Ja-

farpour and McLaughlin (2008) tested a discrete cosine

transform method on two 2D, two-phase reservoir models.

Other principal component analysis methods can also be

used to deal with non-Gaussian reservoir models. However,

their computational cost may be high.

During the development of automatic history matching,

various optimization algorithms have been introduced and

modified (Bissell et al. 1994; Lee and Seinfeld 1987; Go-

mez et al. 2001). Streamline-based techniques were also

used to improve computational efficiency of history

matching by researchers such as Agarwal and Blunt (2003),

Cheng et al. (2004, 2005), and Gupta and King (2007).

With streamline-based techniques, a reservoir simulation

model was automatically decoupled into a series of one-

dimensional models along streamlines, which could mini-

mize numerical dispersion and the effects of grid genera-

tion while maintaining a sharp displacement front. Caers

(2003) and Negrete et al. (2008) combined streamline

simulators with a deformation method and EnKF, respec-

tively, to carry out automatic history matching. These

streamline-based history matching techniques inherit the

shortcomings of streamline methods such as inability to

model very complex physics at the same time. Therefore,

they are not suitable to all history matching cases.

In order to characterize the uncertainty of unknown

geological properties, researchers introduced a Bayesian

framework, with which one can formally construct a pos-

terior density function. The books of Tarantola (2005) and

Oliver et al. (2008) provide a detailed description about

Bayesian framework. Generally, Bayesian estimation

depends on a prior Gaussian model. To address this limi-

tation, Sarma et al. (2008b) transformed this problem into
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feature space using kernel principal component analysis.

Other important research works involved Bayesian frame-

work include Chu et al. (1995), He et al. (1997), Zhang

et al. (2002, 2005), Liu and Oliver (2003), Oliver et al.

(2008), and Emerick and Reynolds (2012).

Although numerous papers on automatic history

matching have been published, most of them have con-

centrated on a limited type of estimated parameters such as

permeability and porosity. They are impractical at present

for industrial field application in which we have to calibrate

a myriad of other discrete and continuous parameters,

including fluid contacts, rock compressibility, and relative

permeability. However, automatic history matching is a

meaningful research direction and much more effort will be

necessary in the future.

2.2 Reservoir production optimization

Production optimization aims at achieving the best devel-

opment performance for a given reservoir by optimizing

well controls. Figure 2 shows the schematic for this opti-

mization process. In order to evaluate the performance of

different development programs, various objectives have

been proposed during the long research into production

optimization. For example, Rosenwald and Green (1974)

minimized the difference between the production-demand

curve and the flow curve actually attained. Babayev (1975)

provided minimum total cost per unit output. Lasdon et al.

(1986) maximized the deliverability of a gas reservoir at a

specified time, minimized the total gas withdrawal shortfall

between the demand schedule and the amount of gas that

can actually be delivered in each month, and they also

optimized the weighted combinations of the above two

objectives. When optimizing production strategies, one

often encounters multiple local maxima. This phenomenon

may be a good thing sometimes because it means that there

are extra degrees of freedom in the optimization problem,

which can be used to accomplish other optimization

objectives. For instance, Van Essen et al. (2011) incorpo-

rated short-term goals into the life-cycle optimization

problem and proposed a hierarchical production optimiza-

tion structure with multiple objectives. Chen et al. (2012)

also optimized both long-term and short-term net present

value. As more and more oilfields enter the high water cut

period, the production costs increase gradually. Therefore,

the net present value is commonly selected as the objective

function for production optimization. In terms of water

flooding projects, it is defined as

JðuÞ ¼
XL

n¼1

XNP

j¼1

roqn
o;j� rwqn

w;j

� �
�
XNI

i¼1

rwiq
n
wi;i

" #
Dtn

ð1þ icÞt
n ;

ð2Þ

where J is the net present value and is a function of the

control vector u; L is the total number of simulation time

steps; NP is the total number of producers; NI is the total

number of injectors; ro is the oil price; rw is the produced

water treatment cost; rwi is the water injection cost; qn
o;j and

qn
w;j are the average oil and water production rates of the jth

producer during the nth simulation time step, respectively;

qn
wi;i is the average water injection rate of the ith water

injection well during the nth simulation time step; ic is the

annual discount rate; Dtn is the length of the nth simulation

time step; tn is the cumulative time up to the nth simulation

time step in years.

According to the general form of optimal control

problems, a mathematical model for reservoir production

optimization can be written as

max JðuÞ ¼
XL

n¼1

XNP

j¼1

roqn
o;j � rwqn

w;j

� �
�
XNI

i¼1

rwiq
n
wi;i

" #
Dtn

ð1þ icÞt
n

ð3Þ
Au� b ð4Þ

ulow� u� uup; ð5Þ

where Eq. (4) represents the linear or nonlinear constraints;

Eq. (5) gives the boundary constraints.

Asheim (1988) maximized the net present value for

waterflooding with multiple vertical injectors and a vertical

producer by optimizing rate allocation based on the product

of permeability and thickness. Brouwer and Jansen (2004)

studied static and dynamic waterflooding optimization. For

the static one, they kept inflow control valves constant

during the displacement process until water breakthrough.

Perform simulation

Calculate NPV

Optimal ?

Optimization calculations

Adjust control

Optimal control

No

Yes

StopPerform optimization 

Set initial control

Fig. 2 Flow chart for reservoir production optimization

Pet. Sci. (2015) 12:114–128 117

123



For the dynamic one, they applied gradients calculated

with an adjoint method to dynamically optimize the pro-

duction performance and considered a simple constraint

where the total injection was equal to the total production.

In order to increase the displacement efficiency, Sudary-

anto and Yortsos (2000) optimized the front shape of

injected fluid by controlling injection rates. Results showed

that the waterflooding optimization was a ‘‘bang–bang’’

control problem, where each control variable took either its

minimum or maximum allowed values. Zandvliet et al.

(2007) further investigated why and under what conditions

waterflooding problems had optimal solutions under bang–

bang control. They concluded that waterflooding optimi-

zation with simple boundary constraints sometimes had

bang–bang optimal solutions, while problems with other

general inequality or equality constraints would have a

smooth optimal solution. Gao and Reynolds (2006) pro-

posed a log-transformation method to deal with boundary

constraints. Alhuthali et al. (2007) also achieved optimal

waterflooding management using rate control.

Many pilot tests and commercial projects using enhanced

oil recovery (EOR) methods have been performed during the

past few decades to improve the development effect of

waterflooding. The challenges of huge investment, high cost,

and high risk promote research into production optimization

for EOR methods. As early as in 1972, Gottfried (1972)

proposed a nonlinear programming model for a cyclic steam

injection process. He maximized the net present value by

optimizing steam injection volume and cycle length. Ra-

mirez et al. (1984) and Fathi and Ramirez (1984) tried to

maximize oil production at the minimum injection costs

based on the calculus of variations and Pontryagin’s weak

minimum principle. They optimized development strategies

for waterflooding, carbon dioxide (CO2) flooding, and sur-

factant flooding. Amit (1986) formulated a two-phase

dynamic optimization model which incorporated the rela-

tionships between extraction rates, investment decisions,

and cumulative oil recovery. Wackowski et al. (1992)

applied rigorous decision analysis methodology to find the

optimal development strategy for a 20 years CO2 flooding

project. The control variables included CO2 recycle capac-

ity, CO2 purchase contract, processing rate, water-to-gas

ratio, and slug size. Wu (1996) found that chemical flooding

performance was sensitive to operational parameters such as

chemical slug size, concentration and adsorption, price of oil

and chemicals, annual discount rate, and reservoir perme-

ability. Results showed that the optimal design was a large

slug injection of low concentration surfactant and polymer,

followed by a small slug of subsequent polymer injection.

One of the best examples about gas lift optimization has been

achieved by McKie et al. (2001), in which gas lift injection

rates, compressor settings, and field fuel consumption for

more than 500 wells were optimized to maximize liquid

production. Codas et al. (2012) integrate simplified well

deliverability models, vertical lift performance relations,

and flowing pressure behavior of the surface gathering sys-

tem to develop a framework of integrated production opti-

mization for complex oil fields.

The above review of production optimization showed

that the exploitation method involved has extended from

waterflooding to EOR methods, the control variables

optimized have extended from simple to complex opera-

tional parameters, and that the optimization algorithms

applied have extended from gradient-based to gradient-free

methods. In addition, production optimization has

improved from an open adjustment process to a closed-

loop management workflow (Mochizuki et al. 2006), which

will be discussed in detail in the next section.

2.3 Closed-loop reservoir management

As more and more production and pressure measurements

become available, the reservoir model can be updated to

achieve a better estimate of the unknown geological

properties. Then the operational parameters should be

optimized again based on the newly updated reservoir

model. This cycle of model update and production opti-

mization is repeated during the whole process of the res-

ervoir development. This forms the concept of closed-loop

reservoir management. The schematic of this closed-loop

process is shown in Fig. 3.

Nævdal et al. (2006) applied the EnKF method to update

the reservoir simulation model and then optimized opera-

tional parameters with an adjoint formulation in order to

maximize the economic profits. Sarma et al. (2005) pre-

sented a closed-loop management approach for efficient

real-time production optimization. Their approach con-

sisted of three key elements: adjoint models for gradient

calculations, polynomial chaos expansions for uncertainty

propagation, Karhunen–Loeve expansions and Bayesian

inversion theory for history matching. Results showed that

their approach increased the net present value by 25 %. For

a similar problem, Saputelli et al. (2005) proposed a model

predictive control method. It was a class of computer

control algorithms that explicitly used a plant model for

online prediction of future behavior, and computation of

appropriate control action subjected to various constraints

through online optimization of a cost objective. The

method addressed the overwhelming complexity of overall

optimization problems by suggesting an oilfield operations

hierarchy which entailed different time scales. Due to the

rapid development of ensemble-based optimization algo-

rithms, Chen et al. (2009a, b) provided a new closed-loop

reservoir management method which integrated an

ensemble-based optimization method with the EnKF
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algorithm. Jansen et al. (2008) and Jansen (2011) discussed

an emerging technique to increase oil recovery. Their

technique is an operational use of model-based optimiza-

tion which requires a combination of long-term and short-

term objectives through multi-level optimization strategies.

Moridis et al. (2013) established a self-teaching expert

system to increase oil production by improving flooding

efficiency and reducing geological uncertainty.

When reviewing closed-loop reservoir management, it is

necessary to present the Brugge test case which was pre-

pared for SPE (Society of Petroleum Engineers) Applied

Technology Workshop held in Brugge in June 2008. In the

test case, well-log data, reservoir structure, 10 years’ pro-

duction data, inverted time-lapse seismic data, and other

information necessary are given by TNO (Netherlands

Organisation for Applied Science Research) to estimate

unknown parameters such as permeability, porosity, and

net-to-gross thickness. After history-matched reservoir

models were created, water flooding strategies for 20 pro-

ducers and 10 injectors were optimized. Peters et al. (2010)

have summarized in detail the results of the Brugge test

case obtained by nine research groups. Briefly, Table 1

compares the reservoir simulators, optimization methods,

and the net present values optimized in Year 10. In the

table, the net present value was obtained using the optimal

strategy of each participant in the Brugge test model. As

can be seen, three participants who applied ensemble-based

methods in history matching step achieved a similar

highest net present value, although their optimization

algorithms used in the production optimization step were

different. This is mainly because ensemble-based optimi-

zation methods had two distinct advantages. First, the

search direction was approximated through the correlations

provided by ensemble members. Second, the objective

function was the expectation of each ensemble member.

Therefore, the ensemble-based optimization method was

fairly robust with respect to the uncertainty of the estimated

geological models.

With the rapid increase in research interests and great

improvements of optimization techniques, the original

Brugge test case shows its weakness in the low frequency

of the feedback loop. In order to keep the Brugge test case

as a challenging problem for testing and comparing dif-

ferent techniques in closed-loop reservoir management,

Peters et al. (2013) provided a lot of additional data

including well constraints and production history from

individual well completions for another 20 years, as well as

the updated data of oil saturation and reservoir pressure.

3 Optimization methods

According to the techniques for determining search direc-

tion and step size, the optimization methods can be clas-

sified into three categories: gradient-based algorithms,

gradient-free algorithms, and artificial intelligence algo-

rithms. In fact, artificial intelligence algorithms are also

independent of gradient information. This paper considers

them as an independent category because almost all of

them are inspired by intelligent behaviors in nature such as

inference, designing, thinking, and learning.

3.1 Gradient-based algorithms

The calculation of derivatives or the Hessian matrix is the

key to solving optimization problems using gradient-based
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algorithms. In terms of production optimization and history

matching, researchers have applied various calculation

methods including numerical perturbation, sensitivity

equation, and adjoint method, as summarized in Table 2.

The roots of the adjoint method can be found in Jac-

quard (1965). Later, Carter et al. (1974) formulated their

work in a better way using Frechet derivatives. He et al.

(1997) further extended Carter’s work to three dimensions

approximately. For single-phase flow problems, Chen et al.

(1974) and Chavent et al. (1975) proposed a method which

was regarded as what we call the adjoint method now. Li

et al. (2003) presented the first formulation of the adjoint

method for three-phase flow problems and pointed out that

the coefficient matrix of the adjoint equations is simply the

transpose of the Newton–Raphson Jacobian matrix used in

a fully implicit reservoir simulator. Therefore, the deriva-

tion of the individual adjoint equation can be avoided by

extracting and saving the Jacobian matrices. Rodrigues

(2006) derived the adjoint equations in a much neater way,

and provided a method for multiplication of a vector by the

sensitivity matrix or its transpose. Now, the adjoint method

has become one of the most efficient methods existing

today to compute gradients for gradient-based algorithms.

Generally, gradient-based algorithms can be classified

into two categories. One is the first-order methods, which

only require the derivative information. For example, the

steepest ascent algorithm and the conjugate gradient

method have been widely used by many researchers such

as Brouwer and Jansen (2004), Sarma et al. (2008a), and

Wang et al. (2009). The other category is the second-order

methods, which not only require the derivative information

but also require the Hessian matrix. Representative meth-

ods include Gauss–Newton, Levenberg–Marquardt,

sequential quadratic programming (Barnes et al. 2007), and

the limited memory Broyden Fletcher Goldfarb Shanno

method (LBFGS).

When using the Gauss–Newton method for automatic

history matching problems, Wu et al. (1999) introduced an

artificially high variance of measurement errors at early

iterations to damp the changes in model parameters and

Table 1 Research results of the Brugge test case

Participant Simulator History matching method Production optimization method Net present

value, 109 $

Halliburton Nexus Landmark’s DMSTM Scatter/tabu search method 3.53a

International Research

Institute of Stavanger

ECLIPSE 100 Ensemble Kalman filter Ensemble Kalman filter 4.41

University of Oklahoma/

Chevron

ECLIPSE 100 Randomized maximum

likelihood method

Ensemble-based gradient method 4.42

Roxar/Energy Scitech Tempest MORE EnABLETM Sequential experimental design method 4.03

Shell International

Exploration and

Production BV

MoReS Ensemble Kalman filter Adjoint-based gradient method 4.12

Schlumberger ECLIPSE 100 Selection of realizations based

on their fit to the data

Artificial neural networks 4.10

Stanford University/

Chevron

GPRS;

ECLIPSE 100

Sequential quadratic

programming; Hooke-Jeeves

direct search method

Adjoint-based gradient method 4.26

Texas A&M University FrontSim Streamline-based generalized

travel time inversion

Sequential quadratic programming 4.22

University of Tulsa ECLIPSE

100/300

Ensemble Kalman filter Adjoint-based gradient method 4.47

a The result was achieved using one control interval per well, while others were obtained using three control intervals per well

Table 2 Comparison of calculation methods for gradients and Hessian matrix

Methods Calculation principles Characteristics

Numerical

perturbation

Small perturbations of the model parameters and calculation of

the production responses

Easy to implement; expensive computational cost;

unsuitable for large-scale optimization problems

Sensitivity

equation

Differentiation of the flow and transport equations Difficult to obtain analytical expressions for nonlinear

optimization problems

Adjoint method Optimal control theories and calculus of variations Easy to implement; dependent on reservoir simulators; hard

to transplant elsewhere
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thus avoid undershooting or overshooting. Tan and Kalo-

gerakis (1991) pointed out that the standard Gauss–Newton

and Levenberg–Marquardt methods require the computa-

tion of all sensitivity coefficients in order to formulate the

Hessian matrix, which seems impossible in reality due to

the large number of unknown parameters relative to limited

available measurements. In order to eliminate this problem,

the quasi-Newton method was introduced by researchers.

This method only requires the gradient of the objective

function which can be computed from a single adjoint

solution as done in Zhang et al. (2002). In order to further

improve the computational efficiency and robustness of the

LBFGS method, Gao and Reynolds (2006) proposed a new

line search strategy, rescaled the model parameters, and

applied damping factors to the production data. They also

noticed that the new line search strategy had to satisfy the

strong Wolfe conditions at each iteration, or the conver-

gence rate would decrease significantly.

The Karhunen–Loeve expansion can create a differen-

tiable parameterization of the numerical model in terms of

a small set of independent random variables and deter-

ministic eigenfunctions. With this expansion, the gradient-

based algorithms can be applied while honoring the two-

point statistics of the geological models (Gavalas et al.

1976). In order to further extend the existing gradient-

based history matching techniques to deal with complex

geological models characterized by multiple-point geosta-

tistics, Sarma et al. (2007) applied a kernel principal

component analysis method to model permeability fields.

This method can preserve arbitrary high-order statistics of

random fields, and it is able to reproduce complex geology

while retaining reasonable computational requirements.

Gradient-based algorithms are widely used in research

on production optimization and history matching because

of their high computational efficiency and fast convergence

behavior. However, these algorithms require detailed

knowledge of the numerical simulators. They can hardly be

used without adjoint code and they are difficult to trans-

form from one simulator to another.

3.2 Gradient-free algorithms

In order to make full use of the advantages of commercial

reservoir simulators when conducting production optimi-

zation and automatic history matching, researchers have

introduced many gradient-free algorithms including

simultaneous perturbation stochastic approximation algo-

rithm (SPSA), EnKF, PSM, new unconstrained optimiza-

tion algorithm (NEWUOA), and quadratic interpolation

model-based algorithm guided by approximated gradient

(QIM-AG).

Spall (1998) proposed the SPSA method based on the

Kiefer–Wolfowitz algorithm. This new method perturbs all

unknown parameters stochastically and simultaneously to

generate a search direction at each iteration. The expecta-

tion of stochastic SPSA gradients is true gradient and it is

always a downhill direction. Therefore, the SPSA method is

a stochastic version of the steepest descent algorithm. Based

on the simultaneous perturbation idea, Spall further pro-

vided a second-order SPSA method, which estimates the

Hessian matrix at each iteration. Later Bangerth et al.

(2006) described an integer SPSA method and used this

modified SPSA method to solve well placement optimiza-

tion problems. To the best of our knowledge, this is the first

time that SPSA has been used in optimal control problems.

In terms of closed-loop reservoir management, Wang et al.

(2009) discussed the application of SPSA in the step of

production optimization. Gao et al. (2007) applied a mod-

ified SPSA method for automatic history matching. In their

study, the approximate Hessian matrix was calculated using

the inverse of the covariance matrix of the prior model.

Results showed that the modified SPSA performed almost

as well as the steepest descent method. Of course, gradient-

based algorithms like LBFGS would be preferred when the

gradient can be calculated. Otherwise, the SPSA method

may be a good choice. Based on SPSA, Li and reynolds

(2011) proposed a stochastic Gaussian search discretion

algorithm for history matching problems, and this modified

method was successfully used in the well-known PUNQ-S3

(Production forecasting with uncertainty quantification) test

case. Zhou et al. (2013) integrate the finite difference

method and the SPSA method to optimize polymer flooding

in a heterogeneous reservoir. But currently the SPSA

method has not been widely used for reservoir optimization

problems.

The EnKF algorithm was first proposed by Evensen in

1994 as a Monte Carlo approximation of the Kalman filter

in the ocean dynamics literature. This method obtains gra-

dient information through correlations of ensemble mem-

bers. Nævdal et al. (2002) applied EnKF to estimate near-

well permeabilities. Gu and Oliver (2005) examined EnKF

for combined parameter and state estimation in a stan-

dardized reservoir test case. Gao et al. (2006) found that

EnKF and the randomized maximum likelihood method

(RML) gave similar computational results. Reynolds et al.

(2006) further presented their mathematical connections.

They also showed that EnKF may be viewed as updating

each ensemble member with a single Gauss–Newton iter-

ation. Liu and Oliver (2004, 2005a, b) investigated a highly

nonlinear problem of facies estimation using the EnKF

method. When using the EnKF method, Lorentzen et al.

(2005) discussed the choice of initial ensemble members,

while Wen and Chen (2006) focused on the effect of

ensemble size. Emerick and Reynolds (2012, 2013) incor-

porated automatic history matching in an integrated geo-

modeling workflow using the ensemble smoother method.
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Although it is not long since the introduction of EnKF into

petroleum engineering, this method is developing rapidly

and shows huge potential for solving history matching

problems because it can deal with the uncertainties.

However, the toy problem in Zafari and Reynolds

(2007) showed that the standard EnKF cannot handle

multimodal nonlinear problems. To address this limitation,

Gu and Oliver (2007) applied an iterative EnKF to

assimilate multiphase flow measurements. Li and Reynolds

(2009) provided two iterative EnKF procedures, with

which they obtained better history matching results than

that with the standard EnKF method in two examples

including the toy problem. Lorentzen and Nævdal (2011)

and Wang and Li (2011) also introduced an iterative

extension of EnKF in order to improve estimate results in

cases where the relationship between the model and the

observations is nonlinear. Agbalaka et al. (2013) proposed

a two-stage ensemble-based technique to improve the

performance of EnKF for history matching with multiple

modes. Chen et al. (2009a, b) addressed non-Gaussian

effects through a change in parameterization. They dem-

onstrated the effectiveness of the combination of their

methods with the traditional EnKF by history matching of

multiphase flow in a heterogeneous reservoir. Supposing

that both of the multimodal priors and posteriors can be

approximated by Gaussian mixture models, Dovera and

Rossa (2011) presented a modified EnKF method espe-

cially for multimodal systems. Heidari et al. (2013) com-

bined EnKF with pilot points and gradual deformation to

preserve second-order statistical properties, so the depar-

ture of constrained petrophysical properties from prior

information could be greatly reduced.

Custsódio and Vicente (2007) provided a modified PSM

guided by simplex derivatives (SID-PSM). This new method

has two modifications over the original PSM algorithm.

First, the predefined search directions are ranked using the

simplex gradient during the poll step and the search direc-

tions closest to the simplex gradient are tried first. Second,

when there are enough objective evaluations, a quadratic

interpolation model is built in the search step and then it is

minimized by a trust-region method. The SID-PSM algo-

rithm has been introduced into reservoir engineering for

optimizing the settlement and adsorption parameters of as-

phaltene in porous media. This method can converge to a

global optimum using only the objective evaluations.

However, its global convergence is very sensitive to the

choice of initial values. Therefore, close attention should be

paid when using SID-PSM for practical problems.

For unconstrained optimization problems without

derivatives or a Hessian matrix available, Powell (2008)

proposed a NEWUOA method. It is a quadratic model-

based gradient-free trust-region algorithm based on qua-

dratic interpolation. At least Nu ? 2 (Nu is the number of

control variables) objective evaluations are needed to build

the initial quadratic model before the first optimization

procedure can be achieved. So it can hardly be used when

the number of control variables is very large. In order to

improve the computational efficiency of NEWUOA, Zhao

et al. (2011) developed a QIM-AG method. This method

requires a minimum of only one interpolation point to build

a quadratic model at each iteration. It is similar to the

quasi-Newton method and converges very fast.

Taking the net present value as objective function, Zhao

et al. (2011) compared the performance of various gradi-

ent-free algorithms. As shown in Fig. 4, the quadratic

interpolation model-based algorithm guided by ensemble-

based gradient (QIM-EnOpt) obtained the highest net

present value. The quadratic interpolation model-based

algorithm guided by SPSA gradient (QIM-SPSA) obtained

a similar net present value but converges much faster than

QIM-EnOpt and EnOpt. The SPSA and NEWUOA meth-

ods achieved similar values, but the computational effi-

ciency of NEWUOA was much lower at the beginning of

the optimization process. In this test case, the particle

swarm optimization method and SID-PSM algorithm per-

formed much worse than the other algorithms.

3.3 Artificial intelligence algorithms

Artificial intelligence algorithms have been used to solve

production optimization and history matching problems for

a long time. The representative methods include the sim-

ulated annealing algorithm, genetic algorithm, artificial

neural networks, particle swarm optimization method, and

the tabu search method.

The simulated annealing algorithm was first introduced

into reservoir engineering. Farmer (1992) applied this

algorithm to generate rock models with two-point geosta-

tistics properties. Qian (1993) introduced Markov random

field theory into the basic simulated annealing algorithm
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and thus transformed it into a probabilistic uphill algo-

rithm. When solving automatic history matching problems,

Ouenes et al. (1993) applied a simulated annealing algo-

rithm directly while Carter and Romero (2002) combined it

with other techniques such as geostatistics, a pilot point

method, and a genetic algorithm. The convergence of the

simulated annealing algorithm is sensitive to the choice of

initial temperature and reduction factor. If the reduction

factor is too large, many extreme points will be missed.

However, if the reduction factor is too small, the simulated

annealing algorithm will converge very slowly.

The genetic algorithm was proposed by Holland (1975)

based on the idea of population evolution. This method has

been used as a global optimizer for automatic history

matching problems by Tokuda et al. (2004). Compared

with a simulated annealing algorithm, a genetic algorithm

starts with a population of realizations rather than a single

realization. However, there is no mathematical guarantee

for a genetic algorithm to reach a global optimum. In spite

of these drawbacks, genetic algorithms still have much

appeal because they can be easily parallelized and con-

nected to any existing reservoir simulators.

Artificial neutral networks are a rough approximation

and simplified simulation of a biological neuron network

system. Generally, the neutral networks are used to estab-

lish proxy models. For this purpose, a small number of

simulations are run at first to build a nonlinear relationship

between the objective and unknown variables. Then the

relationship can be used for reservoir production optimi-

zation in order to reduce the computational cost (Elkamel

1998; Saputelli et al. 2002). Artificial neutral networks

were also used directly as an optimizer by Ramgulam et al.

(2007) in their studies of history matching. Although arti-

ficial neutral networks have been widely used, the proce-

dures for network construction are still not established.

The particle swarm optimization method was proposed

by Kennedy and Eberhart based on social behavior observed

in nature. It has been successfully used in well placement

optimization (Onwunalu and Durlofsky 2009), automatic

history matching, and water flooding optimization. This

method can find the global optimum with a high probability

and can be connected to any numerical simulators.

In fact, artificial intelligence algorithms are stochastic

gradient-free methods. These algorithms need much more

numerical simulations than the deterministic methods to

converge. In addition, the input parameters for imple-

menting gradient-free algorithms are commonly deter-

mined by the trial and error method. Therefore, the

gradient-free algorithms should be modified and integrated

with other optimizers in practical applications.

Based on the discussions in above three sections, the

main characteristics for different kinds of optimization

algorithms are summarized in Table 3.

4 Future developments

In order to solve the growing demand–supply gap, many

studies have been carried out in terms of closed-loop res-

ervoir management. However, most of the studies are

focused on academic research and they are far from large-

scale field application. As for field application, oilfield

engineers are mainly concerned about three issues: pro-

cessing time, decision veracity, and operating convenience.

In order to reduce the processing time, efficient optimiza-

tion methods and parallel distributed systems should be

paid more attention. It is important for increasing decision

veracity to carry out more uncertainty analyses. Since most

of the oilfield engineers are not familiar with the theoretical

bases of closed-loop reservoir management, integrated

software is necessary to improve their operating

convenience.

4.1 Hybrid solvers

Various optimization methods have been introduced into

reservoir development engineering during the past decades.

Each algorithm has its own advantages as well as draw-

backs. For example, the gradient-based algorithms have

high computational efficiency and fast convergence rate,

but the calculation of gradients requires detailed knowl-

edge of the numerical simulators. They can hardly be used

without adjoint code and they are difficult to transform

from one simulator to another. The gradient-free algo-

rithms can converge to global optimum with a high prob-

ability and they can make full use of the technical

advantages of commercial reservoir simulators. However,

the computational efficiency and convergence rate of gra-

dient-free algorithms are not satisfactory. Therefore, we

should combine different algorithms together to develop

new hybrid solvers, which can incorporate the advantages

of different optimization methods.

4.2 Parallel algorithms and distributed systems

As well known, numerical simulations are necessary in

closed-loop reservoir management. However, for large-

scale reservoir optimization problems, even a single

numerical simulation requires several days and the total

computational cost is unbearably expensive. To address

this problem, it is necessary to develop parallel algorithms

and distributed systems. The parallel algorithms should

necessarily conserve the mathematical convergence

behavior of the original algorithms. Traditionally, the dis-

tributed systems can be classified into two categories. The

first category is homogeneous distributed system which is a

cluster of many similar computers or work stations. The
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other category is heterogeneous distributed system which is

constructed by a set of work stations or computers with

different architectures. Currently, with the rapid develop-

ment of multicore computers and graphic processing unit

(GPU) technology, many parallel programming methods

have been proposed on the basis of Open Multiprocessing

(OpenMp) and compute unified device architecture

(CUDA). For example, Wu et al. (2014) discussed a mul-

tilevel preconditioner in a new-generation reservoir simu-

lator and its implementation on multicore computers using

OpenMP. In order to conduct large-scale closed-loop res-

ervoir management, parallel algorithms and distributed

systems should be emphasized in the future studies.

4.3 Uncertainty analyses

It is well known that automatic history matching is an

underdetermined inverse problem because the number of

unknown parameters is much larger than the number of

available production measurements. In other words, many

different parameter estimates can provide satisfactory data

fits. However, some of the estimates may grossly lead to

erroneous predictions of future production behavior.

Therefore, developing methods that can quantify the

uncertainty of parameter estimates are necessary to the

success of automatic history matching. For example, Bar-

ker et al. (2001) applied the Markov chain Monte Carlo

method to quantify the uncertainty. When predicting per-

meability from well logs, Olatunji et al. (2011) adopted a

type-2 fuzzy logic system which is good at handling

uncertainties in measurements and data used to calibrate

the parameters. Arnold et al. (2013) carried out a hierar-

chical benchmark case study for history matching, uncer-

tainty quantification, and reservoir characterization. Since

automatic history matching has become increasingly

important in the field of reservoir description, more efforts

should be paid to uncertainty analyses to reduce the

decision risks in the future.

4.4 Integrated software

In order to exploit the limited oil reserves more efficiently

and economically, the field application of closed-loop

reservoir management becomes increasingly significant.

However, most of the oilfield engineers do not know much

about its theoretical basis. Therefore, it is necessary to

develop integrated software which can be used conve-

niently as a black box. As far as we know, some com-

mercial simulators have done much work in this field. For

example, the Computer Modelling Group Ltd has devel-

oped a CMOST studio, which integrated history matching,

optimization, sensitivity analysis, and uncertainty assess-

ment tool. Some optimization methods such as the Latin

hypercube design, brute force search, random search, and

PSO have been available for history matching and opti-

mization tasks in CMOST studio. The Schlumberger

developed MEPO software to deal with production opti-

mization, uncertainty assessment, and semi-automatic his-

tory matching. Although CMOST studio and MEPO

software did much work, automatic closed-loop reservoir

management has not yet been achieved, especially for

large-scale field applications. Therefore, much more effort

should be paid on the development of integrated software,

which can help the engineers to manage oilfields easily and

scientifically.

5 Conclusions

Closed-loop reservoir management consisting of automatic

history matching and reservoir production optimization is

an effective technique to improve the technical and eco-

nomic effect of reservoir development. Both of the steps

are complex optimization problems which can be solved by

gradient-based algorithms, gradient-free algorithms, and

artificial intelligence algorithms. The computational effi-

ciency of gradient-based algorithms is the highest but they

Table 3 Characteristics of different optimization algorithms

Methods Representive algorithms Characteristics

Gradient-based

algorithms

Steepest ascent algorithm; conjugate gradient method; LBFGS

method; Levenberg–Marquardt algorithm; Gauss–Newton

method

High computational efficiency; dependent on adjoint

gradient which generally needs detailed knowledge of

simulator numerics to implement; difficult to transform

from one simulator to another

Gradient-free

algorithms

SPSA; EnOpt; EnKF; SID-PSM; NEWUOA; QIM-AG Independent of detailed knowledge of simulator

numerics; capable of connecting to any reservoir

simulators; implement easily

Artificial

intelligence

algorithms

Simulated annealing algorithm; genetic algorithm; artificial neural

networks; particle swarm optimization algorithm

Low computational efficiency; independent of gradient

or Hessian matrix information; expensive computation

cost; no guarantee of convergence
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are difficult to transform from one simulator to another.

The gradient-free and artificial intelligence algorithms are

independent of numerical simulators but they need much

more simulations to find the optimum. More research

should be conducted on hybrid optimization methods,

parallel algorithms and distributed systems, uncertainty

analyses and integrated software in the future.
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