Skip to main content

Advertisement

Log in

Fat Distribution and Cardiovascular Disease Risk

  • Diabetes + Insulin Resistance (M Rutter, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

The increase in obesity and cardiovascular disease (CVD) is a major problem in developed countries. As a consequence, metabolic syndrome, a disorder that links obesity and CVD, is becoming an important health concern. The underlying mechanisms of metabolic syndrome are considered to be excess visceral fat accumulation and insulin resistance. Visceral adipose tissue essentially takes up and stores excess energy and buffers against hyperglycemia and hyperlipidemia. However, excess visceral fat accumulation causes dysregulation of various adipocyte-derived bioactive molecules (adipocytokines), which leads to chronic systemic low-grade inflammation and CVD. The reduction of visceral fat through lifestyle modification is a potentially useful strategy for the prevention of CVD. Waist circumference is a good surrogate marker of visceral fat accumulation and is useful for monitoring the results of lifestyle changes. Moreover, adipocytokines are useful biomarkers and therapeutic targets for obesity-induced CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Global status report on noncommunicable diseases 2010. Geneva, World Health Organization, 2011

  2. Vague J. La difference sexuelle, feateur determinant des forms de l’obesite. Presse Med. 1947;55:339–40.

    CAS  PubMed  Google Scholar 

  3. Kissebah AH, Vydelingum N, Murray R, Evans DJ, Hartz AJ, Kalkhoff RK, et al. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab. 1982;54(2):254–60.

    Article  CAS  PubMed  Google Scholar 

  4. Bjorntorp P. Classification of obese patients and complications related to the distribution of surplus fat. Am J Clin Nutr. 1987;45:112–25.

    Google Scholar 

  5. Tokunaga K, Matsuzawa Y, Ishikawa K, Tarui S. A novel technique for the determination of body fat by computed tomography. Int J Obes. 1983;7(5):437–45.

    CAS  PubMed  Google Scholar 

  6. Fujioka S, Matsuzawa Y, Tokunaga K, Tarui S. Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism. 1987;36(1):54–9.

    Article  CAS  PubMed  Google Scholar 

  7. Nakajima T, Fujioka S, Tokunaga K, Matsuzawa Y, Tarui S. Correlation of intraabdominal fat accumulation and left ventricular performance in obesity. Am J Cardiol. 1989;64(5):369–73.

    Article  CAS  PubMed  Google Scholar 

  8. Kanai H, Matsuzawa Y, Kotani K, Keno Y, Kobatake T, Nagai Y, et al. Close correlation of intra-abdominal fat accumulation to hypertension in obese women. Hypertension. 1990;16(5):484–90.

    Article  CAS  PubMed  Google Scholar 

  9. Fujioka S, Matsuzawa Y, Tokunaga K, Kawamoto T, Kobatake T, Keno Y, et al. Improvement of glucose and lipid metabolism associated with selective reduction of intra-abdominal visceral fat in premenopausal women with visceral fat obesity. Int J Obes. 1991;15(12):853–9.

    CAS  PubMed  Google Scholar 

  10. Kanai H, Tokunaga K, Fujioka S, Yamashita S, Kameda-Takemura K, et al. Decrease in intra-abdominal visceral fat may reduce blood pressure in obese hypertensive women. Hypertension. 1996;27(1):125–9.

    Article  CAS  PubMed  Google Scholar 

  11. Barry VW, Baruth M, Beets MW, Durstine JL, Liu J, Blair SN. Fitness vs. fatness on all-cause mortality: a meta-analysis. Prog Cardiovasc Dis. 2014;56(4):382–90. This study showed that overweight and obese-fit individuals had similar mortality risks as normal weight-fit individuals.

    Article  PubMed  Google Scholar 

  12. Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 2008;7(5):410–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Klein S, Fontana L, Young VL, Coggan AR, Kilo C, Patterson BW, et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med. 2004;350(25):2549–57.

    Article  CAS  PubMed  Google Scholar 

  14. Wormser D, Kaptoge S, Di Angelantonio E, Wood AM, Pennells L, Thompson A, et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet. 2011;377(9771):1085–95.

    Article  PubMed  Google Scholar 

  15. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–164.

    Article  CAS  PubMed  Google Scholar 

  16. Alberti KG, Zimmet P, Shaw J. IDF Epidemiology Task Force Consensus Group. The metabolic syndrome—a new worldwide definition. Lancet. 2005;366(9491):1059–62.

    Article  PubMed  Google Scholar 

  17. Hiuge-Shimizu A, Kishida K, Funahashi T, Ishizaka Y, Oka R, Okada M, et al. Absolute value of visceral fat area measured on computed tomography scans and obesity-related cardiovascular risk factors in large-scale Japanese general population (the VACATION-J study). Ann Med. 2012;44(1):82–92. This study showed that the mean number of risk factors exceeded 1.0 for a VFA of around 100 cm2 in Japan, irrespective of gender, age, and body mass index.

    Article  PubMed  Google Scholar 

  18. Laviola L, Perrini S, Cignarelli A, Natalicchio A, Leonardini A, De Stefano F, et al. Insulin signaling in human visceral and subcutaneous adipose tissue in vivo. Diabetes. 2006;55(4):952–61.

    Article  CAS  PubMed  Google Scholar 

  19. Lee JY, Sohn KH, Rhee SH, Hwang D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem. 2001;276(20):16683–9.

    Article  CAS  PubMed  Google Scholar 

  20. Erridge C, Samani NJ. Saturated fatty acids do not directly stimulate Toll-like receptor signaling. Arterioscler Thromb Vasc Biol. 1944–1949;29(11):2009.

  21. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72.

    Article  CAS  PubMed  Google Scholar 

  22. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228–31.

    Article  CAS  PubMed  Google Scholar 

  23. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol. 2004;24(1):29–33.

    Article  CAS  PubMed  Google Scholar 

  24. Shimomura I, Funahashi T, Takahashi M, Maeda K, Kotani K, Nakamura T, et al. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nat Med. 1996;2(7):800–3.

    Article  CAS  PubMed  Google Scholar 

  25. Bertin E, Nguyen P, Guenounou M, Durlach V, Potron G, Leutenegger M. Plasma levels of tumor necrosis factor-alpha (TNF-alpha) are essentially dependent on visceral fat amount in type 2 diabetic patients. Diabetes Metab. 2000;26(3):178–82.

    CAS  PubMed  Google Scholar 

  26. Malavazos AE, Cereda E, Morricone L, Coman C, Corsi MM, Ambrosi B. Monocyte chemoattractant protein 1: a possible link between visceral adipose tissue-associated inflammation and subclinical echocardiographic abnormalities in uncomplicated obesity. Eur J Endocrinol. 2005;153(6):871–7.

    Article  CAS  PubMed  Google Scholar 

  27. Rhee EJ, Lee WY, Park CY, Oh KW, Kim BJ, Sung KC, et al. The association of serum adipocyte fatty acid-binding protein with coronary artery disease in Korean adults. Eur J Endocrinol. 2009;160(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  28. Jamaluddin MS, Weakley SM, Yao Q, Chen C. Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br J Pharmacol. 2012;165(3):622–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ryo M, Nakamura T, Kihara S, Kumada M, Shibazaki S, Takahashi M, et al. Adiponectin as a biomarker of the metabolic syndrome. Circ J. 2004;68(11):975–81.

    Article  CAS  PubMed  Google Scholar 

  30. Shibata R, Ouchi N, Kikuchi R, Takahashi R, Takeshita K, Kataoka Y, et al. Circulating omentin is associated with coronary artery disease in men. Atherosclerosis. 2011;219(2):811–4.

    Article  CAS  PubMed  Google Scholar 

  31. Maruyama S, Shibata R, Kikuchi R, Izumiya Y, Rokutanda T, Araki S, et al. Fat-derived factor omentin stimulates endothelial cell function and ischemia-induced revascularization via endothelial nitric oxide synthase-dependent mechanism. J Biol Chem. 2012;287(1):408–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Schäffler A, Buechler C. CTRP family: linking immunity to metabolism. Trends Endocrinol Metab. 2012;23(4):194–204. doi:10.1016/j.tem.2011.12.003.

    Article  PubMed  Google Scholar 

  33. Choi KM, Hwang SY, Hong HC, Yang SJ, Choi HY, Yoo HJ, et al. C1q/TNF-related protein-3 (CTRP-3) and pigment epithelium-derived factor (PEDF) concentrations in patients with type 2 diabetes and metabolic syndrome. Diabetes. 2012;61(11):2932–6. doi:10.2337/db12-0217.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Seldin MM, Peterson JM, Byerly MS, Wei Z, Wong GW. Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J Biol Chem. 2012;287(15):11968–80. doi:10.1074/jbc.M111.336834.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Wong GW, Krawczyk SA, Kitidis-Mitrokostas C, Revett T, Gimeno R, Lodish HF. Molecular, biochemical and functional characterizations of C1q/TNF family members: adipose-tissue-selective expression patterns, regulation by PPAR-gamma agonist, cysteine-mediated oligomerizations, combinatorial associations and metabolic functions. Biochem J. 2008;416(2):161–77. doi:10.1042/BJ20081240.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kambara T, Ohashi K, Shibata R, Ogura Y, Maruyama S, Enomoto T, et al. CTRP9 protein protects against myocardial injury following ischemia-reperfusion through AMP-activated protein kinase (AMPK)-dependent mechanism. J Biol Chem. 2012;287(23):18965–73. doi:10.1074/jbc.M112.357939.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Wei Z, Seldin MM, Natarajan N, Djemal DC, Peterson JM, Wong GW. C1q/tumor necrosis factor-related protein 11 (CTRP11), a novel adipose stroma-derived regulator of adipogenesis. J Biol Chem. 2013;288(15):10214–29. doi:10.1074/jbc.M113.458711.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Enomoto T, Ohashi K, Shibata R, Higuchi A, Maruyama S, Izumiya Y, et al. Adipolin/C1qdc2/CTRP12 protein functions as an adipokine that improves glucose metabolism. J Biol Chem. 2011;286(40):34552–8. doi:10.1074/jbc.M111.277319.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Wei Z, Peterson JM, Wong GW. Metabolic regulation by C1q/TNF-related protein-13 (CTRP13): activation OF AMP-activated protein kinase and suppression of fatty acid-induced JNK signaling. J Biol Chem. 2011;286(18):15652–65. doi:10.1074/jbc.M110.201087.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000;20(6):1595–9.

    Article  CAS  PubMed  Google Scholar 

  41. Iwashima Y, Katsuya T, Ishikawa K, Ouchi N, Ohishi M, Sugimoto K, et al. Hypoadiponectinemia is an independent risk factor for hypertension. Hypertension. 2004;43(6):1318–23.

    Article  CAS  PubMed  Google Scholar 

  42. Kumada M, Kihara S, Sumitsuji S, Kawamoto T, Matsumoto S, Ouchi N, et al. Coronary artery disease. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol. 2003;23(1):85–9.

    Article  CAS  PubMed  Google Scholar 

  43. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation. 1999;100(25):2473–6.

    Article  CAS  PubMed  Google Scholar 

  44. Kobayashi H, Ouchi N, Kihara S, Walsh K, Kumada M, Abe Y, et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res. 2004;94(4):e27–31.

    Article  CAS  PubMed  Google Scholar 

  45. Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation. 2001;103(8):1057–63.

    Article  CAS  PubMed  Google Scholar 

  46. Arita Y, Kihara S, Ouchi N, Maeda K, Kuriyama H, Okamoto Y, et al. Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell. Circulation. 2002;105(24):2893–8.

    Article  CAS  PubMed  Google Scholar 

  47. Ohashi K, Ouchi N, Kihara S, Funahashi T, Nakamura T, Sumitsuji S, et al. Adiponectin I164T mutation is associated with the metabolic syndrome and coronary artery disease. J Am Coll Cardiol. 2004;43(7):1195–200.

    Article  CAS  PubMed  Google Scholar 

  48. Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 2002;8(7):731–7.

    Article  CAS  PubMed  Google Scholar 

  49. Ohashi K, Kihara S, Ouchi N, Kumada M, Fujita K, Hiuge A, et al. Adiponectin replenishment ameliorates obesity-related hypertension. Hypertension. 2006;47(6):1108–16.

    Article  CAS  PubMed  Google Scholar 

  50. Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med. 2005;11(10):1096–103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Shinji Kihara and Yuji Matsuzawa declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Kihara.

Additional information

This article is part of the Topical Collection on Diabetes + Insulin Resistance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kihara, S., Matsuzawa, Y. Fat Distribution and Cardiovascular Disease Risk. Curr Cardiovasc Risk Rep 9, 8 (2015). https://doi.org/10.1007/s12170-015-0439-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-015-0439-4

Keywords

Navigation