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Abstract One of the most important problems in the

petroleum industry is the well-known petrol station

replenishment problem with time windows, which calls for

the determination of optimal routes by using a fleet of tank

trucks to serve a set of petrol stations over a given planning

horizon. In this paper, we introduce a model and solve a

specific problem that originates from a real-life application

arising in the fuel distribution where specific attention is

paid to tank trucks with compartments and customers with

different types of products and time windows. Literally, we

call the resulting problem the multi-compartment vehicle

routing problem with time windows (MCVRPTW). To

solve the MCVRPTW, we begin by describing the prob-

lem, providing its mathematical formulation and discussing

the sense of its constraints. As the problem is NP-hard, we

propose an efficient tabu search algorithm for its solution.

We introduce the Kolmogorov–Smirnov statistic into the

framework of the tabu search to manage the neighbourhood

size. We evaluate the performance of the algorithm on a set

of vehicle routing problems with time windows instances

as well as other realistic instances. Our results are com-

pared to CPLEX, to the heuristics reported in the literature

and also to those extracted from the company plans.

Keywords Petrol station replenishment � Vehicle
routing � Compartments � Time windows � Tabu search

1 Introduction

The specific problem, which will be discussed in this paper,

is a variant of the capacitated vehicle routing problem and

occurs in the context of fuel distribution. More precisely,

the paper deals with the daily replenishment-planning

problem that the biggest Algerian petroleum company is

facing. The company is faced with a particular problem

which is demonstrated by the following procedures in

operations. (a) The company has to deliver different fuel

types ordered by a set of petrol stations during the next

working day. (b) These stations order one or more fuel

types each time and specify the quantity to be delivered for

each product ordered. (c) The products are incompatible

and must be transported in independent vehicle compart-

ments. In addition, petrol stations specify time windows

during which they must be served. The company delivers

products from one or more depots. (d) Each depot is

responsible for the demand of stations located in the same

district as the depot. The company assigns a fleet of

vehicles to each depot. (e) These vehicles are compart-

mentalized and do not have flow metres. This implies that

the contents of a compartment cannot be used to replenish

more than one underground reservoir. Consequently, each

compartment of the delivery vehicle must be filled with one

of the products to be delivered on its route. In this context,

the company prepares a replenishment plan for their petrol

stations for the next day. This plan requires a number of

simultaneous and interrelated decisions to be made. To

prepare such a plan, the company must determine the

routes for the delivery of all the demanded products, assign
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these routes to vehicles, determine the quantities to be

delivered by each route, and load these quantities to the

compartments. On this point, it should be noted that, in

2013, an Agreement was concluded between the company

and the petrol station managers. According to this Agree-

ment, the quantities loaded in the compartments can be

adjusted up to a given threshold. This particular situation

occurs quite frequently when the demands of petrol stations

are high in winter. The objective of the replenishment plan

is to determine a set of routes satisfying all customer orders

at a minimal routing and service cost.

Our real-life application can be viewed as a combination

of two variants of the vehicle routing problem (VRP): a

VRP with multiple compartments (MCVRP) and VRP with

time windows (VRPTW). For clarity of exposition, this

problem will be called the multi-compartment vehicle

routing problem with time windows (MCVRPTW). How-

ever, it is different from the problems previously discussed

in the literature with respect to the following properties:

1. Besides the common constraints of heterogeneous

fleets, multiple compartments and time windows, we

incur a penalty cost in connection with the use of

private vehicles. This constraint originates from the

fact that the company managers would like to promote

the use of their own vehicles.

2. Since restrictions on the accessibility of vehicles (see

constraints 2 in the problem formulation) are imposed,

some vehicles cannot visit some petrol stations, e.g.,

the petrol stations managed by the army cannot be

delivered to by private vehicles.

3. The quantities loaded in the compartments can be

adjusted according to an Agreement concluded

between the company and the petrol station managers.

Consequently, not only do the vehicle routes have to be

determined, but how to maximize the quantities to be

delivered also has to be decided for each day.

The problem is NP-hard since it is a combination of the

MCVRP and VRPTW, which are known to be NP-hard

problems [34]. Furthermore, the MCVRPTW is more

complicated than the MCVRP and VRPTW considering

that it needs to tackle compartments and time windows

constraints simultaneously. Because the practical large-

scale MCVRPTW instances are difficult, if not impossible,

to tackle efficiently within a reasonable amount of com-

puting time, even by using the most powerful MIP solvers

such as CPLEX (see Sect. 5), the purpose of this paper is to

propose an effective metaheuristic for the MCVRPTW. To

make the implementation simpler, we employ a tabu search

as the algorithm framework. Different structural neigh-

bourhood methods are used in the improving phase of the

tabu search to broaden the exploration of the search space.

Meanwhile, a Kolmogorov–Smirnov statistic (KSS) is

incorporated into the framework of the tabu search to

manage the neighbourhood size. The main idea of the KSS

is that a neighbourhood size is determined according to a

probability model that minimizes the distance criterion and

decides whether two customers are neighbours or not.

2 Literature review

Several versions of the petrol station replenishment prob-

lem have attracted interest over the last three decades. In

this section, we present a brief review of the published

literature dealing with these versions of the petrol station

replenishment problem in a chronological order.

One of the first articles was published by Brown and

Graves [6], who developed an automated real-time dispatch

system for the distribution of petroleum products for a

major US oil company. Each order includes several gaso-

line products, jointly constituting a full truckload. Brown

and Graves proposed a model to assign orders to trucks.

The objective was to minimize the sum of travel costs and

establish a penalty for trucks that exceed the allowable

working hours per day, as well as those that had less than

the required minimum working hours.

Brown et al. [7] developed a computerized assisted

dispatch system for Mobil Oil Corporation in the United

States. The dispatching procedure used by the system was

an extension of the one presented by Brown and Graves [6]

and allowed visiting more than one customer per trip.

Franz and Woodmanse [17] developed a rule-based

semi-automated decision support system for a regional oil

company to determine the daily schedule of the drivers and

the dispatching of the tank trucks.

Ronen [27] studied the dispatching problem. The main

concern was to set up a timely and economic delivery of

petroleum products and/or liquid chemicals by a fleet of

vehicles. He presented three models, the set partitioning

model, the elastic set partitioning model and the set

packing model, and showed how they could be used in a

petrol product distribution system. Bausch et al. [2] pro-

posed an elastic set partitioning technique to solve the same

problem. The candidate schedules are obtained by gener-

ating trips using the sweep algorithm. Also, in 1995, Van

der Bruggen et al. [36] solved the single period version of

the problem as part of a broader study aimed at optimizing

the distribution network of a large oil company operating in

the Netherlands. They suggested some simple models to

assign customers to depots, to determine the fleet size and

composition and to restructure the depot network.

Nussbaum and Sepulveda [24] addressed the distribution

problem for the biggest fuel company in Chile. The delivery

plans are obtained using a heuristic approach and a planning,

execution and control system is developed employing a
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knowledge-based approach that utilizes a graphical user

interface, which mimics the mental model of the user.

Several greedy heuristics followed by simple improve-

ment procedures for the multi-period problem were pro-

posed by Taqa allah et al. [33]. They proposed two

heuristics for constructing petrol station replenishment

plans for the case in which there is only one depot, an

unlimited homogeneous tank truck fleet, and no time

windows. In 2002, Ben Abdelaziz et al. [3] presented a

real-life routing problem in which a variable neighbour-

hood search heuristic was applied to solve a single period

petroleum products delivery problem using a heteroge-

neous fleet of compartmented tank trucks. Malépart et al.

[21] generalized this problem by allowing delivery to more

than one station in the same trip. The authors proposed four

heuristics for constructing replenishment plans over a

horizon of several working days. Their heuristics were

tested using some real-life problems obtained from a

transport company in Eastern Canada.

Avella et al. [1] studied a petrol replenishment network

involving one depot, a heterogeneous tank truck fleet and

no time windows. They proposed a heuristic and an exact

algorithm based on a route generation scheme and a

branch-and-price algorithm. To test the performance of

their approach, they used real-world data consisting of 25

customers and six tank trucks of three different types.

Ng et al. [23] studied two small petrol distribution net-

works in Hong Kong: the Hong Kong Island network and the

network for the Kowloon Peninsula and the New Territories.

They proposed a model for simultaneously assigning trips to

trucks and stations. For this case, station’ inventories were

managed by the vendor who decided when to replenish each

station and what quantities to deliver.

Cornillier et al. [11] tackled the petrol station replen-

ishment problem (PSRP) with one depot. They developed

an exact algorithm to solve the single period case with

unlimited heterogeneous truck fleet but without time win-

dows. Cornillier et al. [12] extended the PSRP to a multi-

period setting and developed a multi-phase heuristic with

look-back and look-ahead procedures. Basically, the

heuristic first determines the stations to be serviced in each

period. Then, the problem reduces to solving multiple

PSRPs where the exact algorithm of Cornillier et al. [11] is

utilized. Cornillier et al. [13] addressed the PSRP with time

windows. They developed two heuristics based on the

mixed integer linear programming formulation of the

problem. In a different setting, Day et al. [15] implemented

a three-phase heuristic for the cyclical inventory routing

problem encountered at a carbon dioxide gas distributer in

Indiana. Their heuristic determines regular routes for each

of three available delivery vehicles over a 12-day delivery

horizon while improving delivery labour cost, stockouts,

delivery regularity and driver-customer familiarity.

Cornillier et al. [14] published a paper, which was dif-

ferent from the previous ones as it dealt with the multi-

depot version of the problem. In addition to the proposed

formulation, the authors developed a heuristic, which

requires generating trips, not routes as in the previous

papers, and trips are generated in a different way. In fact,

they suggested a restricted set of promising feasible trips to

solve the trip selection model. They used a two-phase

procedure in which they first constructed an initial set of

trips and then selected a subset of this set to obtain the

required set.

Popović et al. [25] developed a variable neighbourhood

search (VNS) heuristic model for solving a multi-period

multi-product IRP (Inventory Routing Problem) in fuel

delivery with multi-compartment homogenous vehicles and

deterministic consumption that varies with each petrol sta-

tion and each fuel type. The stochastic VNS heuristic is

compared to a mixed integer linear programming (MILP)

model and the deterministic ‘‘compartment transfer’’ (CT)

heuristic. For the same problem,Vidović et al. [38] presented

two solution approaches: the MIP model and the heuristics

approach. The MIP model is formulated as the problem of

petrol station assignment to individual routes with consid-

eration of the daily inventory costs. The proposed heuristic

includes a relaxed MIP model for obtaining the initial solu-

tion, ideas for transferring deliveries over one or more time

periods earlier, assignment of petrol stations to a vehicle in

the same route (represented through the utilities calculation)

and a variable neighbourhood descent (VND) search.

Our aim is to improve the fuel distribution operations of

Naftal company using OR techniques. The problem seems

similar to that of Cornillier et al. [13] since both attack a petrol

station replenishment problem with time windows using

multi-compartment vehicles. However, there are some key

differences. Firstly, Cornillier et al. [13] consider a casewhere

trucks can visit up to four stations per route, which is justified

by the fact that most trucks have from four to six compart-

ments, while stations generally require two or three products,

one of which frequently requires two compartments. More-

over, the timewindows for servicing stations are verywide. In

addition, their aim is to maximize the total profit equal to the

sales revenue, minus the sum of routing costs and of regular

and overtime costs, whereas, in our case, since restrictions on

the accessibility of vehicles (see constraints 2 in the problem

formulation) are imposed, a vehicle cannot visit some petrol

stations, e.g., the petrol stations managed by the army cannot

be delivered to by the private vehicles.

The remainder of this paper is organized as follows.

Section 3 describes and formulates the problem. Section 4

describes the details of the proposed approach. The

instances used and the results obtained are discussed in

Sect. 5. Section 6 presents the conclusion and some sug-

gestions for future work.
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3 Problem description and formulation

TheMCVRPTW is defined on a complete undirected network

graph G ¼ ðV;EÞ where V ¼ f0; 1; 2; . . .; ng is a vertex set,

and E ¼ fði; jÞ 2 V � V; 0� i; j� n; i 6¼ jg is an edge set.

Vertex 0 represents the depot while the remaining vertices

N ¼ f1; 2; . . .; ng correspond to the customers. The depot

storesp types of products. There are two types of vehicles. The

number of vehicles for each type is limited. Let P, K1 andK2

represent the sets of the p types of products and the two types

of vehicles (National company and Private companies vehi-

cles), respectively. Each vehicle k has capacityCk with the set

ofQ1 orQ2 compartments. Each compartment q is dedicated

to product p and has a known capacity c
q
k . Furthermore, a

penalty cost f2 is incurred for each use of vehicle k 2 K2 in the

routes. The travelling cost of each edge (i, j) 2 E is cij. For

each customer i 2 N, we have a positive demand dip and a

timewindow ½ai; bi�. Each demand has to be delivered in total.

However, this demand may be adjusted according to the

Agreement that was concluded between the company and the

petrol station managers. Hence, the resulting new demand

may be up to kip % less than the ordered demand dip, i.e.,

d
0
ip ¼ ð1� kipÞ � dip, where kip 2 ½0; 0:10�. This particular

problem, called the MCVRPTW-AD (MCVRPTW with

adjustment), occurs quite frequently when the demands of

petrol stations are high in winter.

The time window at the depot ½a0; b0� corresponds to the

feasible scheduling horizon for each vehicle route. Asso-

ciated with each arc (i, j) 2 E, tij represents the travel time

along that arc. Note that the service time at customer i must

start within the associated time window and the vehicle

must stop for a ti time. To take into account the restrictions

imposed on the accessibility of vehicles (see constraint 2 in

the problem formulation), we define f0; 1g matrix A ¼
ðaikÞ; which equals 1 if and only if customer i can be served

by vehicle k and which equals 0 otherwise.

The MCVRPTW requires the following three types of

variables:

• xijk ¼
1 if i precedes j in the route of vehicle k:

0 otherwise:

�

• yipk ¼
1 if customer i receives product p from vehicle k:

0 otherwise.

�

• sik specifies the arrival time at iwhen servicedbyvehicle k.

In case of vehicle k does not service i, sik has no meaning

and consequently its value is considered irrelevant.

Given all the parameters and variables defined above, the

MCVRPTW can be formulated as follows:

Minimize
X
k2K1

X
i2V

X
j2V

cijxijk þ
X
k2K2

X
i2V

X
j2V

ðcij þ f2Þxijk ð1Þ

Subject to

yipk � aik; i 2 N; k 2 fK1 [ K2g; p 2 P ð2ÞX
i2V

xihk �
X
j2V

xhjk ¼ 0; h 2 N; k 2 fK1 [ K2g ð3Þ

xijk þ xjik � 1; i; j 2 N; i 6¼ j; k 2 fK1 [ K2g ð4ÞX
j2N

x0jk � 1; k 2 fK1 [ K2g ð5Þ
X
i2N

xi0k � 1; k 2 fK1 [ K2g ð6Þ
X
i2N

dipyipk � c
q
k ; k 2 fK1 [ K2g; q 2 fQ1 [ Q2g; p 2 P

ð7ÞX
k2fK1[K2g

yipk ¼ 1; i 2 N; p 2 P ð8Þ

yipk �
X
j2V

xjik; i 2 N; k 2 fK1 [ K2g; p 2 P ð9Þ

sik þ ti þ tij �Mð1� xijkÞ� sjk; i; j 2 V ; k 2 fK1 [ K2g
ð10Þ

ai � sik � bi; i 2 V ; k 2 fK1 [ K2g ð11Þ

xijk 2 f0; 1g; i; j 2 V ; k 2 fK1 [ K2g ð12Þ

yipk 2 f0; 1g; i 2 N; k 2 fK1 [ K2g; p 2 P ð13Þ

sik � 0; i 2 N; k 2 fK1 [ K2g ð14Þ

Objective (1) is to minimize the total cost, which

consists of the travelling costs and penalty costs of pri-

vate company vehicles used for service. Constraint (2)

considers the accessibility restrictions, where some

vehicles cannot serve some customers. Constraints (3)–

(4) guarantee that one vehicle arrives at each customer,

leaves it and does not return to the previous customer.

Constraints (5)–(6) impose that the start and end of the

route for each vehicle must be the depot. Constraint (7)

ensures that the compartment capacity is not exceeded.

In constraint (8), each product ordered by the customer

is brought by one single vehicle. Constraint (9) sets yikp
to zero for each product p if customer i is not visited by

vehicle k. Constraint (10) represents the relationship

between the starting time of the service to one customer

and the departure time from its predecessor. In constraint

(10), parameter M is an arbitrarily large value. Con-

straint (11) ensures that the service takes place at each

customer with respect to the time window. Constraints

(12)–(14) define the decision variables, which are all

binary except for variable sik.
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4 Solution approach

To solve the problem modelled above, we describe our

approach from its general structure to its main components.

4.1 General structure

The detailed steps of this approach are completely descri-

bed as follows:

• Step 1. Initialization

1. Generate one initial feasible solution by combining

the loading aspect with the modified Solomon

heuristic [28] as described in Sect. 4.2.

2. Initialize parameters.

• Step 2. Local search

2-opt*, relocate and swap operators are applied to explore

the search space. In fact, the search process is restricted to

a set of elite neighbouring solutions, and the criterion used

to select them is based on the Kolmogorov–Smirnov

statistic. At each iteration, one of these three operators is

randomly chosen and applied to the current solution S.

• Step 3. Penalty component

In order to enlarge the search space by visiting

infeasible solutions, the capacity and time constraints

are relaxed, i.e., the capacity and time violations are

penalized by two coefficients, and the penalized term is

added to the objective function.

• Step 4. Tabu list

The tabu list is implemented as an upper triangularmatrix

where each element contains a set of attributes able to

characterize the solution and records the iteration in

which an arc ismoved fromone route to another. The size

of the tabu list is updated according to the quality of the

solutions obtained during the recent moves.

• Step 5. Diversification and intensification strategies

Four mechanisms are used for diversifying and inten-

sifying the search (see Sect. 4.7 for more details).

• Step 6. Termination

The process can be stopped if the termination condi-

tions are completed; otherwise go to step 2 and

continue the search.

4.2 Route construction heuristic

Usually, the methods used to generate an initial solution

are simple and fast to compute because it is assumed that

the task of producing a good solution is mainly handled by

the tabu search algorithm [28]. In our work, the search

process for the initial solution includes two main phases. In

the first phase, called loading, an initial loading solution is

obtained. This solution is then used to generate the initial

routes in the routing phase. The details of these two phases

are explained as follows:

1. In the loading phase, our aim is to determine the subsets

of orders that will be loaded into the same vehicle. More

precisely, one must determine which of the products is

assigned to a certain compartment. The compartments of

each vehicle are loaded so that none of the routing

constraints is considered. This can be done by solving

the following compartment-loading problem (CLP):

Minimize
X

k2fK1[K2g

X
q2fQ1[Q2g

X
p2P

zpqk ð15Þ

subject to

dip �
X

q2fQ1[Q2g
c
q
kzpqk; k 2 fK1 [ K2g; i 2 N; p 2 P

ð16ÞX
p2P

zpqk � 1; k 2 fK1 [ K2g; q 2 fQ1 [ Q2g

ð17Þ

Binary variable zpqk indicates whether product p is

assigned to compartment q in vehicle k. The objective

function in (15) expresses the fact that we wish to

minimize the number of loaded compartments. Con-

straint (16) states that the quantities to load for one

product must not exceed the sum of the capacity of

compartments assigned to that product. Constraint (17)

imposes that each compartment is dedicated at most to

one product per route.

2. In the above initial loading solution, each vehicle has a

list of customers to visit. For each list, we apply the

modified nearest neighbour heuristic proposed by

Solomon [28] to generate our initial routes. As graph-

ically described in Fig. 1, our heuristic constructs the

routes by first visiting the customer closest to the depot,

where only temporal closeness is taken into account. At

each iteration, a vehicle with its subset of customers is

selected. The route starts with the customer who has the

earliest time ai. The next customer to be visited in the

route will be the one that is (1) not yet visited and (2)

closest to the last customer in the current route. This

process is repeated until there is no customer to visit in

the current route. When this happens, the whole process

is repeated until all the customers are visited.

4.3 Neighbourhood structure

In the tabu search algorithm, it will take a long time to

compute the values of all moves that allow one to pass

Logist. Res. (2016) 9:6 Page 5 of 18 6

123



from one solution to a neighbouring one. One of the rea-

sons for these large computing-time requirements is that

the mechanisms of generating candidate solutions normally

need to perform several thousand iterations to obtain high-

quality solutions [34]. Therefore, the strategy of selecting

the nearest neighbours was adopted to improve the con-

vergence speed in this paper. Within the general structure

of the neighbourhood, this strategy may be seen as an

implementation of a candidate list. In fact, the search is

restricted to a set of elite neighbouring solutions, and the

criterion used to select them is fixed in advance. The size of

the candidate list will be determined in the following

sections by applying the Kolmogorov–Smirnov statistic.

The introduction of this statistic is an advance over existing

work in which most of the relevant algorithms tend to use

classical moves. To improve the clarity of exposition, in

Sect. 4.4, we describe in detail the Kolmogorov–Smirnov

statistic by applying it to a given instance of Solomon. As

is shown in Fig. 4, with 100 customers, the size of the

candidate list is restricted to a value of 21. Our approach

employs three move types; each explores a restricted

search space by embedding these lists in the search process.

At each iteration, the algorithm randomly chooses one

operator from these three operators and applies it to the

current solution S. The details of these operators are listed

and described below.

a. 2-opt*: Two customers, i 2 Rk and j 2 Rk
0 , are chosen.

Then, the edges connecting i to iþ 1 and j to jþ 1 are

removed. Two new edges are added adjoining i with

jþ 1 and j with iþ 1. See Fig. 2a.

b. Relocate: Two customers, i 2 Rk and j 2 Rk
0 , are

selected and i is removed from its original route Rk

and inserted following j in the second route Rk
0 . The

relocate operator may reduce the number of vehicle

routes. See Fig. 2b.

c. Swap: Two customers, i 2 Rk and j 2 Rk
0 , are chosen

and exchanged between two routes. See Fig. 2c.

4.4 Neighbourhood size

The tabu search can be very time consuming due to the

large size to the neighbourhood N(S) and also to the cost

functions that must be constantly reevaluated. Thus, we

propose a neighbour reduction strategy designed to reduce

the computing time. Within the general settings of tabu

(a) (b)

(c) (d)

Fig. 1 Route construction heuristic: a Spatial location of the depot and customers. b Customers’ time windows and visiting order. c Customers

visited by one vehicle. d Initial solution
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search, this strategy may be seen as an implementation of

candidate list [19]. In fact, the search is restricted to a set of

elite neighbouring solutions, and the criterion used to select

them is fixed in advance. Similar ideas have been used by

various authors to speed up local-search algorithms [35].

The most widely used strategy, called Random, involves

randomly selecting some neighbours from N(S) for eval-

uation, thus allowing only a predefined proportion of the

total neighbourhood to be considered. By forcing a

decrease in the number of neighbours, the strategy is able

to decrease the time needed to find a solution. However,

because the strategy does not necessarily select the best

neighbour, it could lead to a different, and maybe worse,

solution. Another frequently used strategy, called Distance,

relies on taking the problem configuration into account

[26]. The idea is simple: a given neighbour is evaluated

only if the customer under consideration is within a fixed

distance from the nearest customer on the route into which

it will be inserted. For example, in [26], the fixed distance

is predefined as being equal to a fraction of the longest

distance on the geographical map. Apart from the men-

tioned strategies, the candidate list is also restricted to a

fraction of the total number of customers [8].

By analysing these strategies, some drawbacks can be

underlined. In fact, their way of fixing the number of candi-

dates does not take into account the instance’s density and

consequently no guarantee is provided regarding the com-

promise between solution quality and the time to find it. This

means that if the customer under consideration is located in a

remote location, the algorithm can evaluate some unpromis-

ingmoves; or if it is in a cluster, itmight still result in toomany

moves to be evaluated. In order to overcome these drawbacks,

our paper attends to additional aspects which, according to the

best of our knowledge, have not been considered in the liter-

ature before. These aspects include (1) the analysis of the

instance configuration, (2) the introduction of the Kol-

mogorov–Smirnov distance criterion, and (3) the implemen-

tation of candidate list for each customer. The second aspect

defines a new feature with which we suggest a heuristic (Al-

gorithm 1) for the neighbourhood size.

The purpose of introducing the Kolmogorov–Smirnov

statistic (KSS) is to find the preferable customers to visit

(when moving from one solution to a neighbouring one),

taking into to account their geographical positions in the

instance. The idea is simple: (1) select the model that

minimizes the distance criterion, (2) deduce its parameters

and (3) decide whether two customers are neighbours or

not. The customers are considered neighbours of a given

customer i, if and only if the distance between them is less

or equal to a given parameter Ai. This parameter is cal-

culated by using the pth quantile formula, which depends

on the probability distribution of its distance sample Li.

The use of such a probability aspect in computing Ai is

justified by the aim of checking whether one of the known

distributions can be suited to each distance sample. In fact,

the KSS fits the distance sample by selecting a list of

candidate distributions, estimating their parameters and

giving their ranking. Once the best statistical model is

identified, the parameter Ai is defined as follows:

FðAiÞ ¼ PrðLi �AiÞ ¼ p ) Ai ¼ F�1ðpÞ:
The whole procedure of fit is briefly explained in

Algorithm 1.

(a)

(b)

(c)

Fig. 2 Neighbourhood structure
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To improve the clarity of exposition, we give an illus-

trative application in which we show how to apply the

Kolmogorov–Smirnov statistic on a given instance. Let

R101, i ¼ 26 and L26 represent the instance of Solomon

(Fig. 4), the selected customer and its distance sample,

respectively. With this sample design, we test the following

set of distributions: Normal, Exponential, Weibull, GEV,

Gamma, Fréchet and Pareto. Table 1 summarizes the

goodness of fit for this example and shows that the GEV

model is the best. This result is confirmed when the GEV

quantile-quantile plot of the L26 variable is displayed as in

Fig. 3. As can be seen in this figure, our distribution is very

closely related to the empirical cumulative distribution

function. Hence, the L26 variable seems to follow a GEV

distribution which is defined as follows:

PðLi �AiÞ ¼ FðAi; li; ri; niÞ

PðLi �AiÞ ¼ exp � 1þ ni
Ai � li

ri

� �� ��1=ni
( )

8><
>: ð18Þ

where F is the Cumulative Distribution Function (CDF),

li 2 R is the location parameter, ri [ 0 is the scale

parameter and ni 2 R� is the shape parameter. By inverting

(18), we compute the parameter GEV Ai as follows:

FðAi; li; ri; niÞ ¼ p ) Ai ¼ � 1

ln p

� �ni

�1

" #
ri
ni
þ li:

ð19Þ

With ðl26; r26; n26Þ ¼ ð22:697; 10:923;�0:1901Þ and

p ¼ 25 % for example, we get A26 ¼ 19:016. Hence, the set

of nearest neighbours of the 26th customer will be noted by

V(26) and Fig. 4 offers its representation. Vð26Þ ¼ fj 2
Njlð26; jÞ� 19:016g. This set, considered as the restricted

neighbourhood of the current solution, will be used by the

three operators to evaluate the neighbourhood N(26).

4.5 Penalty component

To develop the approach for the MCVRPTW, possible vio-

lations of both capacity and time window constraints need to

be addressed. Let S be an infeasible solution that violates

capacity constraints and/or time window constraints. The

penalized cost function F0ðSÞ of solution S is defined in

Eq. (20). It consists of the total travel distance F(S) and the

penalty termsC(S) and T(S) for the violations of the capacity

and time window constraints multiplied by the penalty

coefficients a andb respectively. Initially set equal to 1, these
coefficients are periodically divided by 1þ q ðq 2�0; 1½Þ
after each block of / feasible solutions and multiplied by

1þ q after each block of / infeasible solutions. This way of

proceeding produces a mix of feasible and infeasible solu-

tions, which acts as a diversification strategy.

F0ðSÞ ¼ FðSÞ þ aCðSÞ þ bTðSÞ: ð20Þ

C(S) is straightforwardly defined in Eq. (21) as the sum of

the total demand excess in all routes [35].

CðSÞ ¼
X

k2fK1[K2g
max

X
p2P

X
i2N

dipyipk � Ck; 0

( )
ð21Þ

As for the T(S) penalty term, variants of the time win-

dow penalty for the VRP with soft time windows are

Table 1 Goodness of fit-synthesis

Distribution Kolmogorov–

Smirnov

Corresponding parameters

Statistic Rank

GEV 0.0372 1 l ¼ 22:697; r ¼ 10:923; n ¼ �0:1901

Weibull 0.0530 2 a ¼ 2:6739;b ¼ 30:999

Gamma 0.0567 3 a ¼ 5:4814;b ¼ 5:0205

Normal 0.0602 4 l ¼ 27:244;r ¼ 11:471

Fréchet 0.1327 5 a ¼ 1:9407;b ¼ 19:648

Exponential 0.2949 6 k ¼ 0:0367

Pareto II 0.3141 7 a ¼ 197:26;b ¼ 5048:2

Pareto I No fit 8 No fit

Algorithm 1 Procedure of fit.
Step 1.
for each customer i = 1, ..., n do
(a) Calculate lij = (xi − xj)2 + (yi − yj)2, j ∈ N
(b) Build the set Li = {lij , j ∈ N}
end for
Step 2.
Over the candidate distributions do:

(a) Fit the distributions to the sample (Li).
(b) Calculate the Kolmogorov-Smirnov statistics, give their ranking and parameters.
(c) Choose the best distribution that minimizes the distance criterion.
(d) Use the parameters of the best distribution to determine Ai = F −1(p).

Step 3.
Repeat steps 2 for each sample Li.
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employed in Berger and Barkaoui [4]. We suggest the

definition of Nagata et al. [22] for the time window penalty

structure defined in Eq. (23) whose change can be com-

puted in O(1) time for most traditional neighbourhood

operators. Moreover, this penalty measures the amount of

the time window violation more appropriately as described

below.

Given a solution S, the extended earliest departure time

at a depot es0k, the extended earliest start time of service at a

customer i, esik are defined recursively in Eq. (22) and the

Fig. 3 GEV Quantile–Quantile plot

Fig. 4 An example of candidate

list
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suggested time window penalty of the solution, denoted as

T(S), is defined in Eq. (23).

es00k ¼ es0k ¼ a0es0 ik ¼ esi�1;k þ tik þ ti�1;i

esik ¼ maxðes0 ik; aiÞ if es0 ik � bi

esik ¼ bi if es0 ik [ bi

8>>>><
>>>>:

ð22Þ

TðSÞ ¼
X
k2K

X
i2V

maxðes0 ik � bi; 0g ð23Þ

Note thatesik is equal to sik if the route of vehicle k is feasible
with respect to the time window constraint. es0 ik refers to the

extended earliest arrival time of vehicle k at customer i, and

the timewindowconstraint is violated at customer i ifbi\es0 ik.
In this case, we assume that the vehicle can travel back in time

to bi to start the service of customer iwithout delay, but at the

expense of paying a penalty ðes0 ik � biÞ. Therefore, in this case,esik is set to bi. The total time window violation in solution S,

T(S), is defined by the sum of the penalties that the vehicles

must pay in all the routes to service all customers and to arrive

at the depot without delay.

4.6 Tabu list

The tabu list is implemented as an upper triangular matrix

L of K � K dimensions where each element

Lðk; k0 Þ; ðk; k0 ¼ 1; :::;K; k\k
0 Þ is associated with the pair

of routes Rk and Rk
0 . Each element Lðk; k0 Þ contains a set of

attributes able to characterize the solution and also records

the iteration in which the arc (i, j) has been moved from

route Rk to route Rk
0 . The element Lðk; k0 Þ has the structure:

ðRk; Rk
0 ; i; position i; j; position j; FðSÞ; tÞ:

where Rk and Rk
0 are the two routes under operation, i is a

customer fromRk and position i is the service order of i inRk.

The case is likewise for j and position j. F(S) is the solution

value, and t is the iteration in which the arc (i, j) has been

moved from route Rk to route Rk
0 . An arc moved at iteration t

cannot be reinserted in the solution before iteration t þ h.
This notion provides a guideline to avoid making similar

moves in the near future. Such representation does not

uniquely describe a move, because a full description is very

complicated and its use increases the computation

tremendously. Therefore, when an exchange between

routes Rk and Rk
0 is accepted, we just update the infor-

mation corresponding to line k and column k
0
. Thus, we

avoid calculating information above the other pairs of

routes, which do not contain either Rk or Rk
0 . The size of

tabu list h takes its values in ½hmin; hmax� starting from hinit.
Parameter h is updated according to the quality of the

solutions obtained during the recent moves. After each

improvement of the current objective function, h is updated

as h ¼ maxðh� 1; hminÞ with the aim of intensifying the

search around this solution. Otherwise, after /LT consec-

utive moves deteriorating the value of the visited solutions,

the size of the tabu list is updated as h ¼ minðhþ 1; hmaxÞ:

4.7 Diversification and intensification

There are two diversification strategies for the proposed

algorithm to guide the search into less explored regions. (1)

A neighbourhood is randomly selected from the moves

described in Sect. 4.3. (2) The idea of passing through

infeasible regions is introduced and defined in Sect. 4.5.

The intensification is mainly achieved by using the

following two strategies. (1) The search is accentuated

around the best-known solution by increasing or decreasing

the size of the tabu list as explained in Sect. 4.6. (2) The

full search proceeds starting from the most promising

solution. In fact, the tabu search restarts the exploration of

the solution space from the best feasible solution evaluated,

but not visited S. To update S at each iteration, the algo-

rithm generates two solutions, S
0
and S

00
, from the neigh-

bourhood N(S) of the incumbent solution S. S
0
represents

the best non-tabu solution in N(S), and it is used to continue

the search process, while S
00
represents the best non-tabu

feasible solution obtained in NðSÞnS0
. Note that S

0
can be

infeasible, since the solutions visited may violate capacity

or time constraints. After cmax iterations without improving

the best feasible solution found so far or after mmax itera-

tions since the last restart, the search process ‘‘jumps’’ to S

and restarts with an empty tabu list. The maximal number

of restarts is fixed as gmax, but this process can be stopped if

after gmax restarts the best solution is not improved.

4.8 Algorithm overview

Algorithm 2 gives the skeleton of the proposed tabu search.

Before describing its general structure, we first give some

notations as follows:

• g: Number of restarts.

• g: Number of restarts without improvement.

• c: Number of iterations without improvement.

• cS: Number of iterations without improvement the

incumbent solution.

• m: Total number of iterations.

• v: Number of consecutive feasible solutions.

• v: Number of consecutive infeasible solutions.

v ¼ vc þ vt.
• vc: Number of consecutive infeasible solutions that

violate capacity constraint.

• vt: Number of consecutive infeasible solutions that

violate time window constraint.
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5 Computational results

5.1 Overview

Because the problem under study is a new problem in the

literature, there is still a lack of benchmark instances to test

the behaviour of the algorithm. As a result and with the aim

of avoiding indirect or limited comparisons, we performed

our computational experiments on the well-known data sets

given by Solomon [28]. These instances (http://www.neo.

lcc.uma.es/vrp/vrp-instances/), developed for the classical

VRPTW, are transformed to fit our problem. There are, in

total, 56 different instances, which can be classified into six

categories. In sets R1 and R2, the customer locations are

randomly generated. Problem sets C1 and C2 have clus-

tered distributions of customers. Sets RC1 and RC2 are

semi-clustered with a mix of randomly distributed and

Algorithm 2 Procedure Search
(1) Generate one initial solution S0 by combining the loading aspect with the modified

nearest neighbor heuristic as described in Section 4.2.
(2) Set S := S0, S∗ := S0
(3) initialize the parameters: θ = θinit, η = η = γ = ν = χ = χ = γS = 0.
repeat

η = η + 1
while ν ≤ νmax and γ ≤ γmax do

Randomly choose an operator from the set of three operators and apply it to the
current solution S. Two solutions S and S are generated from N(S):
S : the best non-tabu solution in N(S).
S : the best feasible non-tabu solution in N(S) \ S .
Set S = argmin(F (S ), F (S ))
if F (S ) < F (S) then

Update the size of the tabu list. Set θ := max(θ − 1, θmin)
Set γS := 0

else
Update γS := γS + 1

end if
if γS = φLT then

Update the size of the tabu list. Set θ := min(θ + 1, θmax)
Set γS := 0

end if
if F (S ) < F (S∗) and S is feasible then

Set S∗ := S , γ := 0, χ := χ + 1.
else

γ := γ + 1
end if
S := S
Update the tabu list
if S is infeasible then

χ := χ + 1. Update χc, χt.
else

χ := 0. Update χc, χt.
end if
check the variables corresponding to the number of consecutive feasible and non
feasible solutions and update the penalization parameters.
if χ = φ then

Set α := α/(1 + ρ), β := β/(1 + ρ).
end if
if χ = φ then

Set ρc := χc/φ, ρt := χt/φ.
Update α := α ∗ (1 + ρc), β := β ∗ (1 + ρt).

end if
end while
if S∗ is updated then

η := 0
else

η := η + 1
end if
S = S

until (η = ηmax) or (η = ηmax)
Return S∗.
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clustered customers. Sets R1, C1 and RC1 have a shorter

route horizon compared with those of sets R2, C2 and RC2,

which have longer scheduling horizons. In order to

accommodate these instances to the MCVRPTW with two

products and two compartments, we adopted the idea

proposed by El Fallahi et al. [16] to derive the MCVRP

instances from the VRP data sets. More precisely, we split

each customer demand into two parts. The demands of

customer i for the two types of products are di1 ¼ ½di=x�
and di2 ¼ di � di1 respectively where x is a random integer

in [2, 3], [x] stands for the integer part of x and di indicates

the demand of customer i in Solomon instances. The

capacity of compartments is set as cq1 ¼ ðC � d1Þ=ðd1 þ
d2Þ; cq2 ¼ ðC � d2Þ=ðd1 þ d2Þ where d1, d2 and C are the

average demand for the first product, the average demand

for the second product and the vehicle capacity in the

original VRPTW, respectively.

Although our implementation handles more compart-

ments, we took the case of two compartments for testing

because a) the problem is already difficult enough with two

compartments, and b) the demands obtained by splitting the

original demands into three or more demands would be too

small.

To further assess the performance of the algorithm, we

solve a real case where the company managers provided us

with daily data for a period of 15 days.

All instances can be downloaded from the VRP-REP

website (http://www.vrp-rep.org/).

The algorithm proposed in our solution procedure is

coded in C??, and the mathematical model is solved by

using IBM ILOG CPLEX 12.6 for a 7200s CPU. All

experiments are conducted on a laptop computer with an

Intel Core i7 2.9 GHz processor with 8 GB RAM and

operating with Windowsr 7 Professional edition.

5.2 Parameters

After some preliminary experiments, the parameter con-

figurations for the tabu search algorithm have been set to

the values reported in Table 2. a, b and q are three penalty

factors. / and /LT have been set to the same value and,

respectively, count the number of consecutive moves

updating or deteriorating the value of the visited solutions.

The size of the tabu list is updated in the interval

½hmin; hmax� starting from hinit. The maximum number of

moves without improving the best feasible solution in each

restart is cmax. mmax is the number of iterations of each

restart. gmax fixes the maximal number of restarts while

gmax is the maximal number of restarts without improve-

ment. kip is the threshold used as an adjustment parameter

in Eq. (24). p is the pth GEV quantile used to find the

neighbourhood size.

5.3 Results

5.3.1 Results for the MCVRPTW instances

We started by comparing the MCVRPTW with what we

call the MCVRPTW-AD (MCVRPTW with adjustment) in

which the quantities loaded in the compartments can be

adjusted up to a given threshold (see Sect. 3). To handle

this MCVRPTW-AD, we simply modified the tabu search

algorithm to get two versions in which constraint (7) is

replaced by constraint (24):X
i2N

ðdip � kipÞyipk � c
q
k ; k 2 fK1 [ K2g;

q 2 fQ1 [ Q2g; p 2 P

ð24Þ

Table 3 provides the solutions obtained by the tabu

search algorithm for each instance. In Table 3, we report

the total distance (TD), the number of vehicles used for the

service (NV), the CPU times in seconds (CPU) and the

final gain in percentage (Gain %) when the adjustment

option is permitted. Solutions in this table indicate that, in

all problem instances, the adjustment option proves to be

favourable, both in terms of the total distance (7 %) and the

number of vehicles used (10 %). Another interesting thing

we have found is that the tabu search converges much

faster for the MCVRPTW than for the MCVRPTW-AD.

This may be explained by the fact that, in the MCVRPTW-

AD, we have the possibility of moving customers among

the routes without violating any capacity constraint. Con-

versely, when excluding the adjustment option, the set of

feasible solutions for the MCVRPTW becomes very

restricted, resulting in a rapid search.

We then tried to solve the formulation (1)–(14) directly

within CPLEX 12.6. CPLEX failed to solve any of the

MCVRPTW instances to optimality and produced an out of

Table 2 Parameters used in

tabu search algorithm
Parameter Value

a 1

b 1

q 0.3

/ ¼ /LT 15

hinit 10

hmin 5

hmax 15

cmax 700

mmax 2500

gmax 100

gmax 5

kip 0.04

p 0.25
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memory error after about 16,000s of computation time.

Because of this, we compared the solutions obtained for the

small-sized instances by our algorithm to those obtained by

CPLEX 12.6. We conducted a set of experiments by ran-

domly selecting 15 customers from each MCVRPTW

instance. These instances are denoted as in the following

example. C101-15 corresponds to the instance of class

‘‘C1’’ where only 15 customers are considered. In our

solution, each of the generated instances is resolved in the

same way, as for the instances with 100 customers con-

sidered above. For CPLEX, a maximum CPU of 7200s is

imposed on the solution time. Table 4 shows the solutions

obtained by our algorithm and the optimal solutions

obtained by CPLEX. For completeness, the final optimality

gap in percentage (Gapf (%)) is also provided.

Results in this table indicate that our algorithm provides

the optimal solutions to C102-15, R101-15 and RC102-15

instances with a substantially lower computation time.

Furthermore, CPLEX cannot provide a feasible solution

(within the time limit) to six problem instances (C104-15,

R103-15, R104-15, R107-15, R108-15 and RC107-15).

These results confirm that the solutions obtained by our

algorithm are better than those obtained by CPLEX.

Moreover, the average computation time required by our

solution procedure to solve these instances is much less

than that required by CPLEX.

5.3.2 Results for the VRPTW instances

For a more meaningful comparison of results, we inter-

preted the classical VRPTW instances as MCVRPTW

instances with one product and one compartment. To this

end, we compared our results with nine other meta-

heuristic approaches proposed by Taillard et al. [29]

(TBGGP), Chiang and Russell [9] (CR), Gambardella et al.

[18] (GTA), Tan et al. [30, 31] (TLO), Cordeau et al. [10]

(CLM), Braysy and Gendreau [5] (BG), Lau et al. [20]

(LST), Tan et al. [32] (TCL) and Vidal et al. [37] (VCGP).

The comparison of the results of each approach is shown in

Table 5. The first row gives the name of the authors of the

study. Rows C1, C2, R1, R2, RC1 and RC2 present the

average number of vehicles (NV) and average total dis-

tance (TD) with respect to the six groups of problem

instances, respectively. The performance of our algorithm

Table 3 Best solutions on the

MCVRPTW instances
Data MCVRPTW MCVRPTW-AD Gain (%)

NV TD CPU (s) NV TD CPU (s) NV TD

C1 13 1131.39 432 12 1030.74 541 9 10

C2 7 1056.80 359 6 986.31 491 13 7

R1 17 1496.71 543 16 1422.73 731 7 5

R2 6 1163.03 459 5 1102.62 601 11 5

RC1 16 1728.05 364 15 1588.31 541 9 9

RC2 7 1356.80 295 7 1302.41 441 9 4

Avg. 11 1322.67 825 10 1240.97 1069 10 7

Table 4 Comparison between our solutions and optimal solutions

obtained by CPLEX

Data Our solutions CPLEX solutions Gapf ð%Þ

NV TD CPU NV TD CPU

C101-15 3 222.61 13 3 220.92 7200 70.34

C102-15 2 207.84 24 2 207.84 2593

C103-15 3 227.68 32 3 233.68 7200 84.04

C104-15 3 220.62 48 NO SOL

C105-15 3 229.88 15 3 229.88 7200 51.32

C106-15 3 239.02 19 3 239.02 7200 45.35

C107-15 2 198.08 23 2 194.95 7200 86.79

C108-15 3 270.96 22 3 273.78 7200 84.16

C109-15 3 233.44 31 3 243.21 7200 87.33

R101-15 4 359.66 39 4 359.66 6025

R102-15 4 338.06 47 4 353.11 7200 78.12

R103-15 3 278.88 90 NO SOL

R104-15 3 280.54 43 NO SOL

R105-15 3 298.92 32 4 295.77 7200 72.86

R106-15 3 305.41 37 3 322.19 7200 78.37

R107-15 3 297.50 57 NO SOL

R108-15 3 284.22 45 NO SOL

R109-15 3 299.71 36 4 318.44 7200 69.95

R110-15 3 271.52 41 3 311.28 7200 88.15

R111-15 3 300.46 42 4 329.57 7200 75.43

R112-15 3 270.25 42 3 428.92 7200 82.03

RC101-15 4 370.26 26 4 370.26 7200 80.10

RC102-15 3 367.34 26 3 367.34 791

RC103-15 3 319.78 34 3 324.55 7200 89.76

RC104-15 3 326.87 53 3 398.20 7200 79.92

RC105-15 3 393.84 41 3 400.41 7200 88.17

RC106-15 3 319.56 33 3 320.80 7200 90.12

RC107-15 3 339.49 26 NO SOL

RC108-15 3 322.23 38 3 323.92 7200 89.77

Avg. 3 289 36 3 307 6670 78.60

Bold indicates optimal solutions
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appears satisfactory, considering that all approaches in the

literature were tailored for the VRPTW, most of them

actually aiming first to reduce the travelled distance.

5.3.3 Results for the real-life instances

To further prove the feasibility and effectiveness of the

presented algorithm under real situations, we collected and

investigated the real data of the NAFTAL petroleum com-

pany. This company is responsible for delivering various

kinds of fuel (gasoline, premium gasoline, aviation gasoline,

kerosene and diesel fuel) from 70 depots, serving more than

3500 petrol stations and using around 1500 tank trucks. In

this experiment, we used instances that we obtained from the

regional depot of petroleumproducts, Caroubier depot, in the

city of Algiers in Algeria. For this depot, the company pro-

vided us with daily data for a period of 15 days.

The data consist of the cities where the customers are

located and the associated distance matrix, the order

quantities with their time windows and tank truck related

information, such as the number of tanks and their capac-

ities. The fleet dedicated to the replenishment of petrol

stations consists of 20 tank trucks, five of which are owned

by private companies. The travel time in minutes between

each pair of petrol stations is calculated by multiplying the

travel distance in kilometres by a definite constant 1.200

based on the average travel speed, 50 km per hour or 0.833

km per minute. The travel cost between each pair of petrol

stations is calculated by multiplying the travel distance by

a definite constant 0.685 given by the company. As men-

tioned earlier, the private trucks are hired with a penalty

cost. This cost is calculated by multiplying the travel dis-

tance between each pair of petrol stations by a definite

constant f2 ¼ 0:497 based on the average rental price of

private vehicles. In Table 6, the instances are denoted by a

name that allows one to identify their customers per day. In

particular, the names have the form D� n where D is the

working day and n is the number of customers. For

example the instance ‘‘1–41’’ denotes the 41 customers to

be delivered to on the first working day.

In the first place, we tried to solve these 15 instances

using CPLEX 12.6. Unfortunately, it failed to find the

optimal solution for most of these trials and sometimes

produced an out of memory error. Because of this, we

completed our assessment by comparing our solutions with

those provided by the company. For CPLEX, a maximum

of a 7200s CPU is imposed on the solution time, and the

final optimality gap in percentage (Gapf (%)) is provided.

Table 6 shows the solutions obtained by our algorithm,

the optimal solutions obtained by CPLEX and the solutions

extracted from the company plans over a testing period of

15 days. In this table, we report the number of vehicles

used for the service (NV), the total distance (TD), the cost

(u), the CPU times in seconds (CPU), and the final opti-

mality gap in percentage (Gapf (%)) when CPLEX 12.6 is

used. Results in this table indicate that our algorithm pro-

vides the optimal solutions to instances 3–25, 6–32 and

8–27 with a substantially lower computation time. Fur-

thermore, CPLEX cannot provide a feasible solution

(within the time limit of 7200 seconds) to seven instances

(4–62, 5–83, 7–89, 10–79, 12–71, 14–61 and 15–83).

As a comparison with the solutions extracted by the com-

pany, we may conclude that our algorithm has a better per-

formance on every measure. The main reason that the

company system does not calculate the CPU times is because

it develops the daily delivery plansmanually usingMSExcel.

5.4 Sensitivity analysis of the adjustment option

on a real case

We have noted earlier that threshold parameter kip is an

important and integral component affecting the

Table 5 Comparison among different heuristics

Data set TBGGP CR GTA TLO CLM

[29] [9] [18] [30, 31] [10]

C1 NV 10 10 10 10 10

TD 828.45 828.38 828.38 828.74 828.38

C2 NV 3 3 3 3 3

TD 590.30 591.42 589.86 590.69 589.86

R1 NV 12.25 12.17 12 12.92 12.08

TD 1216.70 1204.19 1217.73 1187.35 1210.14

R2 NV 3 2.73 2.73 3.51 2.73

TD 995.38 986.32 967.75 960.83 969.58

RC1 NV 11.88 11.88 11.63 12.74 11.50

TD 1367.51 1397.44 1382.42 1355.37 1389.78

RC2 NV 3.38 3.25 3.25 4.25 3.25

TD 1165.62 1229.54 1129.19 1068.26 1134.51

BG LST TCL VCGP Our solution

[5] [20] [32] [37]

C1 NV 10 10 10 10 10

TD 828.38 832.13 828.38 828.38 828.38

C2 NV 3 3 3 3 3

TD 589.86 589.86 589.86 589.86 589.86

R1 NV 11.92 12.16 12 11.92 12.08

TD 1222.12 1211.55 1217.73 1210.69 1197.97

R2 NV 2.73 3 2.73 2.73 2.73

TD 975.12 1001.12 967.75 951.51 952.17

RC1 NV 11.50 12.25 11.63 11.50 11.50

TD 1389.58 1418.77 1382.42 1384.17 1355.97

RC2 NV 3.25 3.37 3.25 3.25 3.25

TD 1128.38 1170.93 1129.19 1119.24 1116.38
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Table 6 Daily results using the

real data of Caroubier depot
Day Method NV DT Cost ð�102Þ CPU (s) Gapf ð%Þ

1–41 Cplex 4 536 47,570 7200 82.17

Company 6 610 56,390 /

Our solution 4 527 47,292 315.43

2–46 Cplex 6 881 121,766 7200 86.24

Company 8 991 151,494 /

Our solution 6 881 121,766 243.12

3–25 Cplex 3 379 23,694 6578

Company 4 443 36,512 /

Our solution 3 379 23,694 317.82

4–62 Cplex NO SOL

Company 9 1014 107,938 /

Our solution 7 918 90,747 403.82

5–83 Cplex NO SOL

Company 11 1475 11,382

Our solution 9 1323 101,745 515.39

6–32 Cplex 3 488 29,178 4915

Company 4 510 40,129 /

Our solution 3 488 29,178 182.25

7–89 Cplex NO SOL

Company 15 1577 151,436 /

Our solution 12 1479 129,305 398.76

8–27 Cplex 3 283 25,886 3755

Company 5 356 31,500 /

Our solution 3 283 25,886 143.29

9–40 Cplex 6 853 55,350 7200 79.12

Company 8 1030 77,892 /

Our solution 6 841 52,773 204.74

10–79 Cplex NO SOL

Company 11 1692 213,915 /

Our solution 9 1537 174,676 479.38

11–28 Cplex 6 911 79,000 7200 89.12

Company 7 1112 91,503 /

Our solution 6 913 79,023 207.19

12–71 Cplex NO SOL

Company 9 1233 147,419 /

Our solution 8 1129 130,771 210.16

13–33 Cplex 7 1014 95,310 7200 69.23

Company 9 1084 99,459 /

Our solution 7 1003 95,163 309.80

14–61 Cplex NO SOL

Company 10 1305 90,417 /

Our solution 8 1091 71,460 92.01

15–83 Cplex NO SOL

Company 13 1567 128,979 /

Our solution 10 1387 110,388 429.52

Bold indicates optimal solutions
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performance of the adjustment option in the MCVRPTW.

To observe its role in the solution’s quality, we perform a

sensitivity analysis by solving the problem on the daily

data for varying values of kip between 0 and 10 %. Note

that we did not perform the algorithm to better observe the

effect of kip values. With these values, we implemented the

plan of the seventh day only and resolved the problem

when excluding and including the adjustment option. In

Table 7, we report the daily results obtained and we show

the effect of threshold parameter kip on (a) the total cost

figures, (b) the quantities delivered and (c) the vehicles

used. The results show that the solution quality is very

sensitive to the threshold parameter. This is indeed an

expected result since the adjustment option attempts to

assign the demands taking more account of the capacity

constraints. From this table, the following three points can

be observed. (1) All the total costs decrease when customer

quantities are adjusted, and this decrease is inversely pro-

portional to the increase of the adjustment rate. (2) The

total delivered quantity and the vehicles used decrease

when kip values become increasingly large. (3) Overall, the

solution quality varies in different ratios, indicating that the

solution quality is very sensitive to travelled distance,

quantities delivered and even to the type of vehicle used.

6 Conclusion

The specific problem we tackled in this paper, called the

multi-compartment vehicle routing problem with time

windows (MCVRPTW), originated from a real-life appli-

cation concerning the distribution of fuel. In this problem,

we focused on the daily replenishment-planning problem

that the biggest Algerian petroleum company is facing. In

particular, the vehicles have multiple compartments and

customers require to be served during a given time

window. Because of the loading aspect, an additional

question arises concerning the assignment of product types

to vehicles.

The main contributions of this paper include (1) a

description and formulation of the problem inspired by a

real-life application, and (2) the development of an effec-

tive heuristic solution procedure, which combines the

loading and the routing problems. This is an advance over

existing work, in which most researchers take a two-stage

framework where the routing problem acts as the main

problem and iteratively calls for specific procedures to deal

with the loading sub-problem. (3) The introduction of a

Kolmogorov–Smirnov statistic in order to explore the

solutions space is used, unlike most of the relevant

approaches, which tend to use the classical moves. (4) The

conduct of a series of numerical experiments on benchmark

instances and an analysis of a real case in fuel distribution

to demonstrate the effectiveness of the proposed approach

are adopted.

Concerning the experiments on benchmark instances,

Solomon’s 56 VRPTW 100-customer instances have been

modified in a way that reflects real-life situations. For this

purpose, a comparison is made between the real

MCVRPTW and what we call the MCVRPTW-AD

(MCVRPTW with adjustment) in which the quantities

loaded in the compartments can be adjusted up to a given

threshold. This particular problem occurs quite frequently

when the demands of petrol stations are high in winter.

Under this scenario, we conducted experiments on how the

algorithm performs when excluding and including the

adjustment option. We demonstrated how the number of

vehicles and the total distance can be reduced when the

adjustment option is allowed and how this reduction

depends on the fixed threshold.

Our solutions are also compared to CPLEX and to the

heuristics reported in the literature. The obtained results

Table 7 Impact of the

adjustment option on the daily

costs

kip Total Quantity ðm3Þ NV

(%) Cost ð�102Þ Requested Delivered Gap (%) Company Private Total

0 129,305 975 975 0.00 9 3 12

1 129,191 975 972.25 �0:28 9 3 12

2 128,609 975 969.75 �0:54 9 2 11

3 128,005 975 962.5 �1:28 9 2 11

4 127,319 975 955 �2:05 8 2 10

5 126,903 975 951.25 �2:44 8 2 10

6 126,180 975 944.75 �3:10 8 2 10

7 125,813 975 939.25 �3:67 8 2 10

8 124,298 975 918 �5:85 8 1 9

9 123,677 975 898.25 �7:87 8 1 9

10 121,963 975 890.5 �8:67 8 0 8
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show that our approach is competitive for the VRPTW and

highly effective for the MCVRPTW instances. As for the

realistic instances, we solved a real case where petrol sta-

tions need to be replenished over a planning horizon of 15

days. The comparative analysis shows that our results are

better than those produced by the dispatcher on every

measure in terms of total travel distance and number of

vehicles.

As for prospects, we envision producing more efficient

solutions by adapting known metaheuristics, such as Par-

ticle Swarm Optimization (PSO), a Genetic Algorithm

(GA) or Simulated Annealing (SA), to the problem and by

adjusting the parameters of the algorithm because, often, in

a metaheuristic, the selection of good parameter values

significantly affects the quality of solutions. A hybridiza-

tion of clever heuristics with complex search methods and

an examination of penalty functions are also on the agenda.
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