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Abstract
Earth observation data have revolutionized Earth science and significantly enhanced the ability to forecast weather, climate and
natural hazards. The storage format of the majority of Earth observation data can be classified into swath, grid or point structures.
Earth science studies frequently involve resampling between swath, grid and point data when combining measurements from
multiple instruments, which can provide more insights into geophysical processes than using any single instrument alone. As the
amount of Earth observation data increases each day, the demand for a high computational efficient tool to resample and fuse
Earth observation data has never been greater. We present a software tool, called pytaf, that resamples Earth observation data
stored in swath, grid or point structures using a novel block indexing algorithm. This tool is specially designed to process large
scale datasets. The core functions of pytaf were implemented in C with OpenMP to enable parallel computations in a shared
memory environment. A user-friendly python interface was also built. The tool has been extensively tested on supercomputers
and successfully used to resample the data from five instruments on the EOS-Terra platform at a mission-wide scale.
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Introduction

Earth observation data collected from thousands of satellites
in space and numerous aircrafts have revolutionized Earth’s
studies and significantly enhance the ability to forecast weath-
er, climate and natural hazards. The products from Earth ob-
servation data contain measurements or derived properties of
the surface and atmosphere for geographic positions or areas
on the earth, which are generally described in a reference
geographic coordinate system. A common choice of horizon-
tal coordinates for Earth observation data is latitude and lon-
gitude conventionally defined in the World Geodetic System
(WGS-84). Latitude and longitude may or may not be explic-
itly provided in Earth data products depending on their storage
format, the majority of which belongs to one the three

categories: swath, grid, and point, whose definitions are pro-
vided at https://newsroom.gsfc.nasa.gov/sdptoolkit/docs/
HDF-EOS_UG.pdf. In brief, swath data are stored in a
format resembling the standard scanning dimensions (i.e.,
along or across the ground track for satellites). Most satellite
Level 1 and Level 2 products are swath data with
measurements or derived properties stored for each
instantaneous field-of-view (pixel) for each sensor. Latitude
and longitude are provided for all or some of the pixels in
swath data products. For example, most Level 1 and Level 2
produc t s fo r the Modera te Resolu t ion Imaging
Spectroradiometer (MODIS) on the EOS Terra platform are
swath data [See https://earthdata.nasa.gov/collaborate/open-
data-services-and-software/data-information-policy/data-
levels for the definition of data level]. Latitude and longitude
are provided for 1 km resolution MODIS pixels as a standard
product, but not for 250 m and 500 m pixels. Grid data are
similar to swath data in the storage format, but grid data are
stored at “regular” grids on certain spatial reference systems
(SRS). Latitude and longitude do not need to be provided for
grid data, because the grid already contains location
information and latitude and longitude, if necessary, can be
derived or calculated from the grid information and the SRS.
For example, all of Level 1 and Level 2 products for theMulti-
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angle Imaging Spectro Radiometer (MISR) instrument also on
Terra are on the Space Oblique Mercator (SOM) grid. To the
best of our knowledge, all of the NASA Level 3 products are
also grid data, since they are generated by aggregating Level-2
products into regularly spaced grid at a much course resolu-
tion (i.e., 0.5° latitude by 0.5° longitude) than Level 2 prod-
ucts. Point data are a series of data records taken at irregular
time intervals and at scattered geographic locations. Latitude
and longitude for individual points are normally provided for
point data. Many aircraft data and some satellite products (e.g.
, the Level 2 footprint products for the Clouds and the Earth’s
Radiant Energy System (CERES)) are point data.

Earth science studies frequently involve resampling between
swath, grid and point data when combing measurements from
multiple instruments, which can provide more insights into geo-
physical processes than using any single instrument alone (e.g.,
Diner et al. 2004, Harshvardhan et al. 2009, Liang and Sun
2015). In this paper, our examples focus on resampling swath
data since many satellite products are stored in swath and the
computational cost of resampling between swath data is high.

An illustration of resampling between two swath data is given
in Fig. 1, where squares surrounded by dotted and solid lines
represent pixels of source and target swathes, respectively. The
size of a square represents the resolution of a pixel. The centers of
pixels are circled and their latitudes and longitudes are known.
Resampling data from a source swath to a target swath is essen-
tially to derive the values of the pixels in the target swath using
the values of the pixels in the source swath. Resampling can be
performed using nearest-neighbor (here after, NN), bilinear, or
biquadratic interpolation algorithms, the choice of which relies
on data type, application, and computational efficiency. Among
these algorithms, NN is the fastest and simplest approach and it is
applicable to swath, grid and point data. For each pixel in a target
swath, the NN approach finds the NN pixel in the source swath
that has the shortest spatial distance to it and assign the value of

the NN pixel in the source swath to it. If the NN search is
repeated for all of the pixels in a target swath, which is normally
referred to as brute-force search or exhaustive search, the total
number of operations will be the product of the total number of
the pixels in the source swath and the total number of the pixels
in the target swath. The time complexity of the brute-force
searching algorithm is O(MN). For example, one Terra orbit
(~98 min) has 188,467,200 MISR pixels at 275 m resolution
and ~86,196,700MODIS pixels at 250 m resolution, and resam-
pling between MISR and MODIS using brute-force searching
for one orbit would require 7.6 × 1016 operations. The computa-
tional cost dramatically increases with the size of datasets with
the brute-force approach. A highly efficient algorithm is always
in a great demand especially as the amount of Earth observation
data increases each day.

In this paper, we present a software tool, called pytaf, which is
built in C with a python interface to resample between swath,
grid and point data using the NN approach. The tool was origi-
nally designed to resample data between all of the five instru-
ments on EOS-Terra at a mission-wide scale with a total size of
1.3 Petabytes. The tool uses a novel block indexing algorithm to
locate NN pixels. This searching algorithm significantly reduce
the number of calculations of spatial distances. This algorithm is
described in detail in section 2; Design and implementation are
presented in section 3. Case studies are shown in section 4. The
discussion and conclusion are given in section 5. Availability and
requirements are provided in section 6.

Block Indexing Algorithm Description

The block indexing algorithm was designed to refine and re-
duce the searching area for NN pixels. It would be physically
meaningless to assign the value of the NN source pixel to a
target pixel if the spatial distance between them is well beyond
the spatial resolution of the target pixel. In other words, the
NN searching in our context is bounded within a certain dis-
tance, Rmax, for each pixel in the target swath/grid/point. The
block indexing algorithm can effectively locate all of source
pixels that are within Rmax to each target pixel.

We divide the entire Earth surface into spatial blocks with an
equal area of Rmax by Rmax in meters and create an integer index
for each block. The latitude and longitude boundaries for each
block are calculated in two steps. In the first step, the earth’s
surface is split into horizontal strips from the north to south poles
solely based on latitude. Each strip has a height of Rmax, corre-
sponding to a latitude range of 180� Rmax

Rearth
� π in degree, where

Rearth = 6,371.009 km (the Earth’s authalic (“equal area”) radius).
In the second step, each strip is split into blocks fromwest to east
with a width ofRmax. The longitude range for each block for each
strip is 180� Rmax

maxð cos latupper ;cos latlowerð Þð Þ�Rearth
� π in degree, where

latupper and latlower are the latitudes of the upper and the lower
Fig. 1 An illustration of resampling source swath data to target source
swath data, represented by dotted and solid lines, respectively
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boundary of the strip. The number of blocks per strip decreases
from the equator to the poles, where the strips closest to the
poles have only one block each. An illustration of blocks is
shown in Fig. 2.

These blocks are indexed with integer numbers and each
source pixel is assigned an indexed number of the block it falls
into by comparing its latitude and longitude with the latitude and
longitude range of each block. Source pixels having the same
index number belong to the same block.We can then identify the
corresponding block that a target pixel falls into as well by com-
paring its latitude and longitude information with the latitude and
longitude ranges of each block. The block that a target pixel falls
into and its connected nearest neighboring blocks become the
search area for theNN source pixels, and its NNwithin a distance
ofRmaxmust be in one of these blocks. As illustrated in Fig. 2, the
red dot represents the location of a target pixel, and the nine
original blocks defines the search area for the NN pixel. The
maximum number of the candidate blocks that will be searched
for NN source pixels is 9.

If no source pixels for a target pixel are found in the can-
didate blocks, a filled value of −999 will be assigned to the
target pixel. Otherwise, the spherical great-circle distances
between all of source pixels in the candidate blocks and a
target pixel are calculated and the NN source pixel is identified
as the one with the smallest distance. The great-circle distance
is calculated using Eq. (1).

Dis si; t j
� � ¼ Rearth*arccos

�
sin latsið Þsin latt j þ cos latsið Þcos t j

� �
cos lonsi−lont j

� �� �
ð1Þ

where Rearth is the radius of the Earth, si and tj represent the ith
source pixel and jth target pixel, respectively, and lat and lon

represent the latitude and longitude values in degree,
respectively.

Note that if Rmax is less than the spatial resolution of a source
pixel for swath data, there should atmost one source pixel in each
of the candidate blocks. Hence, searching the NN source pixel
for each target pixel only requires at most 9 spherical distance
calculations. In this case, the time complexity of this algorithm is
O(N), which ismuch smaller than the brute-force algorithmwhen
N is much large than 9. In eq. (1), Rearth= 6,371.009 km with an
assumption that the Earth is a sphere.

The tool, pytaf, will assign a value to the target pixel in two
different ways depending on the difference in spatial resolu-
tion between target and source pixels. If a target pixel has a
similar or much higher resolution than its NN source pixel,
then its value will be equal to the value that the NN source
pixel carries. For a scenario where the resolution of source
pixels is much higher than that of target pixels, we reverse
the NN searching between target and source datasets first.
Instead of searching the NN source pixel for each target pixel,
the NN target pixel is searched for each source pixel using the
same block indexing searching algorithm. Then all of the
source pixels that have the target pixel as the NN one will be
aggregated and their mean value will be assigned to the target
pixel. Besides their mean value, the standard deviation as well
as the number of these source pixels is also reported for each
target pixel. A good example for this scenario is given in Zhao
and Di Girolamo (2006), where the ASTER 15 m data were
resampled to the MISR grid at 1.1 km resolution.

Design and implementation

The core NN searching functions of the pytaf tool were im-
plemented in C. OpenMP was also used to enable parallel

Fig. 2 An illustration of block indexing
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computations in a shared memory environment. Two python
functions, resample_n and resample_s, were built to interface
python to the C functions using Cython (Behnel et al. 2011).
The code makes a large use of the Numpy library (Walt et al.
2011). The function of resample_n is used to resample data
when target pixels have a similar or much higher resolution
than their NN source pixels, while resample_s is used to re-
sample data when source pixels are at a higher resolution than
target pixels as the two scenarios discussed in the last para-
graph in Section 2. Both functions of resample_n and
resample_s have the same six input arguments as follows: 1)
latitudes of all source pixels; 2) longitudes of all source pixels;
3) latitudes of all target pixels; 4) longitudes of all target
pixels; 5) data values of all source pixels; 6) the maximum
search radius, Rmax. For resample_n, Rmax is normally chosen
as the source pixel resolution, while Rmax can be chosen as the
target pixel resolution for resample_s.

The output of resample_n is a data array that contains
resampled values at target swath/grid/point. The output data
array has the same layout as the input latitude and longitude
data arrays for target pixels do in memory. Besides this data
array, resample_s has two additional output arrays. One re-
ports the count of source pixels that contribute to each target
pixel. The other reports the standard deviation of the values of
these source pixels as discussed in the last paragraph of
Section 2. The function of resample_s only counts source
pixels with valid values great than zero for aggregation. For
the function of resample_s, any pixel having a data value
equal to or less than zero is not resampled.When noNNpixels
are found or all of the NN pixels carry invalid values for a
target pixel, a filled value of −999 will be assigned to the target
pixel.

Application

Figure 3 shows an example of the use of resample_n to resam-
ple theMISRAN blue band radiance data at 1.1 km resolution
to the MODIS swath at 1.0 km resolution for the daylight side
of a Terra orbit, which consists of 17 MODIS 5-min granules
and one MISR granule. As shown in Fig. 3, the cloud features
and patterns in the resampled MISR scene match the ones in
the original MODIS scene perfectly. The total numbers of
source (MISR) and target (MODIS) pixels are 46,726,540
and 8,257,536 respectively. The runtime for this case is 40 s
using 32 threads, the maximum number of threads available
on a single node, of the Blue Waters supercomputer at the
National Center for Supercomputer Applications (NCSA)
with OpenMP enabled.

To evaluate the efficiency of using pytaf to resample data
with distinct spatial resolutions, Fig. 4 shows an example of
resampling the MISR AN red band radiance data at 275 m
resolution to the CERES near-nadir pixels (viewing zenith

angle <20°) at 20 km resolution, which were part of a Terra
orbit (orbit number 53557). The total numbers of source and
targets pixels are 188,743,680 and 5000 respectively. By com-
paring the resample_s method to a brute-force method making
use of the MISR-Toolkit (Zhan et al. 2018, Remote Sensing),
we found that resample_s method provided robust results with
much less runtime. By evenly separating the total 5000 target
pixels into 3 subgroups, the total runtime of pytaf collocation
is 23 s using 8 threads on a single node (Intel Xeon E5-
2660v3) of the Keeling cluster at the School of Earth,
Society, and Environment (SESE) at the University of
Illinois while MISR-Toolkit-collocation took 5000 s to com-
plete on the same machine. Among the total 4388 valid col-
located MISR-CERES pixels, more than 90% samples (n =
3942) are identical between the two methods. The rest sam-
ples (n = 446) were found only to have 1~2 MISR pixel(s)
different and resulted in a mean absolute difference of 0.009
Wm−2sr−1μm−1, which was equivalent to a mean relative dif-
ference of 0.009% of the MisrToolkit-collocation results. The
1~2 MISR pixel(s) difference is likely caused by difference in
the spatial distance formula the two different methods use.
The MISR-Toolkit uses the cartesian distance in calculating
spatial distances, which is less accurate and less computation-
ally expensive than the great circle formula that pytaf uses.

Discussion and conclusion

We present a software tool, called pytaf. This tool resamples
swath, grid or point Earth observation data into another
swath, grid or point storage structure using nearest-
neighbor search. The tool was specially designed to process
large datasets such as mission-wide satellite products. In
fact, it was initially developed to fuse the Terra datasets
for the entire mission with a total size of 1.3 Petabyte as
part of a NASA ACCESS funded program, named
“ACCESS to Terra Data Fusion Product”, whose description
is avaible at https://earthdata.nasa.gov/esds/competitive-
programs/access/terra-data-fusion-products.

The tool has been extensively tested on the Blue Waters
supercomputers. It has been used to project the MODIS level
1 radiance swath data onto the MISR grid, to resample
ASTER radiance data into the MISR grid and MODIS swath,
and resample MISR and MODIS radiance data into the
CERES footprints at a large scale.

Although only nearest neighbor search is implemented in
pytaf, it uses a novel and fast search algorithm, called block
indexing. Bilinear and other weighting methods may yield
more accurate results than nearest neighboring algorithm,
but their computational cost is also much higher.
Therefore, we did not implemented them in this tool.
However, the open source nature and structure of this tool
makes it easy for any developers/users to implement these
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features. The search algorithm was implemented in C with
OpenMP for parallel computation with a user-friendly py-
thon interface. The search algorithm is computational

efficient but it consumes more memory than conventional
approach, because the block indices computed for each
source and target pixels need to be stored in memory.
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Fig. 3 (a)The image of the MISR
AN blue band radiance fields
resampled on the MODIS grids
for Orbit 71,826 taken on June 19,
2013, along with (b) the image of
corresponding MODIS radiance
fields for band 3. A subset region
of the MISR image (a) and that of
the MODIS image (b) are en-
larged and displayed in (c) and
(d), respectively

Fig. 4 Comparison of MISR-CERES collocation between a benchmark
search approach (MISR-Toolkit) and pytaf. (a) MISR 275-m red band
samples were collected and averaged over 5000 CERES FOVs using

MISR-Toolkit. (b) same as (a) but using pytaf. (c) A direct comparison
of the calculated mean red band radiances between these two approaches.
(d) same as (c) but for the number of valid MISR samples
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Great-circle distance instead of cartesian distance on the
Earth are calculated in search of NN pixels for a high accura-
cy. The Earth is assumed to be a sphere rather than spheroid
when calculating great-circle distance, which may lead to non-
negligible round errors when the spatial resolution of the
source dataset is at a scale of a few meters or below. The tool
provides two resamples python functions: one resamples data
where source pixels have a similar or lower spatial resolution
than target pixels and the other resamples data where source
pixels have much higher spatial resolution than target pixels.

The tool of pytaf assumes that the variation of the shapes of
source and target pixels across the entire datasets is negligible.
Pytaf uses a user-defined constant maximum searching radius
for NN searching. We assume that the values that source
pixels carry are uniformly distributed within them. In other
words, subpixel variabilities are not considered during the
resampling process.

Availability and requirements

The pytaf tool is available for download at Github (https://
github.com/TerraFusion/), along with the user guide,
installation instructions, and the other tools for processing
the Terra radiance data and fusion data. The tool was
developed and tested with python 3.6.6 using Anaconda and
pip onMicrosoft windows 10, MacOSMojave 10.14.5, Linux
CentOS 7.2, and on NCSA Bluewaters, the cray XE/XK hy-
brid supercomputer. Unit test is automated by Travis-CI on
GitHub. A simple example python script is also provided to
help users with the usage of these two functions at the Github
repository along with a user guide.
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