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Abstract The archaeal protein L7Ae forms part of a

protein complex in the ribosome that specifically recog-

nizes and binds to kink-turn RNA. In this complex, L7Ae

directly interacts with the oligonucleotide and creates a

functional arrangement for site-specific 20-O-methylation.

We report the solution NMR backbone assignment of

Methanocaldococcus jannaschii L7Ae (117 residues,

12.7 kDa) in the ligand-free state and when bound to a 25

nucleotide C/D box kink-turn mimic RNA.

Keywords NMR � Assignment � L7Ae � Kink-turn �
Ribosomal protein

Biological context

The archaeal ribosomal protein L7Ae of Methanocaldo-

coccus jannaschii belongs to a family of proteins that

recognize and bind kink-turn motifs in ribosomal and box

C/D as well as box H/ACA RNAs. In the crystal structure

of L7Ae bound to a kink-turn derived from an archaeal box

H/ACA sRNA the protein folds into a compact globular

domain comprising a four-stranded central b-sheet that is

surrounded by a total of five a-helices and a short 310-helix

(Suryadi et al. 2005). L7Ae interacts with RNA by docking

into its major groove, which stabilizes the kink-turn con-

formation of the oligonucleotide and creates the functional

three-dimensional arrangement that is required for site-

specific 20-O-methylation by fibrillarin (Huang and Lilley

2013). Crystallographic analysis of ligand-free L7Ae from

M. jannaschii showed that only minimal conformational

differences between ligand-free and RNA-bound L7Ae

exist (Hamma and Ferré-D’Amaré 2004).

Here we report the solution NMR backbone and partial

side chain assignment of the M. jannaschii protein L7Ae

(117 residues, 12.7 kDa) in the ligand-free state and when

bound to a 25 nucleotide C/D box kink-turn mimic RNA.

Our assignments lay the foundation for NMR studies of

protein dynamics and binding interactions between L7Ae

and RNA.

Methods and experiments

Protein expression and purification

A pET-28a vector encoding N-terminal His6-tagged L7Ae

protein carrying kanamycin resistance was kindly provided

by Keith Gagnon (University of Texas, Southwestern

Medical Center, Dallas, TX). Expression of 15N/13C

labeled samples was carried out in M9 minimal medium

(containing 25 lg/ml kanamycin) with 15NH4Cl and 13C6-

glucose as sole nitrogen and carbon sources, respectively,

using E. coli BL21 cells. Overexpression was induced with

0.5 mM IPTG. Because L7Ae is a nucleic acid binding

protein, after harvesting the cells by centrifugation at

4,000 rpm, 4 �C, the cell pellet was re-suspended in

denaturing buffer A (20 mM TrisHCl pH 7.5, 250 mM

NaCl, 10 mM imidazole, 6 M urea). The cells were lysed

by sonication and the lysate was passed through a 45 lm

filter before loading on a 5 ml HisTrap excel preloaded Ni-

column (GE Healthcare). The protein was eluted within a

20 ml gradient from 0 to 100 % buffer B (same as buffer A

but with 500 mM imidazole). Subsequently, the fractions
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containing L7Ae were loaded onto a size exclusion column

(320 ml Superdex 75 26/600, GE Healthcare) and eluted

with 50 mM potassium phosphate and 25 mM NaCl (KP

buffer). L7Ae was concentrated to 1 ml using Amicon

Ultra Centrifugal Filters with 3 kDa cutoff (Millipore) and

the His-tag was cleaved with thrombin (5 U, Merck Mil-

lipore) overnight at room temperature. The protein was

further purified by size exclusion chromatography (320 ml

Superdex 75 26/600 column, GE Healthcare) with KP

buffer. Fractions of pure L7Ae eluting at ca. 198 ml were

concentrated to a final protein concentration of approxi-

mately 1 mM using Amicon Ultra Centrifugal Filters with

3 kDa cutoff (Millipore). The buffer was exchanged to

10 mM sodium cacodylate, pH 6.5, 50 mM NaCl with

10 % D2O by repeated dilution/concentration.

RNA production and purification

RNA samples were prepared by solid phase synthesis with

standard 20-O-TOM protected building blocks (ChemG-

enes). The 25 nt sequence 50-GCUCUGACCGAAAGGCG

UGAUGAGC-30 was synthesized on an Applied Biosys-

tems (ABI) 391 PCR Mate using an in-house written syn-

thesis cycle. Custom primer support PS 200 (GE

Healthcare) was used with an average loading of 80 lmol/

g. Amidites (0.1 M) and activator (BTT, 0.3 M) solutions

were dried overnight using freshly activated molecular

sieves. The removal of protecting groups and cleavage

from solid support were conducted by treatment with

aqueous methylamine (40 %, 700 ll) and ammonia solu-

tion (33 % in water, 700 ll) at 40 �C for 90 min. After

evaporation of the alkaline solvents, 20-O-protecting groups

were removed by dissolving the crude RNA in 1 M TBAF

in THF (1.2 ml). After 14 h at 33 �C, the reaction was

quenched by adding the same volume 1 M TEAA buffer

(1.2 ml, pH 7.0, triethylammonium acetate). The volume of

the solution was reduced to approximately 1 ml and

applied to a 50 ml HiPrep 26/10 desalting column (GE

Healthcare). The crude RNA was eluted with water,

evaporated to dryness and re-dissolved in 1 ml of deion-

ized water. The quality of the crude sequence was checked

via anion exchange chromatography on a ThermoFisher

DNAPac PA-100 column (4 9 250 mm). Purification was

achieved by applying the crude RNA on a semipreparative

ThermoFisher DNAPac PA-100 column (9 9 250 mm).

The fractions containing the desired RNA were pooled,

diluted with 0.1 M TEABC (triethylammonium bicarbon-

ate) buffer and loaded onto a C18 SepPak cartridge

(Waters). The RNA was eluted with acetonitrile/water (1:1)

as the triethylammonium salt and lyophilized overnight.

NMR spectroscopy

NMR experiments were carried out on 600 MHz Bruker

Avance II? and 500 MHz Agilent DirectDrive spectrome-

ters at 25 �C. For backbone resonance assignment we used
1H-15N-HSQC, 1H-13C-HSQC, and HNCO, HN(CO)CA,

HNCA, HNCACB, CBCA(CO)NH and 15N-HSQC-TOCSY
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Fig. 1 1H-15N-HSQC spectrum

of ligand-free L7Ae (10 mM

sodium cacodylate, pH 6.5,

50 mM NaCl, 10 % D2O,

25 �C). Top left corner zoom of

center area of the spectrum. The

position of residue H64 (below

the intensity cutoff) is indicated

by an asterisk. Horizontal lines

represent NH2 side chain

resonances
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Fig. 2 1H-15N-HSQC spectrum

of L7Ae bound to the 25 nt

RNA C/D box kink-turn

(10 mM sodium cacodylate, pH

6.5, 50 mM NaCl, 10 % D2O,

25 �C). The position of residue

H60 is indicated by an asterisk
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Fig. 3 Difference of Ca and Cb secondary chemical shifts (DdCa -

DdCb) for ligand-free (top) and RNA-bound (middle) L7Ae (Tamiola

et al. 2010). Bottom cumulative change in L7Ae backbone HN, N, Ca,

Cb and C0 chemical shifts (Ddcum) upon RNA binding (Korzhnev

et al. 2012). The secondary structure of L7Ae, as defined by Suryadi

et al. (2005), is indicated
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(50 ms, 90 ms mixing time) triple resonance experiments.

Data were processed using NMRPipe (Delaglio et al. 1995)

and analyzed with CcpNmr (Vranken et al. 2005).

Assignment and data deposition

Backbone amide 1H-15N resonance assignment of ligand-

free L7Ae was achieved for 111 (of 113 non-proline) res-

idues, corresponding to 98 % completeness (Fig. 1). Ca,

Cb resonances were assigned for all residues (100 %) and

C0 assignments are 98 % complete. For RNA-bound L7Ae

backbone amide 1H-15N resonance assignment was

obtained for 111 (98 %) residues, while Ca, Cb and C0

assignments were obtained for 99 %, 91 % and 98 %,

respectively. The assigned 1H-15N-HSQC spectrum of the

complex formed by L7Ae and the 25 nt RNA ligand is

shown in Fig. 2. Complex formation is accompanied by a

significant increase of the resonance linewidths.

The NMR secondary chemical shifts (Tamiola et al.

2010) for ligand-free and RNA-bound L7Ae are consistent

with the crystal structures (Fig. 3). Using the L7Ae back-

bone HN, N, Ca, Cb and C0 chemical shifts, a TALOS?

prediction of the secondary structures of both forms of the

protein was performed (Shen et al. 2009). Overall, the

secondary structures that were identified by TALOS? are

in very good agreement with the crystal structures of L7Ae

(Fig. 4). Significant differences between the ligand-free

and RNA-bound protein are not evident from the NMR

chemical shift data, and only small cumulative changes in

backbone HN, N, Ca, Cb and C0 chemical shifts (Korzhnev

et al. 2012) upon RNA binding are found (Fig. 3).

The protein chemical shift assignments of ligand-free

and RNA-bound L7Ae and have been deposited at the

Biological Magnetic Resonance Data Bank (http:www.

bmrb.wisc.edu) with BMRB accession numbers 19907

(L7Ae) and 19908 (L7Ae-RNA complex).
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