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Abstract
In this work, we describe a double bordered construction of self-dual codes from group
rings. We show that this construction is effective for groups of order 2p where p is odd, over
the rings F2 + uF2 and F4 + uF4. We demonstrate the importance of this new construction
by finding many new binary self-dual codes of lengths 64, 68 and 80; the new codes and
their corresponding weight enumerators are listed in several tables.
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1 Introduction

Group rings and algebraic coding theory have been extensively studied as a result of their
numerous theoretical and practical applications in cryptography, error correction and lattices
to name a few. This strong connection between group rings and coding theory is frequently
endorsed in the successful search for extremal binary self-dual codes. This has been an area
of great research since the pure double-circulant construction was introduced in the 1960s
[3, 24].

As the theory surrounding extremal binary self-dual codes is established, one remaining
constraint is the size of the search field. A common technique in order to reduce the search
field is to use special construction methods and apply certain restrictions; this frequently
includes the use of group rings [23]. Fundamentally, Hurley [22] introduced a map from any
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group ring element, to a matrix, A, over the ring of coefficients. The matrix, A, has been
used in numerous construction methods to describe a linear code, [28]. This theory was well
established with the realization of the [48,24,12] extended QR code as a group ring code for
the dihedral group, [27]. Notably, in 1990 [1], the extended Golay codes were constructed
from ideals in group rings. A popular technique, which has resulted in countless self-dual
codes, has been to consider the generator matrix (In|A)whereA satisfiesAAT = −In, [18–
20, 29, 30]. Initially applied over the binary field, these constructions can be extended over
finite commutative rings. Recently, the theory surrounding group ring elements to construct
codes has progressed to any group [9]. This has led to stronger connections between certain
group ring elements called unitary units and self-dual codes [16].

The common double-circulant and four-circulant construction methods have been
adjusted and modified numerous times in order to reduce the search field, in the hope
of finding new extremal self-dual codes [8, 10, 17]. One particular modification of inter-
est is the bordered double-circulant construction [2]. This construction method has shown
considerable results, where the generator matrix is in the form:

A natural extension of this work is to consider the following generator matrix where the
identity matrix also has a border:

Here, A is a matrix generated from a group ring element. In this paper, we put restrictions
on the values of α and β in order to relax restrictions on the type of element chosen from
the group ring.

This paper is organised as follows: Section 2 discusses the preliminaries, including defi-
nitions and notation, essential to the understanding and interpretation of results in this paper.
In Section 3, we consider the new double bordered construction and look at the theory sur-
rounding its effectiveness. We specify conditions on the construction in order to maximise
its practicality and effectiveness. The following sections are allocated to the results, com-
puted using MAGMA [25], and proving the efficiency of the theory. The new extremal
binary self-dual codes are listed in numerous tables and summarised in the final section.
Notably, this research includes new self-dual codes of length 64, 68 and 80.
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2 Preliminaries

In this section, we will define extremal self-dual codes over Frobenius rings. We refer to
certain types of these rings, of characteristic 2, throughout this paper. Here, we define the
notation used in this paper in order to condense the results.

Frobenius rings can be characterised as follows. Denoting the character module of R by
̂R, for a finite ring R the following are equivalent:

• R is a Frobenius ring.
• As a left module, ̂R ∼= RR.
• As a right module, ̂R ∼= RR .

The first commutative ring that we consider is F2+uF2 := F2[X]/(X2), where u satisfies
u2 = 0. The elements of the ring may be written as 0, 1, u and 1 + u, where 1 and 1 + u

are the units of F2 + uF2. We also consider F4 + uF4; the commutative binary ring of size
16. F4 + uF4 can be viewed as an extension of F2 + uF2. Therefore, we can express any
element of F4 + uF4 in the form ωa + (1 + ω)b, where a, b ∈ F2 + uF2. These rings
are generalised in [13] and [14]. In the upcoming results, we use the hexadecimal number
system in order to represent the elements of F4+uF4. This is achieved by use of the ordered
basis {uω,ω, u, 1}.

0 ↔ 0000, 1 ↔ 0001, 2 ↔ 0010, 3 ↔ 0011,

4 ↔ 0100, 5 ↔ 0101, 6 ↔ 0110, 7 ↔ 0111,

8 ↔ 1000, 9 ↔ 1001, A ↔ 1010, B ↔ 1011,

C ↔ 1100, D ↔ 1101, E ↔ 1110, F ↔ 1111.

For example, the element 1+ u + uω in F4 + uF4 is expressed as 1011 from the ordered
basis, which we refer to as B from the hexadecimal system.

Now, we will look at some definitions and notation regarding coding theory; the fol-
lowing is required for full understanding of the successive results. A code over a finite
commutative ring R is defined as any subset C of Rn. An element of C is called a code-
word. If a code satisfies C = C⊥ then the code C is said to be self-dual, alternatively if
C ⊆ C⊥ then the code is said to be self-orthogonal. The Hamming weight enumerator of a
code is defined as:

WC(x, y) =
∑

c∈C

xn−wt(c)ywt(c). (1)

For binary codes, a self-dual code where all weights are congruent to 0 (mod 4) is said
to be Type II and the code is said to be Type I otherwise. If a code satisfies WC(x, y) =
WC⊥(x, y) then the code is said to be formally self-dual. The bounds on the minimum
distances, d(n) for Type I and Type II codes respectively, are

d(n) ≤ 4� n

24
	 + 4

and

d(n) ≤
{

4� n
24	 + 4 if n 
≡ 22 (mod 24)

4� n
24	 + 6 if n ≡ 22 (mod 24)

If these bounds are met for self-dual codes, they are called extremal. Extremal binary self-
dual codes are of great interest for their numerous applications.

We also define the Gray maps φ′ from F2 + uF2 to F2
2 given by φ′(a + bu) = (b, a + b)

where a, b ∈ F2, and φ from F4 + uF4 to F
2
4 given by φ(a + bu) = (b, a + b) where
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a, b ∈ F4. Introduced in [7], φ is a distance preserving linear isometry which preserves
orthogonality in the corresponding alphabets. We also consider the Gray maps ψ ′ from F4
to F2

2 given by ψ ′(aω+bω̄) = (a, b) where a, b ∈ F2, and ψ from F4+uF4 to (F2+uF2)
2

given by ψ(aω + bω̄) = (a, b) where a, b ∈ F
2
4. Initially introduced in [15], these maps

were generalised in [26].
Next, we define a group ring and summarise its properties and notation; group rings are

frequently used in various construction methods ([31]). Let G be a finite group or order n,
then the group ring RG consists of

∑n
i=1 αigi , αi ∈ R, gi ∈ G. Addition in the group ring

is done by coordinate addition, namely
n

∑

i=1

αigi +
n

∑

i=1

βigi =
n

∑

i=1

(αi + βi)gi . (2)

The product of two elements in a group ring is given by
(

n
∑

i=1

αigi

)

⎛

⎝

n
∑

j=1

βjgj

⎞

⎠ =
∑

i,j

αiβj gigj . (3)

It follows that the coefficient of gi in the product is
∑

gigj =gk
αiβj . Throughout this work,

eG denotes the identity element of any group G.
The following construction of a matrix was first given for codes over fields by Hurley

in [22] and extended to rings in [9]. Let R be a finite commutative Frobenius ring and
let G = {g1, g2, . . . , gn} be the elements of a group of order n in a given listing. Let
v = ∑n

i=1 αgi
∈ RG. Define the matrix σ(v) ∈ Mn(R) to be σ(v) = (α

g−1
i gj

) where

i, j ∈ {1, 2, · · · , n}.
Two groups that are often considered when applying the theory are cyclic and dihedral

groups. For these groups, we consider circulant n×nmatrices denoted cir(α1, α2, · · · , αn),
where each row vector is rotated one element to the right relative to the preceding row vector
[5]. Furthermore, the notationCIR(A1, A2, · · · , Am) denotes the nm×nm circulant matrix
constructed of m smaller n × n circulant matrices, Ai . We will now look at the structure of
the matrix σ(v) where v is an element of the cyclic or dihedral group of order 2p.

Firstly, let C′
2p = 〈x | x2p = 1〉 and

v =
p−1
∑

i=0

1
∑

j=0

αi+pj+1x
2i+j ∈ RC′

2p

then,

σ(v) =
(

A1 A2
A′
2 A1

)

where Aj = cir(α(j−1)p+1, α(j−1)p+2, . . . , αjp) and A′
j =

cir(αjp, α(j−1)p+1, . . . , αjp−1).
Alternatively, let D2p = 〈x, y | xp = y2 = 1, xy = y−1〉 and

v =
p−1
∑

i=0

1
∑

j=0

αi+pj+1x
iyj ∈ RD2p

then,

σ(v) =
(

A1 A2

AT
2 AT

1

)

where Aj = cir(α(j−1)p+1, α(j−1)p+2, . . . , αjp).
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We can use an effective technique in order to extend the length of a given code by 2. The
following result, introduced in [12], will be utilised frequently in this work.

Theorem 2.1 Let C be a self-dual code over F2 + uF2 of length n and G = (ri) be a j × n

generator matrix for C, where ri is the i−th row of G, 1 ≤ i ≤ k. Let c be a unit in F2+uF2
and X be a vector in (F2 + uF2)

n with 〈X, X〉 = 1 and yi = 〈ri , X〉. Then the following
matrix

generates a self-dual codes C′ over F2 + uF2 of length n + 2.

3 Construction

Let v ∈ RG where R is a finite Frobenius ring of characteristic 2 and G is a finite group of
order 2p where p is odd. Define the following matrix:

where αi ∈ R. Let Cσ be a code that is generated by the matrix M(σ). Then, the code Cσ

has length 4p + 4. Throughout this paper, we assume that G is a group of order 2p that
contains a subgroup of order p where p is odd. If we fix a listing of G where the first p

elements of G are the elements of H , then σ(v) takes a certain form. The next result states
the form that σ(v) takes in this case. It also provides an important property that enables us
to prove our main result.

Lemma 3.1 Let R be a commutative ring. If H = {g1, g2, . . . , gp} is a subgroup of the
finite group G = {g1, g2, . . . , gp, gp+1, . . . , g2p} of order 2p (p is odd), then
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where M1, M2 are p ×p matrices, M ′
1 is permutation similar to M1 and M ′

2 is permutation
to M2. Moreover

Mk

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠ = MT
k

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠ = M ′
k

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠ = M ′
k
T

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠ =
⎛

⎜

⎝

μk

...
μk

⎞

⎟

⎠ (k = 1, 2),

where μ1 = ∑

g∈H

αg , μ2 = ∑

g∈G\H
αg .

Proof Clearly, M1 = (α
g−1
i gj

)i,j=1,...,p, M2 = (α
g−1
i gp+j

)i,j=1,...,p M ′
2 =

(α
g−1
p+i gj

)i,j=1,...,p and M ′
1 = (α

g−1
p+i gp+j

)i,j=1,...,p. Let a ∈ G\H . Then, for any 1 ≤ i ≤ p,

gp+i ∈ aH and gp+i = agδ(i) for some 1 ≤ δ(i) ≤ p. Moreover δ : i → δ(i) is a
permutation of degree p and

M ′
1 = (α

g−1
p+i gp+j

)i,j=1,...,p = (α(agδ(i))
−1agδ(j)

)i,j=1,...,p =
(α

g−1
δ(i)

a−1agδ(j)
)i,j=1,...,p = (α

g−1
δ(i)

gδ(j)
)i,j=1,...,p.

If we rearrange the rows and columns of the matrix M1 = (α
g−1
i gj

)i,j=1,...,p in the order

δ(1), . . . δ(p) we will obtain M ′
1. So, M1 is permutation similar to M ′

1.
It is well known that group G of order 2p contains a subgroup of order 2. So there is

a ∈ G a 
= eG, a2 = eG. Thus |H | = p, a 
∈ H . Again, let gp+i = agδ(i) for some
1 ≤ δ(i) ≤ p. Moreover, δ : i → δ(i) is a permutation of degree p and

M2 = (α
g−1
i gp+j

)i,j=1,...,p = (α
g−1
i agδ(j)

)i,j=1,...,p,

M ′
2=(α

g−1
p+i gj

)i,j=1,...,p = (α(agδ(i))
−1gj

)i,j=1,...,p = (α
g−1
δ(i)

a−1gj
)i,j=1,...,p =(α

g−1
δ(i)

agj
)i,j=1,...,p .

Now, if we rearrange the rows of the matrix M2 = (α
g−1
i agδ(j)

)i,j=1,...,p in the order

δ(1), . . . δ(p) and if we rearrange the its columns in the order δ−1(1), . . . δ−1(p) we will
obtain

(α
g−1
δ(i)

ag
δ(δ−1(j))

)i,j=1,...,p = (α
g−1
δ(i)

agj
)i,j=1,...,p = M ′

2.

This implies that SM2S = M ′
2 for a permutation matrix S, which contains ones in positions

(i, δ(i)) (i = 1, . . . , p) or, which is the same, in positions (δ−1(j), j) (j = 1, . . . , p).

Now, the i-th element of column M1

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠ is

p
∑

j=1

α
g−1
i gj

=
∑

g∈H

α
g−1
i g

=
∑

g∈H

αg = μ1, gi ∈ H, g−1
i ∈ H,

and the i-th element of column MT
1

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠
is

p
∑

j=1

α
g−1
j gi

=
∑

g∈H

αg−1gi
=

∑

g∈H

αggi
=

∑

g∈H

αg = μ1, gi ∈ H .
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Thus,

M1

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠
= MT

1

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠
=

⎛

⎜

⎝

μ1
...

μ1

⎞

⎟

⎠
,

since we have S

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠ =
⎛

⎜

⎝

1
...
1

⎞

⎟

⎠ for any permutation matrix S, and M1 is permutation

similar to M ′
1. Furthermore,

M ′
1

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠ = M ′
1
T

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠ =
⎛

⎜

⎝

μ1
...

μ1

⎞

⎟

⎠ .

Now, the i-th elements of columns M2

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠ and MT
2

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠ respectively, are

p
∑

j=1

α
g−1
i gp+j

=
∑

g∈G\H
α

g−1
i g

=
∑

g∈G\H
αg = μ2,

p
∑

j=1

α
g−1
p+j gi

=
∑

g∈G\H
αg−1gi

=
∑

g∈G\H
αggi

=
∑

g∈G\H
αg = μ2,

where gi ∈ H and g−1
i ∈ H .

Thus,

M2

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠
= MT

2

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠
=

⎛

⎜

⎝

μ2
...

μ2

⎞

⎟

⎠

Therefore, we have SM1S = M ′
1 for some permutation matrix S, S

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠ =
⎛

⎜

⎝

1
...
1

⎞

⎟

⎠ , and

M ′
2

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠ = M ′
2
T

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠ =
⎛

⎜

⎝

μ2
...

μ2

⎞

⎟

⎠ .

We can now state and prove our main result.

Theorem 3.2 Let R be a finite commutative Frobenius ring of characteristic 2, G =
{g1, g2, . . . , gp, gp+1, . . . , g2p} be a finite group of order 2p and H = {g1, g2, . . . , gp} be
a subgroup of group G. Then, Cσ is a self-dual code of length 4p + 4 if and only if

• ∑8
i=1αi = 0,

• vv∗ = 1 + ∑2
i=1(α

2
i+2 + α2

i+6)ĝ,
• (α1 + 1)α3 + α2α4 + (α5 + μ1)α7 + (α6 + μ2)α8 = 0,
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• (α1 + 1)α4 + α2α3 + (α5 + μ1)α8 + (α6 + μ2)α7 = 0 and

•
(

α1 + α2
3 + α2

4 α2 α5 + α3α7 + α4α8 α6 + α3α8 + α4α7 α7 + μ1α3 + μ2α4 α8 + μ1α4 + μ2α3

α2 α1 + α2
3 + α2

4 α6 + α3α8 + α4α7 α5 + α3α7 + α4α8 α8 + μ1α4 + μ2α3 α7 + μ1α3 + μ2α4

)

has free rank 2

where ĝ = ∑p

i=1gi , μ1 = ∑

g∈H

αg and μ2 = ∑

g∈G\H
αg .

Proof Let M(σ) =
(

A1 A2 A3 A4

AT
2 I2p AT

4 σ(v)

)

where A1 = circ(α1, α2), A2 = CIRC(B1, B2),

A3 = circ(α1, α2), A4 = CIRC(B3, B4), B1 = (α3, . . . , α3) ∈ Rp, B2 = (α4, . . . , α4) ∈
Rp , B3 = (α7, . . . , α7) ∈ Rp and B4 = (α8, . . . , α8) ∈ Rp . Then

M(σ)M(σ)T =
(

A1A
T
1 + A2A

T
2 + A3A

T
3 + A4A

T
4 A1A2 + A2 + A3A4 + A4σ(v)T

AT
2 AT

1 + AT
2 + AT

4 AT
3 + σ(v)AT

4 AT
2 A2 + I2p + AT

4 A4 + σ(v)σ (v)T

)

.

Now,

A1A
T
1 + A2A

T
2 + A3A

T
3 + A4A

T
4 = circ

(

2
∑

i=1

(α2
i + pα2

i+2 + α2
i+4 + pα2

i+6), 0

)

= circ

(

8
∑

i=1

α2
i , 0

)

and

AT
2 A2 + I2p + AT

4 A4 + σ(v)σ (v)T =
2
∑

i=1
(α2

i+2 + α2
i+6)CIRC(A, 0) + I2p + σ(vv∗)

where A = circ(1, . . . , 1
︸ ︷︷ ︸

p−times

) and 0 = circ(0, . . . , 0
︸ ︷︷ ︸

p−times

). It follows from Lemma 3.1 that

σ(v)AT
4 =

(

M1 M2

M ′
2 M ′

1

)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α7 α8

...
...

α7 α8

α8 α7

...
...

α8 α7

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

μ1α7 + μ2α8 μ1α8 + μ2α7

...
...

μ1α7 + μ2α8 μ1α8 + μ2α7

μ1α8 + μ2α7 μ1α7 + μ2α8

...
...

μ1α8 + μ2α7 μ1α7 + μ2α8

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= CIRC((μ1α7+μ2α8)c, (μ1α8+μ2α7)c)

where c =
⎛

⎜

⎝

1
...
1

⎞

⎟

⎠. Additionally,

AT
2 AT

1 + AT
2 + AT

4 AT
3 + σ(v)AT

4 = CIRC((α1α3 + α2α4)c, (α1α4 + α2α3)c) + CIRC(α3c, α4c)

+CIRC((α5α7 + α6α8)c, (α5α8 + α6α7)c)

+CIRC((μ1α7 + μ2α8)c, (μ1α8 + μ2α7)c)

= CIRC( ((α1 + 1)α3 + α2α4 + (α5 + μ1)α7 + (α6 + μ2)α8)c, ((α1 + 1)α4 + α2α3 + (α5 + μ1)α8 + (α6 + μ2)α7)c)

.

Clearly, M(σ)M(σ)T is a symmetric matrix and Cσ is self orthogonal if
∑8

i=1 α2
i = 0,

vv∗ = 1 + ∑2
i=1(α

2
i+2 + α2

i+6)ĝ,

(α1 + 1)α3 + α2α4 + (α5 + μ1)α7 + (α6 + μ2)α8 = 0 and
(α1 + 1)α4 + α2α3 + (α5 + μ1)α8 + (α6 + μ2)α7 = 0.
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Moreover,
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Table 1 Self-dual code of length 64 from D6 over F4 + uF4

Ai (α1, . . . , α8) (a1, . . . , a6) |Aut(Ai)| Type

1 (0, B, 2, A, 2, 4, 1, 4) (A, 1, 3, 2, B, 7) 23 · 3 β = 57 (W64,2)

2 (0, 1, 0, 0, 0, 2, 6, 7) (0, B, B, 3, 6, 7) 24 · 3 β = 64 (W64,2)

where γ1 = α7 +μ1α3 +μ2α4 and γ2 = α8 +μ1α4 +μ2α3. Therefore M(σ) has free rank
2p + 2 if and only if:
(

α1 + α2
3 + α2

4 α2 α5 + α3α7 + α4α8 α6 + α3α8 + α4α7 α7 + μ1α3 + μ2α4 α8 + μ1α4 + μ2α3

α2 α1 + α2
3 + α2

4 α6 + α3α8 + α4α7 α5 + α3α7 + α4α8 α8 + μ1α4 + μ2α3 α7 + μ1α3 + μ2α4

)

has free rank 2.

The next two results provide conditions when units/non units in RG can be used to be
used to yield self-dual codes using the above construction.

Corollary 3.3 Let R be a finite commutative Frobenius ring of characteristic 2, let G be a
finite group of order 2p where p is odd, and let Cσ be a self-dual code. If

∑2
i=1(αi+2 +

αi+6) = 0 then v ∈ RG is a unit.

Proof If
∑2

i=1(αi+2 + αi+6) = 0, then σ(vv∗) = I2p and vv∗ = 1. Therefore v is unitary.

Corollary 3.4 Let R be a finite commutative Frobenius ring of characteristic 2, let G be a
finite group of order 2p where p is odd, and let Cσ be a self-dual code. If

∑2
i=1(αi+2 +

αi+6) = 1 then v ∈ RG is a non-unit.

Proof If
∑2

i=1(αi+2 + αi+6) = 1, then

2
∑

i=1

(α2
i+2 + α2

i+6)CIRC(A, 0) + I2p + σ(vv∗) = CIRC(A, 0) + σ(vv∗) = 0

where A = circ(0, 1, . . . , 1
︸ ︷︷ ︸

(p−1)−times

) and 0 = circ(0, . . . , 0
︸ ︷︷ ︸

p−times

). Now det (CIRC(A, 0)) = det (A)2

and

det (A) = det

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1 1 . . . 1
1 0 1 · · · 1
1 1 0 · · · 1
...
...
...
. . .

...
1 1 1 . . . 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= (p − 1)det

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 . . . 1
0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...
0 0 0 . . . 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= 0.

Table 2 Self-dual codes of length 64 from D14 over F2 + uF2

Bi (α1, α2, . . . , α8) (a1, a2, . . . , a14) |Aut(C)| Type

1 (u, 1, u, u, 0, 0, u, 1) (u, u, 0, u, u, 1, 1, 0, 0, 1, 3, 0, 3, 1) 23 · 7 β = 46 (W64,1)

2 (u, 1, u, u, 0, 0, u, 1) (u, u, 0, 0, 0, 1, 1, u, 0, 1, 1, u, 1, 1) 22 · 7 β = 60 (W64,1)
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Table 3 Self-dual codes of length 64 from C′
14 over R1

Ci (α1, α2, . . . , α8) (a1, a2, . . . , a14) |Aut(C)| Type

1 (u, 1, u, u, 0, 0, u, 1) (u, 0, 0, 0, u, 1, 1, 1, 0, 0, 1, 1, 0, 1) 23 · 7 β = 46 (W64,1)

Therefore, det (σ (vv∗)) = 0 and vv∗ is a non-unit by Corollary 3 in [22]. Hence, v ∈ RG

is a non-unit.

4 Computational results

Now, we will construct self-dual codes of various lengths (64, 68, 80) using groups of order
6, 14, 18, 30 and 38.

4.1 Constructions coming fromD6

In this section, we implement the above construction using G = D6. We construct self-dual
codes of length 64 by considering this construction over F4 + uF4. Using this construction,
we were able to construct one new code of length 64.

The possible weight enumerators for a self-dual Type I [64, 32, 12]-code is given in [4,
11] as:

W64,1 = 1 + (1312 + 16β) y12 + (22016 − 64β) y14 + · · · , 14 ≤ β ≤ 284,

W64,2 = 1 + (1312 + 16β) y12 + (23040 − 64β) y14 + · · · , 0 ≤ β ≤ 277.

With the most updated information, the existence of codes is known for β =14, 18, 22, 25,
29, 32, 35, 36, 39, 44, 46, 53, 59, 60, 64 and 74 in W64,1 and for β =0, 1, 2, 4, 5, 6, 8, 9,
10, 12, 13, 14, 16, . . . , 25, 28, 19, 30, 32, 33, 34, 36, 37, 38, 40, 41, 42, 44, 45, 48, 50, 51,
52, 56, 58, 64, 72, 80, 88, 96, 104, 108, 112, 114, 118, 120 and 184 in W64,2.The new code
that we have constructed is β = 57 in W64,2.

4.2 Constructions coming from groups of order 14

Here we present the results for the above construction using G ∈ {D14, C14}. We construct
self-dual codes of length 64 by considering this construction over F2 + uF2.

Table 4 Self-dual codes of length 80 from D18 over F2 + uF2 where (α1, . . . , α8) = (u, 1, u, u, 0, 0, u, 1)

Di (a1, . . . , a9) (a10, . . . , a18) |Aut(Ci)| Type

1 (u, 0, u, 1, 1, 1, 1, 1, 1) (u, u, 1, 3, 0, 1, 1, 1, 3) 22 · 32 α = −229, β = 18 (W80,2)

2 (u, u, u, 0, 1, u, 3, 3, 1) (0, 0, 1, u, 3, u, 0, 3, 1) 22 · 32 α = −256, β = 18 (W80,2)

3 (0, u, 0, 0, u, 0, 0, 1, 1) (0, 0, 1, 3, 1, 0, 3, 3, 3) 22 · 32 α = −274, β = 18 (W80,2)

4 (0, u, 0, 0, 0, 0, 0, 1, 3) (u, 0, 1, 1, 1, 0, 3, 3, 3) 22 · 32 α = −310, β = 18 (W80,2)

5 (0, 0, 0, 1, 1, 3, 3, 3, 3) (u, u, 1, 1, 0, 1, 3, 1, 3) 22 · 32 α = −355, β = 18 (W80,2)
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4.3 Constructions coming from a groups of order 18

Now, we implement the above construction using G ∈ {D18, C18}. We construct self-dual
codes of length 80 by considering this construction over F2 + uF2. In [32], the possible
weight enumerators for a self-dual Type I [80, 40, 14]-code is given in as:

W80,2 = 1 + (3200 + 4α) y14 + (47645 − 8α + 256β) y16 + · · · ,

where α and β are integers. A [80, 40, 14] was constructed in [6], however its weight enu-
merator was not stated. A [80, 40, 14] code was constructed in [21] with α = −280, β = 10
and [80, 40, 14] codes were constructed for β = 0 and α = −17k where k ∈ {2, . . . , 25, 27}
in [32]. None of the codes presented here have been previously constructed.

4.4 Constructions coming fromD38

In this section, we implement the construction on G = D38. We construct self-dual codes
of length 80 by considering this construction over F2.

5 New codes of length 68

In this section, we implement Theorem 2.1 to construct new extremal self-dual codes. We
extend the codes previously constructed in Tables 1, 2 and 3.

The known weight enumerators of a self-dual [68, 34, 12]I -code are as follows:
W68,1 = 1 + (442 + 4β)y12 + (10864 − 8β)y14 + . . .

W68,2 = 1 + (442 + 4β)y12 + (14960 − 8β − 256γ )y14 + . . .

where 0 ≤ γ ≤ 9. Codes have been obtained for W68,2 when

γ = 2, β ∈ {2m |m = 29, . . . , 100, 103, 104 } or β ∈ {2m + 1 |m = 32, 34, . . . , 79 } ;
γ = 3, β ∈ {2m |m = 40, . . . , 98, 101, 102 } or

β ∈ {2m + 1|m = 41, 43, . . . , 77, 79, 80, 83, 96} ;
γ = 4, β ∈ {2m |m = 43, 44, 48, . . . , 92, 97, 98 } or

β ∈ {2m + 1 |m = 48, . . . , 55, 58, 60, . . . , 78, 80, 83, 84, 85 } ;
γ = 5 with β ∈ {m|m = 113, 116, . . . , 181} ;
Recall that the codes constructed in Tables 1, 2 and 3 are codes over F4 + uF4. Conse-

quently, we converted these codes to codes over F2 + uF2 (using the Gray map ψF4+uF4 )

Table 6 Self-dual codes of length 68 from extending [64, 32, 12]I
C68,i Code c X γ β

C68,1 B1 u + 1 (3, u, 0, u, 0, 3, u, u, 1, 0, u, 3, 0, 1, u, 1, 1, 1, u, u, u, u, u, 1, u, u, 0, 0, 1, u, 0, 3) 2 161

C68,2 B1 u + 1 (u, 3, u, 3, u, 1, 0, 0, 1, 3, u, 0, u, u, 1, 0, 1, 3, 1, 0, 1, 3, u, 0, 3, 3, 0, 0, 0, u, 1, 3) 2 163

C68,3 A1 1 (0, 1, u, u, 1, 1, 3, u, 3, 1, 3, 0, 0, 0, 3, 1, 3, 0, 1, 0, 1, 1, u, u, 1, u, 3, 3, 0, 0, 3, u) 2 169

C68,4 B2 u + 1 (0, u, 0, 1, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, u, 3, 1, 0, u, u, 3, 1, 1, 1, 1, 1, 0, u) 2 171

C68,5 C1 u + 1 (1, 3, u, 0, 1, 3, 1, 3, 1, 0, 1, u, 0, 0, u, 3, 3, 0, u, 0, 3, u, 1, 0, 3, 1, 1, 0, u, 1, 1, u) 2 173

C68,6 A2 1 (3, 0, 0, 0, 3, 0, u, 3, 3, 3, u, 3, 0, 1, 1, 0, 3, u, 1, u, 0, 3, 0, u, u, 3, 0, 0, u, u, u, 1) 4 200
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Table 7 New codes of length 68 as neighbors of C68,6

N68,i (x35, x36, ..., x68) γ β

N68,1 (1111000110001110000010111110001011) 3 163

N68,2 (1011100000000001011100000010011001) 3 175

N68,3 (0011100010001111001100000010110111) 3 177

N68,4 (1000010001101010111011001111101111) 4 159

N68,5 (1001000101100010111111100110010011) 4 175

N68,6 (1110001100110111010000111000010100) 4 186

N68,7 (1100101101100111010011101110111110) 4 191

N68,8 (1101001101011110100110001000110101) 5 182

N68,9 (1001001001011101011111011100001001) 5 187

N68,10 (0000000110000101101101001100100001) 5 189

N68,11 (0111100111011000110000111011010111) 5 191

N68,12 (0000101110001110101111010100111111) 5 193

before applying Theorem 2.1. The following table displays the newly constructed extremal
codes of length 68. We replace u + 1 with 3 to save space (Tables 4 and 5).

Two self-dual binary codes of dimension k are said to be neighbors if their intersection
has dimension k − 1. We consider the standard form of the generator matrix of C to reduce
down the search field. Let x ∈ F

n
2 −C then D = 〈〈x〉⊥ ∩ C, x

〉

is a neighbor of C (Table 6).
Without loss of generality, the first 34 entries of x are set to be 0, the rest of the vectors
are listed in Table 7. As neighbors of codes in Table 5 we obtain 12 new codes with weight
enumerators in W68,2. All the codes have an automorphism group of order 2.

6 Conclusion

In this work, we have introduced a new construction for constructing self-dual codes using
group rings. We provided certain conditions when this construction produces self-dual codes
and we established a link between units/non-units and self-dual codes. We demonstrated the
relevance of this new construction by constructing many binary self-dual codes, including
new self-dual codes of length 64, 68 and 80.

• Code of length 64: We were to able to construct the following [64, 32, 12] codes with
new weight enumerator in W64,2:

β = {57}.
• Codes of length 68:We were able to construct the following extremal binary self-dual

codes with new weight enumerators in W68,2:

(γ = 2, β = {161, 163, 169, 171, 173}),
(γ = 3, β = {163, 175, 177}),
(γ = 4, β = {159, 175, 186, 191, 200}),
(γ = 5, β = {182, 187, 189, 191, 193}),

• Codes of length 80:We were to able to construct the following [80, 40, 14] codes with
new weight enumerators in W80,2:

(β = 18, α = {−211, −229, −249, −256, −274, −287, −306, −310, −325, −355, −363, −401}).
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