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Abstract Candida albicans is a common opportunistic

pathogen that can cause serious infection by blood trans-

mission. C. albicans enters the blood circulation and

adheres to the endothelial cells of the vascular wall.

However, the detailed mechanism of the effect of C.

albicans on the endothelial cells remains unclear. In this

study, the microarray expression profile of human umbili-

cal vein endothelial cells exposed to C. albicans was

analyzed. The 191 up-regulated genes were enriched in

TNF, T cell receptor, and NF-kappa B signaling pathways.

The 71 down-regulated genes were enriched in pyruvate

metabolic, purine nucleotide metabolic, purine nucleotide

biosynthetic, and humoral immune response processes.

Gene set enrichment analysis showed that apoptosis,

oxidative phosphorylation, IL6/JAK/STAT3 signaling

pathways were enriched. Moreover, two hub genes with a

high degree of connectivity, namely, MYC and IL6, were

selected. Molecular screening of traditional Chinese med-

icine libraries was performed on the basis of the structure

of MYC protein. The okanin had the highest docking score.

MYC might be used as molecular targets for treatment. In

addition, okanin may inhibit the infection of C. albicans.

Thus, MYC can be subjected to further research.
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Introduction

Candida albicans is a polymorphic yeast and one of the

most important pathogens that causes iatrogenic infections

in immunodeficient populations [1]. In general, it is a

common parasite of humans that can be found in the

oropharynx, gastrointestinal tract, and vaginal mucosa and

does not cause human diseases. However, when the host’s

local micro-environment is dysregulated, or the mucosal

barrier is impaired, C. albicans can cause mucosal infec-

tions, thereby causing diseases such as thrush, fungal

vaginitis, and rash [2, 3]. In some cases, C. albicans can

invade the mucosal epithelium and vascular endothelium,

thereby causing disseminated infections in susceptible

populations [4]. In the pathology of the abovementioned

diseases, C. albicans invades the host’s non-phagocytic

cells, such as endothelial cells, and plays a vital role in the

early stages of the disease [5]. Currently, no mechanism

study has been conducted on the effects of C. albicans on

endothelial cells.

High-throughput virtual screening revealed that okanin

has the highest docking score with MYC [6, 7]. Okanin is a

chalcone compound found in the genus Bidens [8]. Phar-

macological studies have shown that okanin has many

effects, such as lowering blood sugar, lowering blood

pressure, lowering blood fat, and resisting oxidation [9].

Although the anti-inflammatory activity of okanin has been

studied [10], the anti-C. albicans infection activity of

okanin has not been investigated yet.

In the present study, differentially expressed genes

(DEGs) of endothelial cells after C. albicans infection were
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analyzed by performing bioinformatics analysis. The key

functions and pathways of endothelial cells after C. albi-

cans infection were also identified. By conducting the

topological analysis, we found and further screened the key

hub genes in the affected endothelial cell lesions to obtain

okanin. The candidate molecule for traditional Chinese

medicine (TCM) may inhibit C. albicans infection.

Materials and Methods

RNA Sequence Analysis

The RNA expression profiling of GSE7355 downloaded

from the GEO database was used in this study. Four

independent experiments compared the expression profiles

of untreated HUVEC monolayer and of C. albicans-in-

fected HUVEC monolayer. The data quality was assessed

by calculating residuals.sign, residuals, weight, relative log

expression (RLE), normalized unscaled standard errors

(NUSE), and RNA degradation. We used the R packages of

pheatmap and limma to analyze the difference in RNA

expression profiling among the eight groups. We set the

|log2fold change| C 0.6 of the cutoff limit for DEGs.

Gene Set Enrichment Analysis (GSEA)

GSEA was conducted using the GSEA software [11].

Omics Analysis

The DEGs were further analyzed using the gene ontology

(GO), KEGG pathway, and protein–protein interaction

(PPI) analyses [12]. The GO and pathway analysis were

conducted using the website of Metascape (http://metas

cape.org). The enriched pathways or functions were then

drawn into bubble maps with the R package of ggplot2. PPI

annotation of the DEGs was retrieved from the STRING

database. The PPI network was visualized using the

Cytoscape software. Then, the Cytoscape apps of CentiS-

cape and MCODE were used for detecting densely con-

nected regions [13, 14].

TCM Database and Protein Preparation

A total of 32,364 TCM molecules were obtained from the

TCM database (http://tcm.cmu.edu.tw/) [15]. All the TCM

molecules were refined by removing the counterions and

salts and adding hydrogen atoms. Then, we performed

energy minimization using Schrodinger software [16, 17].

For protein preparation, the crystal structure of MYC was

downloaded from the protein data bank (http://www.rcsb.

org/, PDBID: 1NKP) [18]. The protein structure was

refined by removing crystalline water and ions. Then, we

added hydrogen atoms and performed energy minimization

of the protein structure. We selected high-throughput vir-

tual screening model of Schrodinger to perform molecular

docking. Glide XP (extra precision) was used for the final

10 TCM molecules calculations [19, 20].

Luciferase Report Assay

The HUVEC cell lines, obtained from KeyGen Biotech

(Nanjing, China), were transfected with dual-reporter

constructs of MYC using the transfection regents. After

transfection of 24 h, cells were treated with 40 lM of

okanin. After another 48 h, the culture medium was col-

lected into a 96-well plate and the luminescence was

measured using a luminometer. The fluorescence intensity

reflects the transcriptional activity.

Western Blot Assay

The okanin was added to the HUVEC cell culture at a

concentration of 40 lM when the cell density reached to

80%. After incubation of 48 h, the cells were lysed and 30

lg of total protein was used for sodium dodecyl sul-

fatepolyacrylamide gel electrophoresis and transferred onto

polyvinylidene difluoride membranes (Millipore, USA).

The membrane was incubated with primary antibodies

against GLUT2 (1:1000, Affinity Bioreagents, USA), MYC

(1:1000, Affinity Bioreagents, USA), and GAPDH (1:5000,

Affinity Bioreagents, USA), followed by the secondary

antibody (1:5000, Affinity Bioreagents, USA). The blots

were detected using an enhanced chemiluminescence

detection kit (Millipore, USA). The expression analysis

was performed using the ImageJ software. The ratio of

densitometry value to the corresponding GAPDH was used

to reflect the relative protein expression.

Results

C. albicans Affected the RNA Expression Profile

in HUVEC Cell Lines

To clarify the effects of C. albicans on endothelial cells, we

downloaded the GEO database of GSE7355 from the GEO

database. By calculating residuals.sign, residuals, weight,

RLE, NUSE, and RNA degradation, the data quality was

acceptable (Figure S1A–F). The heat map analysis result

showed a quite different expressed gene profile between

the control HUVEC monolayer and C. albicans-infected

HUVEC monolayer (Figure S2). The volcano plot further

described a difference in gene expression profile between

the two groups. For instance, many genes were
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considerably upregulated and labeled in red color, whereas

some genes were remarkably downregulated and labeled in

blue color (Figure S3).

C. albicans Infection Affected Apoptosis,

Metabolism, and Inflammation Related Pathways

The omics analysis was then conducted with the screened

DEGs. The GSEA analysis results showed that C. albicans

infection could affect the apoptosis and oxidative phos-

phorylation processes. Furthermore, the C. albicans infec-

tion could affect the inflammatory response and its related

signaling pathways, namely, NFKB, IL6-JAK-STAT3, and

IL2-STAT5 pathways (Figure S4). Further analysis of the

DEGs revealed that C. albicans infection extensively pro-

moted immune- and inflammation-related signaling path-

ways, such as TNF, Toll-like receptor, T cell receptor, NF-

kappa B, and chemokine-mediated signaling pathway

(Fig. 1a). The metabolism-related pathways, such as gly-

colytic and carbohydrate catabolic processes, were almost

completely suppressed by C. albicans infection, thereby

inhibiting synthesis of nicotinamide nucleotide and ATP

(Fig. 1b). Multiple biological processes and pathways were

implicated in HUVEC monolayer by C. albicans infection.

On this basis, we constructed C. albicans-related network

using PPI information of DEGs (Supplemental table). This

network consisted of 105 nodes and 360 edges (Fig. 2a). By

using the CentiScape and MCODE APPs, we identified the

topological network with features of Degree and K-Core.

Three hub networks were screened with the network

scoring of 6.737, 6, and 3, respectively (Fig. 2b). As a

result, some potential hub nodes, such as MYC, IL6, FOS,

and NFKBIA, were identified as candidate targets for

treating C. albicans infection (Table 1).

Candidate Drugs Screening for Treating C. albicans

Infection

In accordance with the omics analysis, MYC was detected

to be a hub node and an important gene related to

inflammation and transformation of inflammatory cancer.

Therefore, we chose the gene MYC for drug screening. A

systematic strategy for identifying TCM molecules were

designed by using structure-based VS. The high-throughput

virtual screening process is shown in Fig. 3a. HTV screen

method yielded 100 TCM molecules with the highest MYC

score. Furthermore, twenty TCM molecules were further

screened out form the previous 100 TCM molecules.

Finally, 10 TCM molecules were obtained (Table 2). We

performed extra precision calculation with MYC–DNA

complex. Among these molecules, okanin had the highest

docking score. The interactions between MYC–DNA and

okanin are shown in Fig. 3b. Okanin interacted with key

amino acid residues (Arg-239 and Arg-914) in the DNA

binding site of MYC via two hydrogen bonding interac-

tions. In DNA helix, okanin formed hydrogen bond inter-

action with three bases. Okanin could inhibit the binding

sites of MYC and DNA, thereby inhibiting the transcrip-

tional activity of MYC. To further demonstrate the activity

of okanin on treatment of C. albicans infection, the luci-

ferase assay of MYC and MYC downstream protein

expression of GLUT2 and p65 were conducted [21, 22].

The luciferase assay results showed that okanin could

significantly inhibit the transcriptional regulatory activity

of MYC (Fig. 3c). Meanwhile, the expressions of MYC

downstream proteins of GLUT2 and p65 were also sig-

nificantly inhibited by okanin (Fig. 3d).

Discussion

Microorganisms in the lumen enter the parenchymal tissue

through their interaction with endothelium and then cause

infection by increasing the vascular permeability [23]. This

occurrence is the first and key step of disseminated infec-

tions [24]. Hence, vascular endothelial cells play a key role

in the early stage of hematogenous disseminated infections

and is a tool for studying fungal infections [25]. Thus,

studying the effect of C. albicans on vascular endothelial

cells can clarify the pathogenesis of disseminated can-

didiasis. Although there have be some treatments for C.

albicans [26], more effective treatment methods need to be

selected and developed. C. albicans invades human host

cells and is associated with cell motility, cytoskeleton

actin, PI3K signaling pathway, and membrane receptors

EGFR and Erbb2 [27–30]. From a microbial point of view,

the activity of pathogenic fungi, mycelial growth, and the

virulence factors of C. albicans, such as als3 and Ssa1, all

play an important role in the whole process [31].

Hub genes play vital roles during the progression of C.

albicans infection. Although many studies on C. albicans-

infected endothelial cells are available, much effort is still

needed to identify hub genes and develop candidate drugs

that may inhibit C. albicans infection. Pathway enrichment

analysis indicated that TNF signaling pathway, T cell

receptor signaling pathway, response to chemokine, posi-

tive regulation of apoptotic process, and inflammatory

response pathways were overrepresented among the

upregulated genes.

The PPI network was constructed with 162 nodes/DEGs.

The PPI network and the topological index revealed that
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IL6, FOS, and MYC were the most important in this PPI

network. These proteins have a high degree of expression

and a central regulatory role in the PPI network. Hence,

they are likely to be regulatory hubs.

MYC, a transcription factor, can bind DNA in a non-

specific manner [32]. MYC gene is an important member

of MYC gene family. It is not only a translocation gene but

also an adjustable gene regulated by many substances. It

can make cells proliferate indefinitely and obtain the

function of immortalization; it promotes cell division

[33, 34]. It is also involved in cell apoptosis and is related

to the development of various tumors [35]. In this study,

we used the crystal structure of MYC–DNA complex to

screen TCM molecules that may inhibit MYC activity. By

multi-level virtual screening, 10 TCM molecules with

potential inhibitory activity were obtained; among these

molecules, okanin had the highest docking score.

This study demonstrated that okanin, a major effective

constituent of Bidens (Asteraceae), may inhibit C. albicans

infection by inhibiting MYC. Okanin can lower the mRNA

and protein level of IL6 in the LPS-induced pro-inflam-

matory model [10]. It also potently inhibited a number of

Fig. 1 Effects of Candida albicans infection on biological processes

and pathways in HUVEC cells. a Pathway analysis of the upregulated

genes by C. albicans infection revealed an activation of immune and

inflammation related pathways including TNF, Toll-like receptor, T

cell receptor, NF-kappa B, and chemokine-mediated signaling

pathway. b Pathway analysis of the downregulated genes by C.

albicans infection revealed an inhibition on metabolism related

processes like synthesis of nicotinamide nucleotide and ATP (false

discovery rate\ 0.05, |log2fold change| C 0.6)
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pro-inflammatory responses in cells [8]. The structure of

okanin contained a-b unsaturated carbonyl moiety that was

composed of two hydroxyphenyl rings and a three-carbon

unit. The binding model of okanin and MYC–DNA com-

plex revealed that okanin was in the middle of MYC

binding to DNA and inhibited the transcriptional activity of

MYC. Okanin interacted with Arg239 and Arg914 of MYC

to form two hydrogen bonds. Okanin also interacted with

DA109, DC110, and DC310 on DNA [18]. Therefore,

blocking interaction of MYC and DNA was observed.

Okanin inhibited MYC transcriptional activity, possibly

also inhibiting the transformation of inflammatory cancer

caused by C. albicans infection.

Fig. 2 PPI network of DEGs.

a PPI analysis of the

upregulated genes by Candida

albicans infection by Cytoscape

software, where the node size

reflected the gene interaction

degree, larger circles indicated

higher gene interaction degree.

b Seed nodes analysis of the PPI

network by MCODE. Three

modules identified by MCODE

showed the candidate targets of

treating C. albicans infection,

with the network scoring of

6.737, 6, and 3.

Table 1 Top hub proteins in

the PPI network based on

interaction degree

Gene name Degree unDir Bridging unDir Eigen vector unDir Radiality unDir Stress unDir

IL6 47 13.838 0.334 6.683 15,962

FOS 43 9.326 0.315 6.602 11,290

MYC 40 13.342 0.282 6.621 14,748

PTGS2 27 15.575 0.248 6.491 5250

MAP2K1 24 12.665 0.197 6.385 5532

EGR1 23 10.907 0.215 6.416 3646

CCL2 23 12.011 0.201 6.329 3150

NFKBIA 21 38.857 0.195 6.422 7938

ATF3 21 6.814 0.185 6.298 1976

DUSP1 19 17.998 0.184 6.323 2984
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Fig. 3 Receptor–ligand interactions of compound. a Protocol

flowchart of MYC inhibitor discovery strategy, ten candidate

inhibitors including okanin were screened at last through HTV, SP,

and XP screen methods. b Binding model of MYC–DNA complexes

with okanin (PDB code: 1NKP) through molecular docking method.

The results showed that okanin interacted with two key amino acid

residues in the DNA binding site of MYC. c Okanin could

significantly inhibit the transcriptional regulatory activity of MYC

by luciferase assay. d Okanin significantly inhibited the expressions

of GLUT2 and p65, which were the downstream proteins of MYC

(n = 3, **P\ 0.01)

Table 2 Detailed docking score of top ten screened TCMs

Compound name Docking score Glide evdw Glide ecoul Glide energy Glide einternal Glide emodel

Okanin - 9.97 2.14 - 30.85 - 28.71 2.52 - 46.83

Prolithospermic acid - 9.38 - 25.15 - 24.53 - 49.67 7.15 - 50.26

Eximine - 8.91 - 24.27 - 18 - 42.27 12.27 - 60.42

Chalconaringenin - 8.32 - 18.09 - 21.36 - 39.44 3.33 - 48.89

Maclurin - 8.27 - 21.93 - 20.63 - 42.57 2.57 - 56.93

(?)-Catechin - 6.93 - 23.54 - 12.38 - 35.92 2.23 - 48.89

Licochalcone B - 6.93 - 15.63 - 14.66 - 30.29 7.53 - 23.07

Pinobaksin - 6.63 - 20.57 - 7.66 - 28.23 0.14 - 44.29

Citreorosein - 6.48 - 26.89 - 21.76 - 48.65 1.95 - 63.36

2’-Methoxy-3,4,4’-trihydroxychalcone - 6.35 - 20.75 - 17.07 - 37.82 6.79 - 49.1
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